Bernstein type theorems for some types of parabolic k-Hessian equations
アクセス数 : 873 件
ダウンロード数 : 491 件
今月のアクセス数 : 2 件
今月のダウンロード数 : 1 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00038523
File |
k6738_3.pdf
692 KB
種類 :
fulltext
|
File |
k6738_1.pdf
128 KB
種類 :
abstract
|
File |
k6738_2.pdf
112 KB
種類 :
abstract
|
Title ( eng ) |
Bernstein type theorems for some types of parabolic k-Hessian equations
|
Title ( jpn ) |
ある種の放物型 k-Hessian 方程式に対する Bernstein 型定理
|
Creator |
Nakamori Saori
|
Abstract |
We are concerned with the characterization of entire solutions to the parabolic k-Hessian equation of the form −utFk(D2u) = 1 in Rn ×(−∞, 0]. We prove that for 1 ≤ k ≤ n, any strictly convex-monotone solution u = u(x, t) ∈ C4,2(Rn × (−∞, 0]) to −utFk(D2u) = 1 in Rn × (−∞, 0] must be a linear function of t plus a quadratic polynomial of x, under some growth assumptions on u.
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | doctoral thesis |
Publish Type | Not Applicable (or Unknown) |
Access Rights | open access |
Source Identifier |
Saori Nakamori and Kazuhiro Takimoto; Uniqueness of boundary blowup solutions to k-curvature equation; Journal of Mathematical Analysis and Applications, 399 (2013), 496-504. (doi: 10.1016/j.jmaa.2012.10.021)
references
Saori Nakamori and Kazuhiro Takimoto; A Bernstein type theorem for parabolic k-Hessian equations; Nonlinear Analysis: Theory, Methods & Applications, 117 (2015), 211-220. (doi: 10.1016/j.na.2015.01.010)
references
[DOI] http://doi.org/10.1016/j.jmaa.2012.10.021
references
[DOI] http://doi.org/10.1016/j.na.2015.01.010
references
|
Dissertation Number | 甲第6738号 |
Degree Name | |
Date of Granted | 2015-06-22 |
Degree Grantors |
広島大学
|