Bernstein type theorems for some types of parabolic k-Hessian equations

アクセス数 : 873
ダウンロード数 : 491

今月のアクセス数 : 2
今月のダウンロード数 : 1
File
k6738_3.pdf 692 KB 種類 : fulltext
File
k6738_1.pdf 128 KB 種類 : abstract
File
k6738_2.pdf 112 KB 種類 : abstract
Title ( eng )
Bernstein type theorems for some types of parabolic k-Hessian equations
Title ( jpn )
ある種の放物型 k-Hessian 方程式に対する Bernstein 型定理
Creator
Nakamori Saori
Abstract
We are concerned with the characterization of entire solutions to the parabolic k-Hessian equation of the form −utFk(D2u) = 1 in Rn ×(−∞, 0]. We prove that for 1 ≤ k ≤ n, any strictly convex-monotone solution u = u(x, t) ∈ C4,2(Rn × (−∞, 0]) to −utFk(D2u) = 1 in Rn × (−∞, 0] must be a linear function of t plus a quadratic polynomial of x, under some growth assumptions on u.
NDC
Mathematics [ 410 ]
Language
eng
Resource Type doctoral thesis
Publish Type Not Applicable (or Unknown)
Access Rights open access
Source Identifier
Saori Nakamori and Kazuhiro Takimoto; Uniqueness of boundary blowup solutions to k-curvature equation; Journal of Mathematical Analysis and Applications, 399 (2013), 496-504. (doi: 10.1016/j.jmaa.2012.10.021) references
Saori Nakamori and Kazuhiro Takimoto; A Bernstein type theorem for parabolic k-Hessian equations; Nonlinear Analysis: Theory, Methods & Applications, 117 (2015), 211-220. (doi: 10.1016/j.na.2015.01.010) references
[DOI] http://doi.org/10.1016/j.jmaa.2012.10.021 references
[DOI] http://doi.org/10.1016/j.na.2015.01.010 references
Dissertation Number 甲第6738号
Degree Name
Date of Granted 2015-06-22
Degree Grantors
広島大学