In order to assess the usefulness of CT functional images, twenty one cases with liver masses were studied. We tried to minimize the motion artifacts by immobilizing the patients with a girdle in performing dynamic CT scans, and by discarding some of the segmented images with serious artifacts before constructing functional images. The qualities of images obtained were considered satisfactory. Of the several transit parameters obtained from the dynamic CT scans, we found the first moment (Ml) to be most useful and the effectiveness of Ml-functional images were studied. In all cases with hepatocellular carcinomas (12 cases) and intrahepatic cholangiocarcinomas (2 cases), the Ml-functional images showed the viable portions of tumors as accumulations of dark pixels reflecting rapid transit times due to arterial blood supply. In three cases with hepatic cavernous hemangiomas, the lesions were represented as bright areas with a well-defined border. In two cases with hepatic abscesses, the Ml-functional images suggested the presence of hyperemia in the surrounding tissue as demonstrated by bright pixels around the lesions.
CT functional imaging was proved to be useful for evaluating the circulatory dynamics of contrast material and the differential diagnosis of liver tumors when conventional or dynamic CT studies failed to provide enough information. This technique enabled overall analysis of time-density curves for the entire plane of an image semiautomatically and without the subjective maneuver of setting ROI's (regions of interest).