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Bernstein type theorems

for some types of parabolic k-Hessian equations

Saori Nakamorit

Abstract

We are concerned with the characterization of entire solutions to the
parabolic k-Hessian equation of the form —u;Fj,(D?u) = 1 in R™ x (—o0, 0].
We prove that for 1 < k < n, any strictly convex-monotone solution u =
u(z,t) € CH2(R™ x (—00,0]) to —usF(D?*u) = 1 in R™ x (—o00,0] must be
a linear function of ¢ plus a quadratic polynomial of z, under some growth

assumptions on u.

1 Introduction

In the early 20th century, Bernstein [3] proved the following theorem.

Theorem 1.1. If f € C%*(R?) and the graph of z = f(z,y) is a minimal surface
in R3, that is, f satisfies

L+ ) fow + 2fufyfoy + (L+ ) fpy =0 inR? (1.1)

then f is necessarily an affine function of x and y.

This theorem gives the characterization of entire solutions to the minimal surface
equation defined in the whole plane R2.

Many problems on the classification of entire solutions to PDEs have been exten-
sively studied. We list some results concerning Bernstein type theorems for fully
nonlinear equations. First, for Monge-Ampere equation, the following theorem is

known.

!Department of Mathematics, Graduate School of Science, Hiroshima University,
1-3-1 Kagamiyama, Higashi-Hiroshima city, Hiroshima 739-8526, Japan
E-mail : d113989@hiroshima-u.ac. jp



Theorem 1.2. Let u € C*(R™) be a convez solution to
det D*u =1 inR™ (1.2)
Then u is a quadratic polynomial.

This theorem was proved by Jérgens [24] for n = 2, by Calabi [10] for n < 5, and
by Pogorelov [36] for arbitrary n > 2 (see also [11] for a simpler proof). Caffarelli
[5] proved that the result holds for viscosity solutions (see also [7]). Moreover,
Jian and Wang [23]| obtained Bernstein type result for a certain Monge-Ampere
equation in the half space R’}

Here we note that the convexity assumption in Theorem 1.2 is quite natural,
since Monge-Ampere operator det D?u is degenerate elliptic for convex functions
so that we usually seek solutions in the class of convex functions when we deal

with Monge-Ampere equation.

Later, Bao, Chen, Guan and Ji [2] extended this result to the so-called k-Hessian

equation of the form
F.(D*u) =1 in R, (1.3)
for 1 < k <n. Here Fy(D?u) is defined by
Fi.(D*u) = Sp(A1, ..., An), (1.4)

where, for a C? function u, A1, ..., \, denote the eigenvalues of the Hessian matrix

D?u, and S, denotes the k-th elementary symmetric function, that is

Sk An) =D Ay A (1.5)

where the sum is taken over all increasing k-tuples, 1 <i; < --- < i < n.
Laplace operator Au and Monge-Ampere operator det D?u correspond respec-
tively to the special cases k = 1 and k = n in (1.4). Hence, the class of k-Hessian
equations includes important PDEs which arise in physics and geometry. Here we
remark that (1.4) is a linear operator for £ = 1 while it is a fully nonlinear operator
for k > 2. It is much harder to study the intermediate case 2 < k < n—1. Though,

there are a number of papers concerning the analysis of k-Hessian equation, such



as the solvability of the Dirichlet problem, see [8, 13, 20, 41, 42, 43, 44, 45, 46] for

example.

Bao, Chen, Guan and Ji [2] proved the following Bernstein type theorem for
k-Hessian equation (1.3).

Theorem 1.3. Let 1 < k < n and u € C*(R™) be a strictly convex solution to
(1.3). Suppose that there exist constants A, B > 0 such that for all x € R",

u(z) > Alz|* — B. (1.6)
Then u is a quadratic polynomaial.

In this theorem, for the case k = n which corresponds to Monge-Ampere equa-
tion, the assumption (1.6) can be removed, due to Theorem 1.2. Furthermore, for
the case k = 1 which corresponds to Poisson equation Au = 1, the assumption
(1.6) can also be removed. It is because the classical convex solution to Au =1 in
R™ must be quadratic, as it follows almost straightforward from Liouville’s theorem
for harmonic functions. The proof is given in [2], but we state the proof here for
the reader’s convenience. Assume u € C*(R") is a convex solution to Au = 1 in R"
and let {ej,...,e,} be the canonical basis of R”. Then we see that 0 < Dgeu <1
and Dgeu is harmonic for any unit vector £. It follows from Liouville’s theorem
for harmonic functions that D¢cu is a constant. Therefore, D;;u is a constant for
i = j. For i # j, by the fact D;ju = Deeu — (Dyu + Djju)/2 for € = (e; + ¢;)/v/2

we obtain that D;;ju is also a constant. This ends the proof.

Next, Gutiérrez and Huang [19] extended Theorem 1.2 to the parabolic analogue

of Monge-Ampere equation
—ugdet D*u =1 in R" x (—o0,0]. (1.7)

Here D?u means the matrix of second partial derivatives with respect to z. This
type of equation was firstly proposed by Krylov [27].

The function u = u(z,t) : R" X (—o00, 0] — R is said to be convez-monotone if it
is convex in x and non-increasing in ¢. We state Bernstein type theorem for (1.7)

which Gutiérrez and Huang [19] proved.



Theorem 1.4. Let u € C*?(R™ x (—00,0]) be a convex-monotone solution to
(1.7). Suppose that there exist constants my > mo > 0 such that for all (z,t) €
R™ x (—00,0],

—my < w(z,t) < —mo. (1.8)

Then u has the form u(x,t) = —mt + p(x) where m > 0 is a constant and p is a

quadratic polynomial.

We note that Xiong and Bao [49] have recently obtained Bernstein type theorems
for more general parabolic Monge-Ampere equations, such as u; = (det D2u)1/ "
and u; = logdet D?>u. However, as far as we know, Bernstein type theorems
for parabolic fully nonlinear equations are known only for the parabolic Monge-

Ampere equations.

In this paper, we are concerned with the parabolic analogue of k-Hessian equa-

tion of the following form
—u F(D?u) =1 in R™ x (—o00,0], (1.9)

for 1 < k < n. Here F}(D?u) is the k-Hessian operator defined in (1.4). We call
(1.9) “parabolic k-Hessian equation” in this paper. For the special case k = n,
(1.9) reduces to the parabolic Monge-Ampere equation (1.7). We shall obtain
Bernstein type theorem for (1.9). Moreover, we deal with other forms of parabolic
k-Hessian equation u; = p(Fj(D?u)'/*) (see Section 5).

This paper is divided as follows. In Section 2, we state our main result and give
the strategy for the proof. In Section 3, we prove Pogorelov type lemma, which
is used later. Section 4 is devoted to the proof of the main result. In Section 5,
we consider more generalized parabolic k-Hessian equations and present Bernstein
type theorem for them. In Section 6, we state some remarks and open problems.
Finally, in Section 7, we prove some lemmas which are used in the proof of main

theorem.

2 Main result

The function v = u(x,t) : R® x (—00,0] — R is said to be strictly convez-

monotone if u is strictly convex in x and decreasing in ¢. Here is our main result



of this paper.

Theorem 2.1. Let 1 < k < n and u € C*?(R™ x (—00,0]) be a strictly convez-
monotone solution to (1.9). Suppose that there exist constants my > mg > 0 such

that for all (z,t) € R™ x (—o0,0],
—my < w(z,t) < —mg, (2.1)
and that there exist constants A, B > 0 such that for all x € R",
u(z,0) > Alz|* — B. (2.2)

Then u has the form u(x,t) = —mt + p(x) where m > 0 is a constant and p is a

quadratic polynomial.

Remark 2.1. For the case & = n which corresponds to the parabolic Monge-
Ampere equation (1.7), the assumption (2.2) can be removed, due to Theorem

1.4.

The proof of this theorem will be given in subsequent sections. Here we give the

strategy for the proof:

Step 1. Derivation of a local gradient estimate of .
Step 2. Pogorelov type lemma.
Step 3. Combining these results and Evans-Krylov type theorem, we obtain local a-

Holder estimates of D?u and w.

3 Pogorelov type lemma

We introduce some notation. First, if D C R" x (—00,0] and ¢ < 0, D(t) is
denoted by

D(t) ={z € R" | (z,t) € D}.

Let D C R" x (—00,0] be a bounded set and t, = inf{t < 0 | D(t) # 0}. The
parabolic boundary 9,D of D is defined by

8,0 = (Dlto) x {to}) U (@D(1) x {1}).

t<0



where D(to) denotes the closure of D(ty) and 0D(t) denotes the boundary of D(t).
We say that the domain D C R"™ x (—o0,0] is a bowl-shaped domain if D(t) is
convex for each t € (—00,0] and D(t;) C D(ty) for t; <ty <0.

Next, for A = (Ay,...,A,) and 1 < m < n, we define

sl
Sm;hig...ij ()\) = >‘11—)\z2—~~_)\1j_

0 otherwise.

if 7, # i, forany 1 <p < q <7y,

In this section, we prove Pogorelov type lemma. This is an analogue of the
result of Pogorelov [35], who derived interior C?-estimates of a solution from C*-
estimates for Monge-Ampere equation. The idea of the proof of the following

proposition is adapted from that of [12].

Proposition 3.1. Let D be a bounded bowl-shaped domain in R™ x (—o0,0] and
u € C*2(D) a strictly convez-monotone solution to —u;Fy,(D*u) = 1 in D with
u = 0 on 0,D, which satisfies (2.1) in D. Then there exists a constant C =
C(n, k,ma, ||ullcr(py) such that

sup |u(z,t)|[*| D*u(z,t)| < C. (3.1)
(z,t)eD

Proof. We consider the auxiliary function

¥(o.6:6) = (-ulo ) (P50 Do), (w0 €D, el =1

where ¢(s) = (1 — s/M)""® and M = 2sup(, yep [Dulz, ).

Then we can take a point (xg,tg) € D and a unit vector & € R™ which satisfy
\P(-antO;gO) = max{\IJ(a;,t; 5) | (JJ,t) S ﬁa ‘§| = 1}

The point (z¢,tp) can be taken in D \ ,D due to the boundary condition u = 0
on 9,D. Without loss of generality, we may assume & = e; and D?u(zo, 1) is
diagonal with Dyju(zg,t9) > Dasu(zo,to) > -+ > Dppu(zo, to) > 0. Then ¥ =
U(x,t;e1) = (—u(z,t)*o(|Du(x, t)|[*/2) Di1u(z, t) attains its maximum at (g, to)
and the eigenvalues of D?u(zg,ty) are A = (A1, ..., A\n) = (u11(To,t0); - - - Unn(To, to))-
It is enough to consider the case A\ = uy1(xg,t9) > 1. Here and throughout the

paper, we denoted D;u by u;, D;ju by u;;, and so on.



Since U attains its maximum at (xg, tg), direct calculation gives

4 % %
(log 0); = Py, (3.2)
u 12 U11
logU);,; =4 = — =2 R w2l < 3.3
(log 0) (u - L L (3.3)
4
(log ), = — 4 2L L Tl 5 (3.4)
u ¥ Uil
Duf?\ & |Duf?
©; = 90/ ( 5 Zujuij = QOI 5 Ui Uiz (35)
j=1

at (z9,t0), for i = 1,...,n. We set f(D*u) = Fj,(D*u)'/*, then u satisfies
(—ut) f(D*u) =1 in D. (3.8)

Differentiating (3.8) with respect to z, (and using (3.8) itself) yields

1

() gy + () figugy = 0. (3.9)

Here, for f = f(M) where M = (m;)1<i j<n, We write f;; = 0f/0Om;;. Multiplying
(3.9) by (—u)~V/*, differentiating once more with respect to x, and multiplying
(—u;)Y*, we obtain

1 u? U 1 1
- (E + 1) ]{7_’;% + kL’lZ: + (—Ut) kf,-,-u,-,-w + (—ut)kfij7r8uij7ur87 = O, (310)

where fij,s = 0*f /0m;;0m,.s.
By the concavity of Si(A\)¥, we obtain
0? 1 "1 /1 1
Z TN, e (S Pttty = Y [E <E - 1> SN F 28k 1 (\) Sk-15(N)

i,j= 7,7=1

1 1
+ ESk()\)fflskq;ij()\)} WigryUgjy

<0. (3.11)



When the matrix D?u is diagonal at (o, tp), direct calculation gives

(1 /1 1
z (z - 1) Si()E 2S5 15N Sk1r ()
1 1
+ ESk-(A)E_lsk—mr()\) if i=j,r=s,

fijrs =
’ 1 1
—Esk(A)rlsk_M(A) if i#j, r=j, ands =1,

(3.12)

\ 0 otherwise.

By (3.11) and (3.12), we obtain

n

1/1 1
Fijrsttsjntinsy = ) [E (E - 1) Se(N)F 28k 1;3(N) Sk-15(N)

ij=1
1 1
+ ESkO\)E_lSk—&ij(/\)] WiiryUjjy

1 & 1
~ % > SN Spag (Nl

ij=1
1 & 1
<=2 D ST Sk (N, (3.13)
i,j=1
at (zo,%). By using (3.10) and (3.13), we get the inequality
U 1 11 “ 1
8 (—w)F fiittivy > (—u) D SN F SV

kuy £ vy
i,j=1

at (xg,tp). Letting v = 1 and multiplying 1/uq;, we get at (zo, to)
2

1 U144 11 " 1 Uy4
+ (—u)* fi Uflll > (~u)i o 3 k(A g (A —2. (3.14)

U1

U1t
kuyuiy

ij=1
Let L be the linearized operator of (3.8) at (xg,to). Then one can write

1

= D+ (- to))® 5 (D*u(wo, t0)) Dy
T (20, 70) t + (—ue(z0, 0))* fis (D u(o, to)) Dy

By (3.3) and (3.4), we obtain

g - g 2 . 2
L(log ) = (—u)* fi (4 (— - &> 4P P tun “_)

2
U u? ® P2 U1y ufy

1 /4
+—(ﬁ+ﬁ+E) <0. (3.15)

k‘ut



at (zo,tp). By substituting (3.5), (3.6), (3.7), (3.9) and (3.14) into (3.15), we

obtain

? © U1y
)L 3 S a4 L < (3.16)
Ut L = k k—2;ij w; ku — .

at (l’o, to)

Now we split into two cases.

(i) ugk > Kuqy, where K > 0 is a small constant to be determined later.

By (3.2) and (3.5), we have

’U,2 . 4UZ i 2 16u2 /2u2u2.
1L ( +£> < 2( A > (3.17)
u ¥ u ¥

Uy
at (xg,t9). Therefore (3.17) and the fact that the second term of the left hand side

of (3.16) is non-negative yield

) i 9u? "3y ! 4
(—w)* fii (4 (7 N u;) + (% _ %) Wil + %u;) <0 (3.18)

at (.To, to)

We prove the following inequality:
Z fiugs > friuiy > 61 Z fiiud, (3.19)
i=1 i=1

for some constant 6; > 0.

The left inequality of (3.19) follows from the fact that
Fii = Sk F 1S 15(A) > 0

dueto Ay > Ao >---> ), > 0.
To prove the right inequality of (3.19), we need the following lemma.

Lemma 3.2. It holds that there exists a constant 8 > 0 such that
OSk—1(p) < pur -+ prr—1 (3.20)

forall = (pr, ..., pn) with py > po > -+ > i, > 0.



Proof.

n
Sk-1(p) = Z s gy < (k: B 1) L et

1<i1 < <ip—1<n

Hence (3.20) holds. O
Therefore there exists some # > 0 such that
0Sk—1(A) < Ay Apoq.
On the other hand,
fuatih, = KA S (Vi 3.21)
By using Lemma 7.2, we obtain
fewtigy, > %Sk()\)%_lé)\l)g o N1ty (3.22)

for some constant § > 0.
By using the assumption wug, > Ku; and (3.20) we obtain
1 _
Fudy > Esk(A)%*lexlAg N K22
1 .
> Esk(A)%—leesk_l(A)K%fl
00 K2

_ -1 - ‘ 2
T CEE Rk ; St

n

2

=06, E fiiun
i=1

for some constant #; > 0. Here we used the equality (7.2).

By the inequality (3.19) and ¢" /¢ — 3¢"*/p? > 0, it can be derived by (3.18)
that at (xg, to)

10



for some constant 65 > 0. Here we used the fact that > | fi(D*u)u; = f(D?*u) =
(—uy)~V* at (wg,t0), due to the homogeneity of f and (3.8). By multiplying
(—u)8p?, we obtain

1 1
—U¢ keng“UH (,0 —C( Ut % 6 22f11—4<1+ >( )(P 0.
=1

(3.23)
On the other hand, it holds that at (z, o)
- 1 , OF;
(D) = —Fp(D*u)* ' —(D?
P T
1 n
= (—u)"F S SN < C(—u) Rk 3.24
; 11
and that
qu (D*u) > fon(D?u)
1 OF,
_F D2 ——1 D2
R (D)
1
Z EF (D2 ) 9311,11 cUk—1,k—1 Z C(— ) ku’fl 1, (325)

for some constant 63 > 0 (see Lemma 7.2), by the hypothesis ug, > Kup. Substi-
tuting (3.24) and (3.25) into (3.23), we obtain

= ( U,) ©+ 1 — (’I’L, 7m27||u||01(D)>7
(—ug)uqy

at (zo,to). Therefore, for all (z,t) € D and £ € R™ with || = 1, (—u)*ug < C

holds, so that (—u)*|D?u| can be estimated from above by some constant C.

(ii) ukr < Kuqy, that is, uj; < Kuyy for j =k, k+1,...,n

By (3.2),
&:_<ﬂ+ﬂ> ﬂ:_l(ﬁﬁ““) i =2 n (3.26)
U1t 2 u )’ wu 4\ un/)’ Y

11



at (xg,tp). Substituting (3.26) into (3.16), we obtain

2 " ! 12 2
1 Uy U © p ® o1 | 4wy
0> (—w)* fia (4 <7 - u—é) + ;U%Ui + Eufl - ?U%ui - <; + 7) )

1 " duy 1 (o uy 2 o 2 2 ¢ 2 80/2 2 92 u%li
+ (—uy)* E fii — ==+ T U Uy — TS U Uy —
— u 4 ¢ ¢ 2

—p ¥ o un Uiy
w3 S () 4
t kijzl k k—2;ij " Lu
L n 4u 90// 3Q0/2 s0/ 2
> [(—uy)* fu< “ <— - — )u?ui—i— ui> — 36(—uy)* f11—
i=1 ¥
+ | —=(—uy)* i—st 4 (—up) F— SN F Sk 0 (AN)—2 | + —
St 3 o 3 S0+
4
L+, +— 3.27
1+ 2+ kua ( )

at (xg,to). First, I; can be estimated from below as

4
L > (—u) 0 fraud, + e C(—Ut)%%
1., 4
> (—uy)* 5(91f11uu + —, (3.28)
u
provided U(.’L‘o,to)2ull(flfo,to)2 Z 20/91 If U(fl?o,to)QUll(l’o,to)Q < 20/91, then
(3.1) is obvious. Hence we may assume u(zg, to)*ui1 (o, t9)? > 2C/6; hereafter.

Second, I can be also estimated from below as

11 1 u2 1 1 u
Iy 2 =5 (~u) S N)F Y Sia(V) T 2w S (0 Zsk 21i(A)—

u
i=2 11 11

- 2(—ut)%%sk(A)%—1 (Z <Sk_2;h-(>\) - %S ’“iiw) “;i) >0, (3.29)

i=2
by using A;Sk—2.1:(A) > 3Sk_1.:(A)/4 provided K > 0 is sufficiently small (see
Lemma 7.3 (ii)).
Substituting (3.28) and (3.29) into (3.27), we obtain

0> (—Ut)%

N | —

4 1
01 friud, + - (1 + E) . (3.30)
By multiplying (—u)%p, we get

1 1
0> 591(_%)%][111@1(_“)490 — C(—u)’p

12



It follows from Lemma 7.3 (i) that A; Sg_1.1(X) > 04Sk(X) for some constant 6, > 0,
which implies that

1 0 0
fuud, = Esk(A)%*lsk,m(A)A% > fsk(A)%Al = E‘%—ut)*%un. (3.31)
Hence the inequality
0.0
0> == (—w)tpun — C(—u)’

holds at (zo,tp). Then we have
U< C(-U)'?)QD < C(”; kam27 ||uHcl(D))7

at (xo,to). Therefore, (—u)?|D?u| can be estimated from above by some constant
C. O

4 Proof of Theorem 2.1

Before giving a proof of Theorem 2.1, we introduce some notation. For a subset
D C R™ x (—00,0], a function v defined on D and « € (0,1), a-Hblder seminorm

of v over D is denoted by
’U(.’L‘, t) B U(y7 S)’

[vla,p = sup = (4.1)
(z0).w)eD, (JT = y|> + [t — s[)2
(z,)#(y,s)
Moreover, S**" is defined to be the set of all symmetric n X n matrices, and S*"

is the set of all non-negative definite symmetric n x n matrices.

Let u € C**(R™ x (—00,0]) be a strictly convex-monotone solution to (1.9),
which satisfies the growth conditions (2.1) and (2.2). We may assume without
loss of generality that «(0,0) = 0, Du(0,0) = 0, by considering u(x,t) — u(0,0) —
Du(0,0) - = instead of u(z,t). Then it can be seen by (2.2) that there exists a
constant A > 0 such that u(z,0) > A|z|* for all z € R,

Let R > 0 be fixed. We define v(z,t) = vg(x,t) = u(Rz, R*t)/R?. Then v is
also a strictly convex-monotone classical solution to (1.9), and satisfies v;(z,t) =
us(Rz, R*t) and vy (z,t) = u;;(Rz, R*). Moreover, it holds that for all (z,t) €
R"™ x (—o0,0],

—my < vy, t) < —mg, (4.2)

13



and that for all z € R,
v(z,0) > Alz|>. (4.3)

First, we shall obtain the local gradient estimate of the solution v. For ¢ > 0,

we set
Q, = {(z,t) € R" x (—00,0] | v(x,t) < Ag}. (4.4)
Then we can find that €2, is a bounded bowl-shaped domain and

Qq(t) C 24(0) C B(0,/9), (4.5)

due to (4.2), (4.3) and the strict parabolic-monotonicity of v. Now we establish

the following estimate.

Lemma 4.1. Let v and Q, be defined as above. Then there exists a constant

C > 0, independent of g and R, such that for all (z,t) € Q,

|Dv(z,t)| < Cy/q. (4.6)

Proof. We note that v(z,t) is strictly convex in z, and that v(z,t) — Ag = 0
on 9,0, From Newton-Maclaurin inequality it follows that (Fj,(M)/(}))"* >
E,(M)Y" for all M € S7"".
By Aleksandrov’s maximum principle (see Theorem 7.7), we obtain that at
(xo,t) € Q,
(o, ) — Ag|™ < C (diam Q,(¢))" " dist(zq, 9 (1))|0v(Q(1))]

< C(24/q)" ! dist(zg, 02 (1)) / det D*v(z,t) dz
Qq(t)

< Cq"7 dist(z, 90 (t)) Fy(D%(z,1))* do

=Cq'T dist(zo, 092,4(%)) (—vy) " * dx

J

J

< Cq"T dist(zo, 02,(t)) - m; ¥ | B(0, /)|

— an—% diSt(.To, 8Qq(t)), (47>

so that

lv(zo,t) — Ag| < Cq' dist(z, 8Qq(t))%. (4.8)

14



Therefore for all 2y € y/2(2),
Aq—%ﬁqﬁjq—v@mﬂfng_%&%@@ﬁﬂAﬂﬁ,
which implies the inequality
dist(Qg (1), 02 (t)) > Cq?. (4.9)

Therefore we can see that |Dv(z,t)| < Cq*/? for all (z,t) € Q2 by (4.9) and the

convexity of v with respect to . This ends the proof. O

Especially, |Dv(z,t)] < C for all (x,t) € 4, in which C is independent of R.
By applying (3.1) to the function A — v(z,t), one obtains

~ 4
(A—v@¢g\0%@¢ﬂgc
in ;. This implies that
|D*v(z,t)| < C  in Q). (4.10)

The following Evans-Krylov type theorem is needed for the proof of Theorem
2.1. For the proof, see Section 7.

Theorem 4.2. (Evans-Krylov type theorem)
Let D and D' be bounded bowl-shaped domains which satisfy D' C D and
dist(D’,9,D) > 0, and u be a C**(D) solution to the equation

G (us, D*u) =0 (4.11)

in D, where G = G(q, M) is defined for all (g, M) € R x S™" with G(-, M) €
CY(R) for each M € S™", and G € C*(R x X) for some X C S™" which is a
neighborhood of D*u(D). Suppose that:

(i) G is uniformly parabolic, i.e., there exist positive constants A\ and A such

that

—A < Gylg, M) < =X, (4.12)
AN < Glg, M + N) — Glg, M) < AN (4.13)

for allq € R and M, N € S"*™ with N > O.
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(ii) G is concave with respect to M.
If ||ulc21(py < K, then there exist positive constants C' depending on X, A, n,
K, D, D' and G(0,0), and a € (0,1) depending on A\, A and n such that

ol zsn+8 o0y < C.
Then we prove the next lemma in order to use Theorem 4.2.
Lemma 4.3. There exists a constant C' > 0, independent of R, such that
dist(Qé,apQ%) >C. (4.14)
Proof. Take (x,t) € Qs arbitrarily. Then, putting ¢ = 1/4 in (4.9), we obtain
dist (2 %( ), 0021 ( ) >, (4.15)

where C" is a positive constant independent of R. We set § = min{A/(4m,),C"}.
If dist((z,t), (2/,t)) < 6, then |z — 2| < C" and |t — /| < A/(4m,;), which imply
that

t/
vz, ') = v(2',t) +/ ve(2', 8)ds
t

<w(z',t) +mqlt — ']

1~ A 1~
< A4my =4
= At e =g
due to (4.15). Therefore (z',t') € €4/, and this completes the proof. O

We set G(qg, M) = (—¢)Y*F(M)V/* —1 = (—q)V*f(M) — 1 for (¢, M) €

[—m1, —mg| X X, where

1 1
X = {M (myj) € S™" | — < F(M) < —,

ma mo

|m;| gC’fori,jzl,...,n},

in which C' is a constant appeared in (4.10).

Since Gy(q, M) = (—q)V/*"1F,(M)Y* /k, we see that there exist constants A, A >
0 such that (4.12) holds in [—my, —ms] X X. Moreover, we can also see that (4.13)
and (ii) in Theorem 4.2 hold in [—my, —my] X X, due to [8].
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Next we can extend G in R x S™™ so that G satisfies (i) and (ii) in Theorem
4.2 for different constants A\, A > 0 if necessary. Then we apply Theorem 4.2 to
G (v, D*v) =0 in Q2 and obtain that

HUH02+O¢,1+%(91) S C.
8

Therefore it follows that [D;;v]a0,, < C ford,j=1,...,n and [va0,, < C.
By substituting v(z,t) = u(Rz, R*t)/R?, we have

[DUU] S CR_a, (416)

o, {u(z,t)< éR2}
, <CR™, (4.17)

[ut] o {u(z,t)< éR2

for any R > 0. This implies that for any bounded subset 2 of R™ x (—o0, 0],
[Dijula0 = 0, and [w]q.0 = 0. Hence D;ju and u; are constants in R” x (—o0, 0]

and this completes the proof of Theorem 2.1.

5 Recent progress

Up to this point, we considered the parabolic k-Hessian equation of the form
—uyFy,(D?u) = 1, and obtained Bernstein type theorem for this equation. In this
section, we deal with other forms of parabolic k-Hessian equations. There are
different parabolic analogues of k-Hessian equation which have been studied in
the literature.

Ivochkina and Ladyzhenskaya [22] have studied the solvability of the first initial

boundary value problem for
—uy + Fy(D*u)t = 1), (5.1)
X.J. Wang [48] considered a following version of parabolic equation,
—u; + log Fi,(D*u) = 1. (5.2)
For the case k = n, (5.2) reduces to

—u; + log det D*u = 1, (5.3)
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which was studied by G. Wang and W. Wang [47]. Moreover,
Sk(—Ug, A1y ooy An) =, (5.4)

where Ay, ..., )\, are the eigenvalues of D?u, i.e., —u;Fy_1(D?*u) + Fj,(D*u) = v,

was considered in [29].

Therefore it seems natural to study whether Bernstein type theorems for more

general parabolic k-Hessian equations hold. We obtain the following theorem.

Theorem 5.1. Let p € C*(0,00), 1 < k < n and u € C**(R" x (—0,0]) be a

strictly conver-monotone solution to
U =p (Fk(DQU)%> in R" x (—o00,0]. (5.5)

Suppose that there exist constants my > mo > 0 such that for all (z,t) € R™ x
(_007 0]7

—my < u(z,t) < —mo, (5.6)
and that there exist constants A, B > 0 such that for all x € R",
u(z,0) > Alz|* — B. (5.7)

Moreover, suppose that for all s € (0, 00),

and that

p~ ([=ma, —my)) = [r1,72] (5.9)

for some positive constants ri,75, where my and msy are constants appeared in
(5.6).
Then, u has the form u(x,t) = —mt + p(z) where m > 0 is a constant and p is

a quadratic polynomaial.

Remark 5.1. Set F(M) = p(Fy(M)Y*¥) = p(f(M)). Then the condition (5.8)

guarantees that F is concave in S7*™. Indeed, easy calculation shows that
Ej,rs = p”fijfrs + p/fij,r37
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which yields that for all £ = (&) 1<isn € R,
1<j<n

n 2
f’ij,rsé.ij‘grs = p” (Z fl]‘&]) + p/fij,rsgijgrs S Oa

4,j=1

due to the concavity of f in S7T*".
Proof. We shall prove Pogolerov type lemma for (5.5):

Let D be a bounded bowl-shaped domain in R" x (—o0,0] and u €
C*%(D) a strictly conver-monotone solution to u; = p(Fy(D?*u)'/*) in
D with u = 0 on 0,D, which satisfies (5.6) in D. Suppose that p
satisfies (5.8) for all s € (0,00) and (5.9) for some positive constants

r1,72. Then there exists a constant C' = C(n, k,mi,ma, p, ||ulc1(p))

such that

sup |u(x,t)|[*|D*u(z,t)| < C.
(z,t)eD

The function u satisfies

—u; + p(f(D*u)) =0 in D,
where f(M) = Fy(M)Y*. Differentiating (5.11) with respect to x, yields
— Uyt + p,(f<D2u))fijuijfy =0.
Differentiating once more with respect to z.,, we obtain
—Uyye + " (f(D*0) (fijuizy)* + 0'(f (D)) fijuisoy
+ 0/ (f(D*W)) fijrstijoUrsy = 0.

As before, we consider the auxiliary function

¥(o,69) = (-u(w ) (P50 Deuten), (w0 €D, lel =1

(5.10)

(5.11)

(5.12)

(5.13)

where ¢(s) = (1 — s/M)_l/8 and M = 2sup, ycp |Du(z,t)*. Then we can take

a point (zg,t9) € D\ 8,D and a unit vector £ € R™ which satisfy

U (o, to; &) = max{¥(z,t;€) | (z,t) € D, |¢] =1}
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Rotating the coordinates appropriately, we may take & = e; and D?u(wy, to)
is diagonal with wq1(zo,t0) > uge(xo,to) > -+ > Upn(To,to) > 0. Then ¥ =
U(z,t;er) = (—u(z,t))*o(|Du(z,t)|?/2)uii(z,t) attains its maximum at (zg, o).
It is enough to consider the case A\; = uq1(xg,to) > 1.

Letting v = 1 in (5.13) and using (3.13) and (5.8), we get at (x, to)

1, < .
—u11y + p' fiiinii > E'O, Z Sk(A)Eilsku;ij(A)u%ij' (5.14)

ij=1

Let L be the linearized operator of (5.11) at (zo, to):
L = =D, + p'(f(D*u(zo, to))) fis(D*u(wo, to)) Diy.

By (3.3) and (3.4), we obtain

4u U
L(log ¥) = — (Tt + % + %)
11

2 o 2 )
+ 0 fi (4 <% - —) TN S u%) <0 (5.15)

u? 2 ©? U11 Uy
at (xo,to). By substituting (3.5), (3.6), (3.7), (5.12) and (5.14) into (5.15), we

obtain

at (170, to)

Now we split into two cases.

(i) ugr > Kuqp, where K > 0 is a small constant to be determined later.

From (3.17) and the fact that the second term of the left hand side of (5.16) is
non-negative, it follows that
A + ' fu <4 (u— — 9%2) + (Si" — 3Lf) uiuZ, + 22 ) <0 (5.17)
u u ¥ ¥ 90
at (o, to). Since (3.19) holds for some constant 8; > 0, ¢" /¢ — 30> /©* > 0 and
Sor o fi(D*u)uy; = f(D?u) at (o, o), it can be derived by (5.17) that at (zo, o)

)<0

4ut

__+p (022f22u11+ f(D2
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for some constant 6y > 0. We see that f(D?u) = p~!(u;) € [r1,72] in D which
implies that p'(f(D?u)) € [p'(r2), p'(11)] (We note that p’ is non-increasing). There-

fore we obtain at (zo, to)

4(my + rop(r , . Cp'(r1)
o u2ﬂ( ) + 0/ (r2)f2 Y fisudy — Pu(2 X >_fa<0. (5.18)
=1 i=1

It holds that at (z, to)

n

. 1 L, OF,
i(D*u) =Y ZFy(D*u)r 1 22 (D?
;m u) ;k H(DPu) it (D)
1 B n
= 2 (07 () 7Y Sienalh) < Ol (5.19)
i=1

and that

=1
1 1 F
= EFk(Dzu)“l%(D%)
1 _
> T (/)_I(Ut))l * gy - Up_1 o1 > cufy (5.20)

for some constants #5,¢ > 0, by Lemma 7.2 and the hypothesis ug, > Kuq;.
Substituting (5.19) and (5.20) into (5.18), we obtain

c C
Oukt 4 —= ﬁulffl <0, (5.21)

for some constant 6 > 0. Multiplying (—u)3¢?uy," " /6 by (5.21), we obtain

)T
(~uoniy < ARLE b oupe
11

from which follows that U* < C(n, k,mq, ma, p, |[ullcr(py) at (zo, to).

(ii) ugr < Kuqy, that is, uj; < Kuqy for j =k, k+1,...,n.

Substituting (3.26) into (5.16), we obtain
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ZpPJu » 90111%011 S02111

u? o "
- duy; 1 (o A\ " / 2 2
_'_plzf“ - __<£+ui) +£U$uz2z+£ufz_gp—2ufuz2z_k;l
i=2 u 4\¢ un ® © @ u
1 n L u% 4Ut
+ 0= S (AN F LS (N —L — —
pkuz—l K k27]()u11 U
- du; "3y / 2
> Zf“ (L+(¢__ sz )ufui‘f‘gu?@) —36]011“—;
i=1 u 2 2 ("2 u
3 - U2- 1 " 1 u2u 4U
/ 114 =—1 145 t
-5 Wi—s— + SN F S0 (A _
v 212:;]6 u%1+ki§::1 K k27]<)U11] U
4
=l b (5.22)
u
at (xg,tp). I; can be estimated from below as
4p~Hu C
Il 2 /0, |: P ( t)' + 91f11u§1 — —2f11:|
u U
1 407 (u
> p' lgglfnui - pT(tW ) (5.23)

provided u(xo,t0)2u11(x0,t0)2 Z 20/91 If U($0,t0)2ull<l’o,t0)2 < 20/91, then
(5.10) is obvious. I can be estimated by 0 from below, provided K > 0 is suffi-
ciently small, as in Section 3. Therefore (5.22) yields

C
fuud; < . (5.24)

at (zo,%p). On the other hand, it holds that

04

1 0
fruty = 2 SiN)F T Sea (VAT 2 T Se(N)Fh = 2

p~ (ur)unn, (5.25)
for some constant 6,, by Lemma 7.3 (i). Combining (5.24) and (5.25), we obtain
C
u

at (zg,tp). Multiplying (—u)*p by (5.26), we get

<—U>4QOU11 < C<_u>3§07
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from which follows that ¥ < C(n, k,my, my, p, ||[u|lc1(p)) at (xo, to).

Hence (5.10) is proved. The rest of the proof of Theorem 5.1 is similar to that

of Theorem 2.1, so we omit it. O

Example 5.1. (1) If we set p(s) = —s~*, then the equation (5.5) reduces to (1.9).

Therefore we can obtain Theorem 2.1 again.

(2) If we set p(s) = —1/s, then we can obtain Bernstein type theorem for
—utFk(DQU)% =1 inR" x (—00,0].

(3) If we set p(s) = klogs, then we can obtain Bernstein type theorem for the

following equation
uy = log Fi(D*u),

which has been studied by X.J. Wang [48]. It should be noted that in this case
the condition (5.6) can be replaced by the boundedness of u; in R™ x (—o0, 0].
Therefore, u needs not to be decreasing in ¢, while u must be strictly convex in
t. Indeed, if we consider v(z,t) = u(z,t) — ct for sufficiently large ¢ > 0 and set

p(s) = klog s — ¢, then we get the desired result.

(4) For the following version of parabolic k-Hessian equation
w = Fy(D*u)t  in R" x (—o0,0], (5.27)

which has been studied by Ivochkina and Ladyzhenskaya [22], we can also obtain
Bernstein type theorem. We remark that for £ = 1, (5.27) reduces to the heat

equation which is well-known.

Corollary 5.2. Let 1 < k <n and u € C**(R™ x (—00,0]) be a solution to (5.27)
which is strictly convex in x. Suppose that there exist constants co > ¢; > 0 such

that for all (z,t) € R™ x (—o0,0],
1 < wu(z,t) < e, (5.28)

and that there exist constants A, B > 0 such that (5.7) holds for all x € R™.
Then, u has the form u(z,t) = Ct + p(x) where C > 0 is a constant and p is a

quadratic polynomial.
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Proof. We set v(z,t) = u(x,t) — (c+1)t. Then u € C**(R™ x (—o0, 0]) is strictly

convex-monotone solution to
vy = Fk(DQU)% —(c2+1) inR" x (—00,0]

and satisfies —(co —¢; +1) < vy < —1 in R" x (—00,0] and v(z,0) > Alz|* — B

for all x € R™. Applying Theorem 5.1 for p(s) = s — (c2 + 1), we are done. O

6 Final remarks

(1) Viscosity solutions

We define the notion of viscosity solutions of the parabolic k-Hessian equation
—u Fy(D*u) = 9(z,t) in Q (6.1)

where () is an arbitrary bowl-shaped domain in R” x (—o00,0] and ¥ € C(R™ x
(—00,0]) is a non-negative function. The theory of viscosity solutions to the first
order equations and the second order ones was developed in the 1980’s by Crandall,
Evans, Ishii, Koike, Lions and so on. See, for example, [14, 15, 16, 25, 31]. But
the equation (6.1) is not parabolic on all smooth functions, so that the definitions
need to be modified slightly. A definition of the viscosity solutions for k-Hessian
equations can be seen in, for example, [46].

Let D be a domain in R”. First, we define the admissible set of elementary

symmetric function Sy by

={AeR"|S;(A\)>0, forall j=1,... k}.
We say that a function v € C?*(D) is k-convexr for the operator Fj if A\ =
(A,...,An) belongs to Ty, for every point z € €, where Aj,...,\, denote the
eigenvalues of D?v (at x). Except for the case k = 1, the operator Fj(D?v) is not

elliptic on all functions v € C?(D), but Caffarelli, Nirenberg and Spruck [8] have

shown that Fj is degenerate elliptic for k-convex functions. Obviously,

FlDFQD"'DFn:F+:{)\€Rn|)\i>0, izl,...,n},
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which implies that v € C?(D) is convex if and only if v is n-convex, and that
if v € C?*(D) is convex, then it is k-convex for any k = 1,...,n. Alternative
characterizations of I, are also known (see [26]).

Let 2 be a bowl-shaped domain in R™ x (—o0, 0]. We define a viscosity solution
to (6.1). We say that ¢ € C%!(Q) is said to be parabolically k-convex if ¢ is k-
convex in z and non-increasing in t. Therefore, if ¢ € C%1(£) is convex-monotone,

then it is parabolically k-convex for k =1,...,n.
Definition 6.1. Let © be a bowl-shaped domain in R" x (—o0, 0].

(i) A function v € C(Q) is said to be a wiscosity subsolution to (6.1) in € if for
any parabolically k-convex function ¢ € C*!(Q) and any point (zg,ty) € Q

which is a maximum point of u — ¢, we have

— (0, to) Fy(D*p(o, to)) > (20, to). (6.2)

(ii) A function u € C(Q) is said to be a viscosity supersolution to (6.1) in § if for
any parabolically k-convex function ¢ € C*'(2) and any point (zg,t) €

which is a minimum point of u — ¢, we have

—pi(wo, to) Fir(D*p(z0, t0)) < ¥(z0, to). (6.3)

(iii) A function u € C(R) is said to be a wiscosity solution to (6.1) in € if it is

both a viscosity subsolution and supersolution to (6.1) in €.

We note that the notion of viscosity subsolution does not change if all C*!(£2)
functions which are non-increasing in ¢ are allowed as comparison functions .
One can prove that a function u € C*1() is a viscosity solution to (6.1) if and

only if it is a parabolically k-convex classical solution.

Here we consider whether Theorem 2.1 also holds for viscosity solutions to the

parabolic k-Hessian equation (1.9). We can show the following proposition.

Proposition 6.2. Let 1 < k < n. Then there exists a conver-monotone viscosity
solution u € C(R™ x (—00,0]) to (1.9), which does not have the form u(z,t) =

—mt + p(x) where m > 0 and p is a quadratic polynomial.
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Proof. Let tg > 0 be an arbitrary number. We set u by
u(z,t) = O(—t +t9)*xz|® in R" x (—o0,0], (6.4)

where a =1/(k+ 1), f =2k/(k+ 1) and

1

(o M|

Now we define (";1) = 0. Then it can be easily seen that u is convex-monotone
in R" x (—00,0] and that u is a classical solution to (1.9) in (R™\ {0}) x (—o0, 0].

For ¢t < 0, there exists no C%! function ¢ which touches u at (0,t) from above,
because 3 < 2. While, for any parabolically k-convex C?%! function ¢ which
touches u from below at (0,t), ¢;(0,t) must be 0, because u(0,-) = 0. This implies
that —p;(0,t) Fj.(D%*p(0,t)) = 0 < 1. Therefore u is a viscosity solution to (1.9) in
R"™ x (—00,0]. O

For £ = n which corresponds to the parabolic Monge-Ampere equation’s case,
the function u constructed above is almost the same as the one in [19]. We remark
that this function u satisfies neither (2.1) nor (2.2), for arbitrary ¢ty > 0. Also, it is
not strictly convex-monotone. We would like to know whether Theorem 2.1 holds

for viscosity solutions under the assumptions (2.1) and (2.2).

(ii) Relaxing the assumptions : Growth conditions and convexity

We would like to remove growth conditions (1.6), (1.8), (2.1) and (2.2) in The-
orems 1.3, 1.4 and 2.1 (or, to prove growth conditions are necessary). As we have
stated in Section 1 and Remark 2.1 before, Theorem 1.3 remains valid without
the growth condition (1.6) when k& = 1 (the case of Poisson equation) and k = n
(the case of Monge-Ampere equation), and Theorem 2.1 is true without (2.2) when
k = n. However, we do not know any more for other cases.

As we have said in (i), k-Hessian operator Fj is degenerate elliptic for k-convex
functions (see [8] for the proof). Therefore, when we study k-Hessian equation, it
is natural to seek solutions in the class of k-convex functions, rather than in the
class of convex functions. It seems an interesting open problem whether Theorems

1.3 and 2.1 remain true if one replaces “strictly convex” by “strictly k-convex.”

(iii) k-curvature equation
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Here we deal with the so-called curvature equations of the form
Hilu) = Sk(k1,...,kn) =% in R", (6.6)

for 1 < k < n, where ¢ is a function defined in R" and for a function u € C*(R™),
Kk = (K1,...,kn) denotes the principal curvatures of the graph of the function w,

namely, the eigenvalues of the matrix

Du 1 Du® Du
C=D = I-———_| D% 6.7
<w/1 + \mp) 1+ |Dul? ( 1+ \DUP) 67

Also S denotes the k-th elementary symmetric function which is defined in (1.5).
The mean, scalar and Gauss curvature equations correspond respectively to the
special cases k = 1,2, nin (6.6). We call the equation (6.6) “k-curvature equation.”

We remark that (6.6) is a quasilinear equation for k = 1 while it is a fully non-
linear equation for £ > 2. In the particular case that £ = n, it is an equation
of Monge-Ampere type. The cases k = 1 and k = n, corresponding to the mean
and Gauss curvature equations respectively, are well understood. Although it is
much harder to analyze the intermediate cases 2 < k < n — 1, some progress have
been made in the last three decades, such as the study of the classical Dirichlet
problem. See for instance [9, 21, 40]. Recently, the author and Takimoto [34]
considered the boundary blowup problem for k-curvature equations and obtained
the uniqueness of a boundary blowup solution under some hypotheses (see also
[38]). It was the first result for the uniqueness of boundary blowup solutions for

k-curvature equations, even for the mean curvature equation which corresponds
to the case of k =1 for (6.6).

When n = 2, k = 1 and ¢ = 0, the graph of a solution u = u(z1,x2) to (6.6)
is a minimal surface in R?, so that « must be an affine function due to Theorem
1.1, which is the classical Bernstein’s theorem for the minimal surface equation.
We remark that Theorem 1.1 can also be derived from Bernstein type theorem for
Monge-Ampere equation (Theorem 1.2). For the detail, see [24, 33].

It is quite natural to study whether Bernstein type theorem holds for k-curvature

equation (6.6). First we consider the case ¢ = 0 and give the following problem.
Problem. Let u = u(xy,...,z,) be a solution to the homogeneous k-curvature
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equation
Hilul =0 in R"™. (6.8)

Then, can we say that u must be an affine function of x4, ..., z,, that is, the graph

of u must be a hyperplane in R**1?

For the case k£ = 1 which corresponds to the minimal surface equation, Bernstein
conjectured that it is true. Many mathematicians have attacked to this problem.
It was solved affirmatively by de Giorgi [17] for n = 3, by Almgren [1] for n = 4,
and by Simons [37] for n < 7. However, Bombieri, de Giorgi and Giusti [4] proved
that for n > 8, there exists a solution to the minimal surface equation in R™ which
is not an affine function.

While, for the case k > 2, our problem can be solved negatively, even if we add
additional hypotheses such as the convexity of u. In fact, u(x) = ¢(x1) where ¢
is any C? function defined in R solves (6.8), because n — 1 principal curvatures of

u are 0.

Next, we consider the case ¥ = const. > 0. In this case, however, there exist no
(k-admissible) solutions to Hy[u] = 1 = const. > 0 in R”, due to [39]. Indeed, the

condition
k:/ Ydr < (1-— X)/ Hy_1[0B(0, R)] ds, (6.9)
B(0,R) OB(0,R)

for some positive constant y does not hold for sufficiently large R. Here, for a
C? domain Q C R", H 1[09Q] = Sk_1(K},...,kl_1) where K},... K/, are the

principal curvatures of 0. It is because the left-hand side of (6.9) is const.x R"

while the right-hand side is const.x R"7*.

Our next task is to consider the appropriate formulation of Bernstein type prob-

lems for k-curvature equations and parabolic k-curvature equations.
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7 Appendix

We begin with some notation. The k-th elementary symmetric function of n

variables Sy is considered in the corresponding cone I'y in R", given by
I'y={AeR"|S5;(A\) >0, forall j=1,...,k}.

The following properties of the functions S, are used in Section 3 and in the

proof of Lemma 7.1.

Sk()\) = Skﬂ()\) + )\iSk—l;i()\); (71)

Z Ski(A) = (n = k)Sk(A) (7.2)

for all A € R™. Furthermore, if A € 'y, then at least k& of the numbers Ay,..., \,

are positive and moreover
Sl;iliz.“is ()\) > 0

for all {i1,49,...,1s} C {1,2,...,n}, [+ s < k (see [26]).
It is known that the Newton inequalities

(k—1)(n—k+1)

Sk(A)Sk—2(A) < k(n—k+2)

[Sk-1(N)]? (7.3)

for A € R™, k > 2 and the Maclaurin inequalities

5] _ s’
[(@] : [ <7>] 7

for A € 'y, k > 1 > 1 hold (see [32]).

The following lemma is used in Section 3 ([30]).

Lemma 7.1. There exists a constant 0 > 0, depending only on n and k, such that
Sk—1.(A) > 0Sk_1(N), (7.5)

for all A € T'y.
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Proof. First, we prove

k(n —k
S < GSicu), Go= D (7.

By using (7.1), we have
Skak(A) + ArSk—1.16(A) = Skr(A) = Sk(A) — AeSk—1.6(A)
> —MeSe—11(A), (7.7)
Sk—1;16(A) + A Sk—2:16(A) = Sk—1.(N). (7.8)

Eliminating A; from (7.7) and (7.8) gives

(Sk—1.16(N)? = Skar (V) Sk—218(A) < Sk 16N (Sk_1:16(A) + A Sk_2:16(A))
= Sk-1;6(A)Sk-1:1(A)

so that by Newton’s inequality (7.3) we obtain
(1_ (k—1)(n—k—-1)
k(n — k)
Therefore (7.6) follows.
By using (7.6) and (7.8), we obtain

) (S ar W) < (Se (V)2 (7.9

CrSk-1.(A) > =Sk—1,6(A) + A1 Sk—2,15(N) (7.10)
so that
Se16(0) > —LSp p1k(N) (7.11)
k—1;k = 1+Ck k—2;1k . .

Let us now suppose that (7.5) is valid wherever k and n are replaced by k — 1

and n — 1, that is for some positive constant § = 0(k — 1,n — 1), we have
Sk—21k(A) > 0Sk_21(N). (7.12)

By using (7.11) and (7.12), we obtain

A0 6
Sk-1#(A) 2 7 J:Ck Sk—2a(A) =77 Ck(Sk—l()\) — Sk-11(A))-
Therefore we obtain
6
. > . .
Sk—1.(A) > 11 G Sk—1(N) (7.13)
Hence (7.5) holds. O
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Moreover, we prove some lemmas used in Section 3. These lemmas can be proved

by using properties of the k-th elementary symmetric function Sj.

Lemma 7.2. It holds that there exists some constant 8 > 0 such that

Sk—14(A) = A A Apq (7.14)
fori>kand all A= (M\,..., ) €T with \y > Xy > -+ > A,
Proof. By using the inequality (7.11), we obtain

Sk—14(A) = Sk—1( A1, ooy Aem1s Ay o5 A1, 0, Xy ooy Ap)
> S 1y ey Moty Moty o+ A0y 0, Aty -3 An)
= Sk—1.(N)
> 01M1Sk—2.1x(N)
> O A1 A2 Sk—3.12k ()

v

> OMAg - A—1S0,12-6(A)
= 2 P.VEEED YRR

for some positive constants 61, 6s, ..., and 6. O

Lemma 7.3. Suppose A €T and A\ > Ay > -+ > \,.

(i) There exists some 6 > 0, which depends only n and k, such that
A1Sk—1:1(A) > 0SK(N). (7.15)
(i1) For any § € (0,1) there exists K > 0 such that if
Se(A) < KM or |N| <KX\ for i=k+1,...,n,
we have

ASk-11(A)

v

(1 - 8)SK(\). (7.16)



Proof. (i) We have

Se(A) = ArSk_1:1(A) + Skt (A). (7.17)

Ska(N) < Cn,kS]E;l()\) < CA1Sk-1.1(N),

(7.15) follows.

(ii) To prove (7.16), we first consider the case Si(A\) < KA¥. We may assume
Skp(A) = 1. If (7.16) is not true, then
1-9¢
A1

=

<K

Y

Sk—1;1(>\) <
hence
b .
Sia(N) < OSET,(N) < OK ™7,

In view of (7.17), (7.16) follows.

Next, we consider the case |\;| < K\ for ¢ = k+ 1,...,n. Observing that if
A < A1, we have Si(A\) < A}, and so (7.16) holds. Hence we may assume that
|\i| < A for i = k+1,...,n. In this case, both Si(\) and A\;Sk_1.1(\) are equal
to At g -+ - Ak(1 + 0(1)) with o(1) — 0 as K — 0. Again (7.16) holds. O

Next, we prove a theorem called Alexsandrov’s maximum principle. Before

giving a proof, we introduce some notation.

Definition 7.4. (supporting hyperplane)
Let 2 be an open subset of R” and u : 2 — R. Given xy € (2, a supporting
hyperplane to the function w at the point (xg,u(xg)) is an affine function [(z) =

uw(zo) + p - (x — x) such that u(z) > I(z) for all x € Q.

Definition 7.5. (normal mapping)
Let ©Q be an open set in R” and v € C(f2). The normal mapping of u, or
subdifferential of u, is the set-valued function du : Q@ — P(R™) defined by

ou(zg) ={p € R" | u(x) > u(xg) + p- (x — x), for allz € Q}.
Given E C (2, we define Ou(E) = Uzeplu(z).
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Lemma 7.6. Let Q C R” be a bounded open set, and u,v € C(2). If u = v on
02 and v > u in (), then

0v(§2) C Ju(92).
Proof. Let p € 0v(€2). There exists zg € 2 such that
v(z) > v(zg) +p- (z — o), Vz e Q.
Let

a= itelg{v(xo) +p-(z—x) —u(x)}.

Since v(xg) > u(xzg), it follows that a > 0. If a > 0, we claim that v(xy) + p -
(x —x9) —a is a supporting hyperplane to the function u at some point in €. Since
Q) is bounded, there exists z; € Q such that a = v(zo) +p- (z1 — 20) — u(x1). We

have
v(x1) > v(xo) +p- (21 — x0) = u(z1) + a.

Hence, since a > 0, then z; € 0f2, so the claim holds in this case.
On the other hand, if a = 0, then
w(z) > v(zo) +p- (x —x0) > u(zg) +p- (x —10), VIe
and consequently u(zg)+p-(x—x0) is a supporting hyperplane to u at zy. Therefore,

it holds that p € 0u(92). O

Now we prove Aleksandrov’s maximum principle (see [18]). It is used in the

proof of Lemma 4.1, in order to derive a local gradient estimate of a solution to
(1.9).

Theorem 7.7. (Aleksandrov’s maximum principle)
If Q C R" is a bounded, open and convez set with diameter A, and u € C(Q) is

convex with u = 0 on OS2, then
lu(zo)|™ < CLA™* dist (g, OQ)|0u ()]

for all zy € 2, where C,, is a constant depending only on the dimension n.
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Proof. Fix xy € 2 and let v be the convex function whose graph is the upside down
cone with vertex (zo,u(zo)) and base 2, with v = 0 on 9. Since u is convex,

v > u in 2. By Lemma 7.6
Ov(2) C Ju(Q). (7.18)

To prove this theorem, we shall estimate |0v(€2)| from below. We first notice
that the set Ov(Q2) is convex. This is true, because, if p € 9v(Q2), then there
exists 21 € Q such that p € dv(zy). If z1 # x0, since the graph of v is a cone,
then v(z1) + p - (z — x1) is a supporting hyperplane at z, that is p € dv(xg). So
0v(2) = Jv(zg) and since dv(zy) is convex, we are done.

—u(xo)

diSt(.CCo, 89) .
This follows because (2 is convex. Indeed, we take x; € 9 such that |z; — xo| =

Second, we notice that there exists py € 9v(Q2) such that |py| =

dist(xg, 0Q2) and H is a supporting hyperplane to the set 2 at x;. The hyperplane
in R"*! generated by H and the point (zg,u(¢)) is a supporting hyperplane to v
that has the desired slope.

Now notice that the ball B with center at the origin and radius —uixo) is
contained in Ov(Q?), and [py| > —uimo). Hence the convex hull of B and py is

contained in Ov(Q2) and it has measure

o, (24 (7.19)
n A Dol- .
By the definition of |pg|, (7.18) and (7.19), we obtain
Clu(zo)|”
ou(Q)| > [0v(Q)] >
ul)] 2 10V 2 = g5t 0, 290
Therefore the proof is completed. 4

Finally, we prove Evans-Krylov type theorem (see [18]). By using this theorem,
we can estimate local a-Holder estimates of D?u and u, in the proof of Theorem
2.1.

Theorem 4.2 (Evans-Krylov type theorem)

Let D and D' be bounded bowl-shaped domains which satisfy D' C D and

dist(D’,9,D) > 0, and u be a C**(D) solution to the equation

G (ug, D*u) = 0 (4.11)
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in D, where G = G(q, M) is defined for all (¢, M) € R x S™*" with G(-,M) €
CHR) for each M € S, and G € C*(R x X) for some X C S™" which is a
neighborhood of D*u(D). Suppose that:

(i) G is uniformly parabolic, i.e., there exist positive constants A\ and A such

that

—A < Gylg, M) < -, (4.12)
AN < Glg, M + N) — G(g, M) < A|IN]] (4.13)

for allq e R and M, N € S"*™ with N > O.

(i) G is concave with respect to M.

If ||ulc21(py < K, then there exist positive constants C' depending on A, A, n,
K, D, D' and G(0,0), and a € (0,1) depending on A\, A and n such that

||U||Cz+a,1+%(D,) S C.

Proof. By the smoothness of G on the range of D?u and differentiating the equation
(4.11) with respect to t, we obtain

Gy(uy, D?u) (uy); + Gij(u, D2u)Dij (ug) =0,

where

G

0mij .

Gij =

Dividing the last equation by G, by (4.12), we obtain a uniformly parabolic

equation, and by Harnack inequality [29], we obtain

[ut]’}/,D3/4 S CHUtHLOO(D)7

where D3y = B(0,3/4) x (=3/4,0] and some 0 < v < 1. For the estimation of

second z-derivatives, fix t. Then, v(x) = u(x,t) satisfies

G(z, D*v(z)) = G(uy(x,t), D*u(z,t)) = 0.
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By [6, Theorem 8.1], we have the estimate || D*v||cs(p(0,1/2)) < C uniformly in ¢
for some 0 < 3 < 1. To show that D?u is Holder continuous in ¢, we note that by

differentiating (4.11) with respect to x; we get that Dyu satisfies
G (us, D*u)(Dyu); + Gij(us, D*u) D;j(Dyu) = 0,
and as before, we get
[Dula,p,;, < CllDullre(p),
for some 0 < a < 1. We have
|Du(x,t1) — Du(x,t2)| < Cy|zy — x| (7.20)
and
|D?u(z1,t) — D*u(wa,t)| < Colay — 29|°. (7.21)

This implies |D?u(z,t;) — D?u(x,ty)| < Clt; — to|**/ 1+, Here we shall give its
proof, which is found in [28, p.78].

We fix z € B(0,1/2),1 <i,j <mnandt,ts € (—1/2,0] which satisfies |t; —ta| <
€ where € > 0 is a constant which will be determined later.

We set h(s) = |D;u(z + sej, t1) — Dyu(z,t1) — Dyu(z + sej, ta) + Dyu(z, to)| for
s € R with z + se; € B(0,1/2). First (7.20) yields

h(s) < |Dyu(z + sej, t1) — Dyu(x + sej, ta)| + |Diu(z, t1) — Diu(x, ta)
<204t — ta]”. (7.22)

Next, h(s) can be estimated as

h(s) =

/S (Diju(a + €ej,t1) — Diju(z + Eej, ta)) df‘
0

/s (Diju(z + Eej, t1) — Dyju(w, t1)) d€
0
- / (Diju(z + Eej,ta) — Diju(z, 1)) d&‘
0

v

/8 (Diju(iﬂ + e, t1) — Djjulx, tl)) d§'
0

/8 (Dlju(x + e, ta) — Diju(as,tl)) d&
0
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It follows from (7.21) that

Il S ‘/ ‘DZ]U(J? + gejatl) — DijU($,t1)| dé'
0

/802|€|ﬁd€‘
0

C
— ﬁ\ﬂ”ﬂ < o2, (7.24)

And It follows from the mean value theorem that

<

.[2:

S(Diju<56 -+ gej, t2> — Diju(x, tl)) ’ s
for some £ which is between 0 and s. Therefore, by (7.21) we obtain that

Iy = |s||(Dyu(z + Eej,t2) — Diju(z,t2)) — (Dijul, tr) — Diju(z,t,))|
> |s|| Diju(z, t1) — Diju(w, t2)| — Cls||¢]?
Z |s|‘Diju(x,t1) — Diju(x,t2)| — 02|3|1+ﬁ. (725)

Substituting (7.24) and (7.25) into (7.23), we have
h(S) Z |s||Diju(m,t1) — Dm‘U(l’,fg)‘ — 02|8|1+6. (726)

Combining (7.22) and (7.26), we obtain that

2C

|Diju(a,t1) — Diju(@, ta)| < —=[t; — to|* + 2Cy|s|”.

5]

If we choose s = (C1/(BCy))Y At — 1|/ O+0) or s = —(C,/(BCo))V+P|t, —

to|*/(1+P)  then we have the following inequality:
| Diju(z, t1) — Diju(z, tz)| < Clts — t2|%. (7.27)

Here C' is some positive constant. We note that there exists some positive constant
e > 0 such that if |t; — 5| < € then the point z + se; for s = (Cy/(8Cs))Y 1A |¢; —
to]®/ 4B or s = —(C1/(BCR))Y A+t —t5|*/0+P) is in B(0,1/2). Therefore (7.27)
holds for z € B(0,1/2) and |t; — to| is suffiently small, and the desired Holder

continuity follows. d
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UNIQUENESS OF BOUNDARY BLOWUP SOLUTIONS TO
k-CURVATURE EQUATION

SAORI NAKAMORI AND KAZUHIRO TAKIMOTO

ABSTRACT. We consider the boundary blowup problem for k-curvature
equation, i.e., Hi[u] = f(u)g(]Du|) in an n-dimensional domain 2, with
the boundary condition u(z) — oo as dist(z, Q) — 0. We prove the
uniqueness result under some hypotheses.

1. INTRODUCTION
This paper deals with the so-called curvature equations of the form
(1.1) Hilu] = Sk(k1, ..., kn) = f(u)g(|Du|) in Q,
with the following boundary condition
(1.2) u(z) = oo as dist(z,9Q) — 0.

Here Q is a bounded domain in R" and for a function u € C?(Q), k =
(K1,...,Kn) denotes the principal curvatures of the graph of the function w,
namely, the eigenvalues of the matrix

Du 1 Du® Du 9
1.3 C=D = I— D,
(1.3) («/I—FIDU‘?) 1+ |Dul? ( 1+|DU’2>

and Si,k =1,...,n, denotes the k-th elementary symmetric function, i.e.,
(1.0 540 = X ki iy
where the sum is taken over increasing k-tuples, 1 < i1 < ig < -+ < i <

n. The mean, scalar and Gauss curvatures correspond respectively to the
special cases k = 1,2,n in (1.4). In this paper we call the equation (1.1)
“k-curvature equation.”

In [28] we have studied the existence and non-existence result of a solution

o (1.1)-(1.2). In addition, we have obtained the result for the asymptotic
behavior near 92 of such solution. In this paper, we deal with the uniqueness
of solutions to (1.1)-(1.2).

We remark that (1.1) is a quasilinear equation for k¥ = 1 while it is a
fully nonlinear equation for k£ > 2. In the particular case that k = n, it
is an equation of Monge-Ampere type. It is much harder to analyze fully
nonlinear equations, but the study of the classical Dirichlet problem for k-
curvature equations in the case that 2 < k < n — 1 has been developed in
the last two decades, see for instance [4, 14, 29].

The condition (1.2) is called the “boundary blowup condition,” and a so-
lution which satisfies (1.2) is called a “boundary blowup solution,” a “large
solution,” or an “explosive solution.” The boundary blowup problems arise
from physics, geometry and many branches of mathematics, see for instance
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[15, 22, 26]. The existence and the asymptotic behavior of solutions for such
problems starts from the pioneering works of Bieberbach [3] and Rademacher
[26] who considered Au = €" in two and three dimensional domain respec-
tively. For the case of semilinear equations, they have extensively been
studied (see, for example, [16, 25] and [2, 5, 7, 17, 18, 19, 22, 23, 24]). The
case of quasilinear equations of divergence type to which the mean curvature
equation (k =1 in (1.1)) belongs has been treated in [1, 11, 12]. However,
there are only a few results concerning such problems for fully nonlinear
PDEs, such as [6, 13, 20] for Monge-Ampere equation, [27] for k-Hessian
equations, and [28] by the author for k-curvature equations.

In some works among them, the uniqueness of boundary blowup solutions
has been also discussed, see [1, 19, 22, 24, 27] for example. But there were
no results for the uniqueness of boundary blowup solutions for k-curvature
equations, even for the mean curvature equation which corresponds to the
case of k =1 for (1.1). In this paper, we shall obtain the uniqueness result
for (1.1)-(1.2), which is stated in Sections 3 and 4.

Throughout the paper, we assume the following conditions on f and g:

o Let tg € [—00,00). f € C™(tg,00) is a positive function and satisfies
1) >0 for all t € (tg, ).
o If tg > —o0, then f(t) — 0 ast — to+0; otherwise (i.e., if tg = —00),

t
(1.5) / f(s)ds < oo forallteR.

e g € C™|0,00) is a positive function.

The first condition assures us that the comparison principle for solutions to
(1.1) holds. The typical examples of f are f(t) =t (p > 0), to = 0 and
f(t) =¢l, tg = —o0.

This paper is divided as follows. In the next section, we state our results
for the existence and the estimate of the asymptotic behavior of a solu-
tion near the boundary to the boundary blowup problem (1.1)-(1.2), for the
sake of completeness. This includes the improved results for the asymptotic
behavior of boundary blowup solutions. In Section 3, we state our unique-
ness result and prove it. However, the case kK = n is excluded from these
theorems. We consider the particular case in Section 4.

2. RESULTS FOR EXISTENCE AND ASYMPTOTIC BEHAVIOR OF A SOLUTION

In this section we review the results for the existence and the asymptotic
behavior of a solution to (1.1)-(1.2). The following existence result has been
proved in [28].

Theorem 2.1. Let 2 < k <n—1. We assume that 2, f and g satisfy the
following conditions.

(A1) Q is a bounded and uniformly k-convex domain with boundary 0} €
.

(A2) There exists a constant T > 0 such that g is non-increasing in [T, 00),
and limy_, o g(t) = 0.



Uniqueness of boundary blowup solutions to k-curvature equation 3
~ t
(A3) Set g(t) = g(t)/t and F(t) = fto f(s)ds. Then
& dt
(2.1) / — < o0

i ()

gk

t
(2.2) H(t) = /0 2(5) (Lt 5207072 ds.
Then limy_,o H(t) = oo.
(A5) Set (t) = g(t)(1 +t>)*/2. Then o(t) is a convex function in [0, 00).
(A6) limsup,_, |¢'(t)[t? < cc.
Then there exists a viscosity solution to (1.1)-(1.2).

We note that for £ = 1 the existence has been already studied in [12], so
that we focus here on the case k > 2. For the definition and the general
theory of viscosity solutions to PDEs, we refer to, for example, [8, 9, 10, 21].
For the viscosity theory for curvature equations in particular, see [29].

Example 2.1. Let 2 < kK < n — 1 and p, g be positive constants. Suppose
Q is a bounded and uniformly k-convex domain with boundary 02 € C°.
We consider these two equations:

(i) Hy[u] = w?/ (1 + |Dul?)** in Q.
From Theorem 2.1, it follows that there exists a boundary blowup solution
provided p >qand 1 < ¢ <k —1.

(ii) Hy[u] = e"*/ (14 |Du2)?? in Q.
There exists a boundary blowup solution provided 1 < ¢ <k — 1.

Remark 2.1. In the preceding paper [28], we have also obtained a necessary
condition for boundary blowup solutions to exist, so that we have given an
example of f and g for which there does not exist any boundary blowup
solution.

Next we establish the asymptotic behavior of a solution to (1.1)-(1.2)
near 0F). We shall prove the following, which is slightly improved than the
corresponding one in [28], so that we give its proof here.

Theorem 2.2. Let 1 < k <n—1. We assume that (A1), (A2) and (A3)
in Theorem 2.1 and the conditions given below are satisfied.
(B1) tg = —o0, orty > —o0 and Y% s Lipschitz continuous at to.
(B2) There exists a constant T' > ty such that f is a convex function in
[T, 00).
(B3) Set h(t) = __t Then there exists a constant o > 0 such

GO

that h(t)/t* is non-decreasing in (0, 00).

. g(t)
B4) 1 =
B I ar o0
Then there exist positive constants Cy, Cy such that every solution u to (1.1)-

(1.2) satisfies
(2.3) Y HCy dist(z,00)) — O(1) < u(z) < P~ H(Cydist(z,99)) + O(1)
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near OS2, where v is defined by

o0 ds
(2.4) wi) = | YOO

Proof. Let u be a solution to (1.1)-(1.2). From now on, we use the following
notation: d(z) = dist(x,00Q) and Q, = {z € Q | d(z) < r} for r > 0.
It follows from (A1) that there exists a positive constant R such that the
following conditions are satisfied:
(a) d =d(x) is a C* function in Qpg;
(b) For each point = € Qp, there exists a unique point z(z) € 9 such
that d(x) = |z — z(x)|;
(c) There exist positive constants m, M such that for every point = €
Qp, it holds that

/ /
(25) F=(R1,.. ) Rin_t) = (JWW) € LR
and that
(2.6) m < Sk(k) < M,
where £}, ..., k),_; denote the principal curvatures of 9Q at z(x).

First, we prove the first inequality in (2.3). Let 9; = 91(r) be a solution
to the following problem

k—1
(n_l) u// u/
k-1 (1+u’2)3/2 ry/1+u/?
k
(2.7 03 () = @ in 0, diam),
u(0) =ug > ty, u'(0) =0,
Lu(r) = oo as r — diam 2 — 0.

The existence of the solution ©; is guaranteed by the hypotheses (A2), (A3),
(B1) and (B3); see [28, Theorem 3.6] for the proof. We set vy (x) = v1(|z|), so
that vy is a classical radially symmetric solution to (1.1) with the boundary
blowup condition

(2.8) vi(z) = oo as dist(z, Bgiamn(0)) — 0.

For y € Q which satisfies d(y) = 3R/4, it follows from the comparison
principle that

(2.9) u(x) >vi(x—y) in {x €Q

o -y < X
Yy 5 (

Therefore, setting C' := v1(0), we obtain that for any solution w to (1.1) and
any point y € Q which satisfies d(y) = 3R/4,

(2.10) u(y) = C.
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Next, we see that there exists a constant w; > ty such that a non-
increasing, convex solution w on (0, R] to the following problem

, k
Flg) = () min 0.8)

w(r) = oo as r — +0,
w(R) = wy

(2.11)

exists. Indeed, by the same argument as in [28, Section 3|, one can prove the
existence of such solution. We omit its proof. For € € (0, R/4), we define

(2.12) vie(x) = w(d(z) +¢) + L, r € Q3p/4,

where L = min{C—w(3R/4),0}. Then it follows that u(x) — coasd(z) — 0
while vi.(z) takes finite value on the set {d(z) = 0} = 99Q. Moreover, for
any x which satisfies d(z) = 3R/4 we have

(2.13) one(z) = w <iR+ 5> L <w <iR> 4 L<C<u)

due to (2.10). Finally, it holds that for = € Q3p/4
(2.14)

"d(x k
Hy[vie](z) = (\/Jif}(i(j)iL)Q) Sk(F)

k—1
"(d(x w'(d(x) + e N
. (d(x) + Lﬁﬂ( |(()+N)J s ()

1+w(d(x VIt w(d(z)+e
N D+l \
= \/1+w (@) + o)
= +¢)) g(lw'(d(z) +€)|)

flw
f

(vla( ) L) g(|Dvic(2)]) = f(v1e(2)) g(|Dvie(a)])-

Here we note that L < 0. Therefore we can deduce by the comparison
principle that

(2.15) vie(z) = w(d(z) +¢) + L < u(x)
for z € Q3p/4. Taking the limit € — +0, we get that
(2.16) w(d(z)) + L < u(z)

for x € Q3R/4'
Using (2.11) and the condition (B3), we obtain that

(2.17) | = = = b= (m=VE f(w) )
< max {1,m—1/ak’} h=L(F (w)V/F).

Integrating from 0 to r yields that

(2.18) P(w(r)) = /T) h_w‘t)w) < max {1, mfl/ak} .
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for r € (0,R). Combining (2.16) and (2.18), we conclude that the first
inequality in (2.3) holds.

Next we prove the second inequality in (2.3). As we have argued before,
we see that there exists a constant wy > fy such that a non-increasing,
convex solution w on (0, R] to the following problem

k
|| ) :
r() = (A2 ) M .
w(r) — oo as r — +0,

’LZ)(R) = w2y

exists. We choose a constant R’ € (0, R) such that w(R') > T’, where T" is
a constant which appears in the condition (B2). For € € (0, R'/4), we define
(2.20) voe(z) = w(d(z) —e) + L', € Qp \ Qe

where L’ is a positive constant to be determined later.
Hereafter, we use the abbreviation: vy, = vo.(x) and w = w(d(z) — ¢).
Then it follows from (B2) that

(2.21) f(@) = flvee — L)
By differentiating the ODE in (2.

(2.19)

S f('l)QE) — L/f/(ﬁ)) in QR/.
19),

we have
o P@g()? (1 @) o\
(2.22) meu+<>>u|>ﬂﬁmwn e ’
which implies that
(2.23) k
1
@ ~ w” @] ;
Hy[voe] = T (w/)2> w(R) + Nt IOLE ( T (w/)2> Sk-1(R
o F(@)i g1’ ~
< F@TD + SET T @) g (arl) — g

Sk-1(%)

MWjLMk

Here we used (2.21). By the boundedness of Si_1(%) in Qg and the condi-
tion (B4), one sees that there exists R” € (0, R') (which depends on L', but
does not depend on ¢) such that

(2-24) Hk[UZz-:] < f(v2€) g(|DU2€|) in QR” \ Q€~

Now we choose L’ sufficiently large so that L’ > v5(0) — wg where 9 = 05(r)
is a solution to

(= )
(2.25) + (" )(T u ,2) = f(wyg(le]), >0

< g(|Dvzel) | f(vae) — /(@) | L' +

1+u
u(0) = 02(0) > to, u/(0) =0,
u(r) = oo asr — R"/2-0
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It is possible because as L’ is larger and larger, we can choose R” larger and
larger so that 72(0) becomes smaller and smaller. We set va(z) = va(|x]).

Then, it follows from the comparison principle that u(y) < v2(0) = 02(0)
for any y € Q which satisfies d(y) = R”. Thus we have that

(2.26) voe(y) = W(R" — &)+ L' > wo + L' > 95(0) > u(y)

for any y € Q which satisfies d(y) = R”. Moreover, it holds that v () — oo
as d(z) — € + 0 while u(z) takes finite value if d(z) = €. Therefore, we can
deduce by the comparison principle that

(2.27) voe(z) = w(d(z) —e) + L' > u(z)
for © € Qpr \ Q. Taking the limit ¢ — +0, we get that
(2.28) w(d(x)) + L' > u(z)

for x € Qpgn.

Using (2.19) and the condition (B3), we obtain that
(2.29) i = h (M*l/k f(w)l/k)
> min {1, M‘I/O‘k} hL(f ()R,

Integrating from 0 to r yields that

0 ds
(2.30) a/)(w(r))z/w(r),“(f(s)l/k)

for r € (0, R”). Combining (2.28) and (2.30), we conclude that the second
inequality in (2.3) holds. O

> min{l,M_l/ak}r

Example 2.2. Let 1 < k£ <n—1 and p,q > 0. Suppose (2 is a bounded
and uniformly k-convex domain with boundary 02 € C°°. We consider the
same equations as in Example 2.1:

(i) Hy[u] = w?/ (1 + |Dul?)*? in .
Theorem 2.2 implies that a boundary blowup solution u (if it exists)
satisfies

(2.31) Oy dist(z,09) 77 < u(z) < Cydist(z,dQ) 77 near O
for some constants C1,Cy > 0, provided p > k and p > q.

(ii) Hy[u] = e"*/ (14 |Duf2)?? in Q.
We can also see that a boundary blowup solution u (if it exists) satisfies

(2.32) u(z) = 4 log dist(x,0€2) + O(1) near 012,
p

provided ¢ > 0.

Remark 2.2. The case k = n, which corresponds to Gauss curvature equa-
tion, is excluded from Theorems 2.1 and 2.2. Alternative results for the case
k = n are given in Section 4.
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3. UNIQUENESS RESULTS FOR BOUNDARY BLOWUP PROBLEM

In this section, we give the uniqueness result for the boundary blowup
problem (1.1)-(1.2) for 1 <k <n —1.

Theorem 3.1. Let 1 < k < n —1. We assume that the conditions in
Theorem 2.2 are satisfied. Also, we assume the following.
(C1) Q is star-shaped (with respect to some point xo € Q).
(C2) There exists constants B > 0 and T" > 0 such that f(t)/t° is non-
decreasing in [T",0).
(C3) limg_,05¢~(s) = 0, where v is defined in Theorem 2.2.
Then the problem (1.1)-(1.2) has at most one viscosity solution.

Proof. In this proof, we denote the notation d(z) = dist(z, 02) again. With-
out loss of generality, we may assume that xg = 0. Suppose that u; and us
be solutions to (1.1)-(1.2). In the following proof, we argue in the classical
sense, but one can justify it in the viscosity sense.

For A € (1,2), we define a function g ) in 2 by tg \(z) = Aua(x/X)—@(N),
where ¢()\) is a positive constant to be determined later. It can be defined
due to the condition (C1). Then it holds that
(3.1) Hliina] = %Hk[uﬂ (%) .

Later, we will determine ¢(\) appropriately, in such a way as to satisfy that
g, is a subsolution to (1.1) and that ¢(A) — 0 as A — 1+ 0.

Meanwhile, we suppose that one can choose ¢(\) as above. Now u;(z) —
oo as d(x) — 0, while 4y ) has finite value on 0. It follows from the
comparison principle that

(3.2) uy () > g\ (%) — o(N).

Letting A — 1+ 0, we get uq > uo in 2.
Now we prove that ¢(\) can be chosen as desired. Noticing Dy y(z) =
Dusy(z /), we have by (3.1) that

X

(3.3) Hyliin] = %f (w2 (5)) 91D A@)).

Therefore, g ) is a subsolution to (1.1) if and only if it holds that for any
T €,

B4 35S (02(3) 2 Flaa@) = £ (e (5) - o).

By Theorem 2.2, we obtain that there exist constants ¢ > ty and c¢1,¢c0 > 0
such that for any x € ),

(3.5) c < ug (;) <yt <)\ ; 101) + o,

because d(z/A\) > (1—1/X)c; for some ¢; > 0 which is independent of = € Q.
Therefore it is enough to prove that there exists ¢(A) > 0 such that

(3.6) f! <)\1kf(8)> >As — p(N\) forany c<s <! (A ; 101> + ¢,

and that ¢(\) - 0as A — 1+0.
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We set
(3.7) P(N,8) = As — f1 (/\1kf(s)> , A€ l,2], s € (sp,00),

and

(3.8) nA) = sup [P\ s)], A€(L,2],
c<s<2k/BT

where 8 and T” are constants which appear in the condition (C2). We
note that ¢ (1,s) = 0 which implies n(1) = 0. Then it is easily seen that

limy1407m(A) = 0.
Now we define

(3.9) d(\) = (A - A*k/fB) <¢1 (A < 101> + cQ> + (V).

We fix arbitrary s which satisfies ¢ < s < ¥~ 1((A — 1)e1 /) + co. First, if
c<s<2KBT" then we get that

310) 17 (9) = A= vs) 2 A= 00 2 s - 90,
Next, if 26/8T" < s < )= ((A — 1)e1/N) + co, then it holds that

a1 s -
(3.11) <)\kf(s)> > o = As - (A Y k/ﬁ) 5> s — H(N).
Here we used the condition (C2). Furthermore, it holds that

(3.12)

- 0 o (52 o)

as A = 1+ 0, due to the condition (C3). This completes the proof.

By the similar argument, we see that u; < uo in €2 and hence u; = ug in
Q. O

Example 3.1. Let 1 < k <n —1 and p,q > 0. Suppose {2 is a bounded,
star-shaped and uniformly k-convex domain with boundary 02 € C*°. We
consider again the same equations as in the last section:

(i) Hylu] = w?/ (1 + |Dul?)** in .
Theorem 3.1 implies that there exists at most one boundary blowup so-
lution, provided p > k and p > 2q.

(i) Hy[u] = e?*/ (1 +|Du>)" in Q.
It follows that there exists at most one boundary blowup solution for any
p,q > 0.
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4. THE CASE OF GAUSS CURVATURE EQUATION

The case k = n, which corresponds to Gauss curvature equation

det D2
(1 + |Duf2)(n+2/2 ~ f(u)g(|Dul)

is excluded from all theorems in Sections 2 and 3. In this section, we shall
obtain the alternative results for the case k = n.

First, we state results for the existence and for the asymptotic behavior
of a boundary blowup solution, which we have already proved in [28].

(4.1)

Theorem 4.1. Let kK = n. We assume that Q) is a bounded and strictly
convex domain with boundary 02 € C*°. Furthermore, we also assume that
the conditions (A3) is satisfied and that limsup,_, ., g(t)t < co. Then there
exists a viscosity solution to (1.1)-(1.2).

Theorem 4.2. Let k = n. We assume that Q is a bounded and strictly
convex domain with boundary 092 € C*°. Furthermore, we also assume that
the conditions (A3), (B1), (B2) and

(B5) There exists a constant o > 0 such that H(t)/t* is non-decreasing
fort >0, where

t g™
(4.2) H(t) = /0 R 32)("+2)/2 ds,
are satisfied. Then there exist positive constants C1,Co such that every
solution u to (1.1)-(1.2) satisfies
(4.3) Cy dist(z, 0Q) < U(u(z)) < Cydist(z, 09),
where W is defined by

(4.4) U(t) = /t h H_IC(ZSF(S)).

Next, we establish the uniqueness result for the case k = n.

Theorem 4.3. Let k = n. We assume that the conditions in Theorem 4.2
are satisfied. Also, we assume that the conditions (C2) and

(C3)’ limg_s 40 sV1(s) =0, where ¥ is defined in Theorem 4.2,
are satisfied. Then the problem (1.1)-(1.2) has at most one viscosity solu-
tion.

The proof of this theorem is mostly the same as that of Theorem 3.1, so
we omit it. Finally, we give some examples.

Example 4.1. Let k¥ = n and p,q > 0. Suppose (2 is a bounded and
strictly convex domain with boundary 92 € C°°. We consider again the
same equations given before:

(i) Hylu] = w2/ (1+ |Duf2)”* in Q.
Theorem 2.1 implies that if p > ¢ > 1, then there exists a boundary

blowup solution, and it follows from Theorem 2.2 that any boundary blowup
solution satisfies

(4.5) C4 dist(x, (B?Q)_P:iz < u(z) < Cydist(z, 89)_?:i2 near OS2
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for some constants Cq,Cy > 0, provided p > n and p > ¢ > 1. Moreover,
Theorem 2.2 implies that there exists at most one boundary blowup solution,
provided p >n, p > 2¢q — 3 and ¢ > 1.

(i) Hplu] = e/ (1 4 |Dul?)*? in Q.
One can see that there exists a unique boundary blowup solution which
satisfies

(4.6) (@) = — 1= log dist(z,00) + O(1) near 9,
b

provided ¢ > 1.
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A Bernstein type theorem
for parabolic k-Hessian equations
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Abstract

We are concerned with the characterization of entire solutions to the parabolic
k-Hessian equation of the form —u;Fy(D?*u) =1 in R" X (—o0, 0]. We prove
that for 1 < k < n, any strictly convex-monotone solution v = wu(z,t) €
C*2(R™ x (—00,0]) to —u;Fx(D?*u) = 1 in R™ x (—o0,0] must be a linear
function of t plus a quadratic polynomial of x, under some growth assump-
tions on u.

Keywords: Bernstein type theorem, Fully nonlinear equation, Parabolic
Hessian equation, Pogorelov type lemma
2010 MSC: 35K55, 35B08, 35K96

1. Introduction

In the early 20th century, Bernstein [2] proved the following theorem;
If f € C*(R?) and the graph of z = f(z,y) is a minimal surface in R3,
then f is necessarily a linear function of x and y. This theorem gives the
characterization of entire solutions to the minimal surface equation defined
in the whole plane R?.

Many problems on the classification of entire solutions to PDEs have
been extensively studied. We list some results concerning Bernstein type
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theorems for fully nonlinear equations. First, for Monge-Ampere equation,
the following theorem is known.

Theorem 1.1. Let u € C*(R™) be a convez solution to
det D*u=1 inR™ (1.1)
Then u s a quadratic polynomial.

This theorem was proved by Jorgens [15] for n = 2, by Calabi [6] for
n < 5, and by Pogorelov [19] for arbitrary n > 2 (see also [7] for a simpler
proof). Caffarelli [3] proved that the result holds for viscosity solutions (see
also [4]). Moreover, Jian and Wang [14] obtained Bernstein type result for a
certain Monge-Ampere equation in the half space R’} .

Here we note that the convexity assumption in Theorem 1.1 is quite nat-
ural, since Monge-Ampere operator det D?u is degenerate elliptic for convex
functions so that we usually seek solutions in the class of convex functions
when we deal with Monge-Ampere equation.

Later, Bao, Chen, Guan and Ji [1] extended this result to the so-called
k-Hessian equation of the form

F.(D*u) =1 in R, (1.2)
for 1 < k < n. Here Fy(D?u) is defined by
Fk(DZu) = Sk<)‘la-~'7)\n)7 (13>

where, for a C? function u, A, ..., \, denote the eigenvalues of the Hessian
matrix D?u, and S), denotes the k-th elementary symmetric function, that is

Sk An) =D Xy Ay, (1.4)

where the sum is taken over all increasing k-tuples, 1 <1; < --- < i < n.
Laplace operator Au and Monge-Ampere operator det D?u correspond
respectively to the special cases k = 1 and k = n in (1.3). Hence, the class
of k-Hessian equations includes important PDEs which arise in physics and
geometry. Here we remark that (1.3) is a linear operator for £ = 1 while
it is a fully nonlinear operator for £k > 2. It is much harder to study the
intermediate case 2 < k < n — 1. Though, there are a number of papers



concerning the analysis of k-Hessian equation, such as the solvability of the
Dirichlet problem, see [5, 9, 12, 20, 21, 22, 23, 24, 25] for example.

Bao, Chen, Guan and Ji [1] proved the following Bernstein type theorem
for k-Hessian equation (1.2).

Theorem 1.2. Let 1 <k <n and u € C*R"™) be a strictly convex solution
to (1.2). Suppose that there exist constants A, B > 0 such that for all z € R",

u(z) > Alz|* — B. (1.5)
Then u is a quadratic polynomaial.

In this theorem, for the case k = n which corresponds to Monge-Ampere
equation, the assumption (1.5) can be removed, due to Theorem 1.1. Fur-
thermore, for the case k = 1 which corresponds to Poisson equation Au = 1,
the assumption (1.5) can also be removed. It is because the classical convex
solution to Au = 1 in R™ must be quadratic, as it follows almost straightfor-
ward from Liouville’s theorem for harmonic functions.

Next, Gutiérrez and Huang [11] extended Theorem 1.1 to the parabolic
analogue of Monge-Ampere equation

—uydet D*u =1 in R" x (—o00,0]. (1.6)

Here D?u means the matrix of second partial derivatives with respect to x.
This type of equation was firstly proposed by Krylov [16].

The function u = u(z,t) : R® x (—00,0] — R is said to be convez-
monotone if it is convex in x and non-increasing in ¢t. We state Bernstein
type theorem for (1.6) which Gutiérrez and Huang [11] proved.

Theorem 1.3. Let u € C**(R™ x (—00,0]) be a convez-monotone solution
to (1.6). Suppose that there exist constants my > mo > 0 such that for all
(z,t) € R" x (—00,0],

—my < u(z,t) < —ms. (1.7)

Then u has the form u(x,t) = —mt + p(x) where m > 0 is a constant and p
18 a quadratic polynomial.



We note that Xiong and Bao [28] have recently obtained Bernstein type
theorems for more general parabolic Monge-Ampere equations, such as u; =
(det D?u)*/™ and u, = logdet D*u. However, as far as we know, Bernstein
type theorems for parabolic fully nonlinear equations are known only for the
parabolic Monge-Ampere equations.

In this paper, we are concerned with the parabolic analogue of k-Hessian
equation of the following form

—u Fi(D*u) =1 in R™ x (—o0, 0], (1.8)

for 1 < k < n. Here Fj,(D?u) is the k-Hessian operator defined in (1.3). We
call (1.8) “parabolic k-Hessian equation” in this paper. For the special case
k = n, (1.8) reduces to the parabolic Monge-Ampeére equation (1.6). We
shall obtain Bernstein type theorem for (1.8).

This paper is divided as follows. In Section 2, we state our main result
and give the strategy for the proof. In Section 3, we prove Pogorelov type
lemma, which is used later. Section 4 is devoted to the proof of the main
result. Finally, in Section 5, we state some remarks and open problems.

2. Main result

The function u = u(x,t) : R™ x (—o0, 0] — R is said to be strictly convez-
monotone if u is strictly convex in z and decreasing in ¢t. Here is our main
result of this paper.

Theorem 2.1. Let 1 < k < n and u € C**(R™ x (—00,0]) be a strictly
convez-monotone solution to (1.8). Suppose that there exist constants my >
mo > 0 such that for all (z,t) € R™ X (—00, 0],

—my < w(z,t) < —mg, (2.1)
and that there exist constants A, B > 0 such that for all z € R",
u(z,0) > Alz|* — B. (2.2)

Then u has the form u(x,t) = —mt + p(x) where m > 0 is a constant and p
1S a quadratic polynomial.

Remark 2.1. For the case £ = n which corresponds to the parabolic Monge-
Ampere equation (1.6), the assumption (2.2) can be removed, due to Theorem
1.3.



The proof of this theorem will be given in subsequent sections. Here we
give the strategy for the proof:

Step 1. Derivation of a local gradient estimate of u.

Step 2. Pogorelov type lemma.

Step 3. Combining these results and Evans-Krylov type theorem, we obtain
local a-Holder estimates of D?u and ;.

3. Pogorelov type lemma

We introduce some notation. First, if D C R" x (—o00,0] and ¢ < 0, D(t)
is denoted by

D(t) = {z € R" | (z,t) € D}.

Let D C R™ x (—00,0] be a bounded set and ¢, = inf{t < 0 | D(t) # 0}.
The parabolic boundary 9,D of D is defined by

0,D = (Dlto) x {to}) U (@D(1) x {1}).

where D(ty) denotes the closure of D(ty) and 0D(t) denotes the boundary of

D(t). We say that the domain D C R™ X (—o0, 0] is a bowl-shaped domain if

D(t) is convex for each t € (—o0,0] and D(t1) C D(tq) for t; <ty <O0.
Next, for A = (A\y,...,\,) and 1 < m < n, we define

Sm(A)

0 otherwise.

Ay =iy =g =0 if ¢, # ig for any 1 <p < g <,

Sm;ilig...i]-<>\> = {

In this section, we prove Pogorelov type lemma. This is an analogue of
the result of Pogorelov [18], who derived interior C*-estimates of a solution
from C'-estimates for Monge-Ampere equation. The idea of the proof of the
following proposition is adapted from that of [8].

Proposition 3.1. Let D be a bounded bowl-shaped domain in R™ x (—o0, 0]
and u € C**(D) a strictly convez-monotone solution to —u;Fj,(D*u) = 1
in D with w = 0 on 0,D, which satisfies (2.1) in D. Then there exists a
constant C' = C(n, k,my, ||lulc1(p)) such that

sup |u(x,t)|*|D*u(z,t)| < C. (3.1)
(z,t)eD



Proof. We consider the auxiliary function

U(z, €)= (—ulz, £)'e (M

200) Desutwnt). (00D, = 1.

where o(s) = (1 —s/M)""/® and M = 28up(, yep |Du(z, ).

Then we can take a point (zg,ty) € D and a unit vector & € R™ which
satisfy

(0, to; &) = max{¥(x, :€) | (z,t) € D, |¢] = 1}.

The point (zg, ty) can be taken in D\ 8,D due to the boundary condition u =
0 on 9,D. Without loss of generality, we may assume & = e; and D*u(zg, ty)
is diagonal with D11U($0,t0) > DggU(I’mto) > e 2 Dnnu(.ro,to) > 0.
Then ¥ = U(z,t;e1) = (—u(z,t)) (| Du(x,t)|?/2) Diyu(z, t) attains its max-
imum at (zo,%y) and the eigenvalues of D?u(zg,ty) are A = (A1,...,\,) =
(u11(0,%0)s - - - » Unn(To, to)). It is enough to consider the case Ay = wuq(xo, tg) >
1. Here and throughout the paper, we denoted D;u by u;, D;;u by w;;, and
SO on.

Since U attains its maximum at (zo, to), direct calculation gives

du; Uy

log¥); = — + 2 4 =2 =, 3.2

(log ¥); = — >t (3.2)

log W) =4 — — =)+ 5 -4 —= <, 3.3

(log ) <U u? e 9w ui (3:3)
4u Uu

(1ogq/)t:7t+ﬁ+ﬂzo, (3.4)
¥ U11

D 2
i = ¢’ (| 2u| ) Ui, (3.5)
)

| Du? -
ujug; + ¢ ( 5 ug; + Zl ujug |, (3.6)
‘7:

Dul?
oy =o' (‘ 5 | ) > ujuy (3.7)
j=1

at (zo,t), for i = 1,...,n. We set f(D?*u) = Fj,(D?*u)'/*, then u satisfies
(—u)* f(D*u) =1 in D. (3.8)




Differentiating (3.8) with respect to z., (and using (3.8) itself) yields

1 1

—E(—ut)*luvt -+ (—ut)ﬁfijuiﬁ =0. (39)
Here, for f = f(M) where M = (my;)i<ij<n, We write fi; = O0f/0my;.
Multiplying (3.9) by (—u;)~%/*, differentiating once more with respect to z.,
and multiplying (—u,)'/*, we obtain

1 u? U 1 1
- (E + 1> k—;% + ﬁ + (—ut)kfiiuu-w + (—ut)kf,-jyrsuiﬂurw = O, (310)

where fi;.s = 0%f/0m;j0m,s. It follows from the calculation in [8, Section
4] that

1 1
Figrsttijntirsy < — D SN F T S (Mg, (3.11)

ij=1
at (zo,%). By using (3.10) and (3.11), we get the inequality

(% 1 11 - 1

b (—w)E fiitiiy, > (—Ut)zg D Se(A)F S (Mg,

ku
! ij=1

at (xg,tp). Letting v = 1 and multiplying 1/u;;, we get at (zo, to)
n 2

1 i l]. 1 i
T () it 2(—ut)kEZSk()\)k 1Sy 0 (ML (3.12)

kugugg U11

Let L be the linearized operator of (3.8) at (zg,to). Then one can write

1

L=——
kut(azg, to)

Dy + (—uy (o, to))%fij(D%(an t0))Dij-

By (3.3) and (3.4), we obtain

1 uy  u? Pii <p2 Uit Uy
Llog W) = (—uy)% fy (4 — — = ) + 2 - 7% G
(log¥) = (~ue)*f ( (U U2>+ ¥ <P2+ U1 U%)
1 (4
+—(ﬁ+ﬁ+m)§o. (3.13)
kuy u ¥ U1l



at (xo,to). By substituting (3.6), (3.7), (3.9) and (3.12) into (3.13), we obtain

1 u; o ul @’ 2 2 ¢ 2 90/2 2 9 u%r
—ug)® fi — — = | + —uuy; + —u; — —Suiuy —
4 : (A ll :
2 2

uwoou? p? ufy
11 & 1_q %2] 4
+ (—u) D Sk(A) St-2ii (V) + - <0 (3.14)
ij=1

at (l’g, to)

Now we split into two cases.

(1) ugr > Kuq1, where K > 0 is a small constant to be determined later.
By (3.2) and (3.5), we have
2 4u; ; 2 16u2 12,2,2
‘L;z:(_“+£) §2< f;zﬂ“;“) (3.15)
Uty u ¥ U 4

at (zo,tp). Therefore (3.15) and the fact that the second term of the left
hand side of (3.14) is non-negative yield

, i ul " 3y / 4
(—w)® fis <4 (u u;) + (¢ SOQ ) g + g“ ) +-—=<0
U U © © © ku

at (xg,tp). Since

Z fuui > fkkuik > 0, Z fzzufl (3.16)
i=1 i=1

holds for some constant 8; > 0 (cf. [8]) and ¢/ — 3¢/*/¢? > 0, it can be
derived by (3.15) that at (zo, to)

1 - 1 1
(—Ut)wz;fz‘iufl— —up)F— qu —( k) <0,

for some constant 05 > 0. Here we used the fact that Z?:l fi(D*u)uy =
f(D?*u) = (—uy)~Y* at (z0,t9), due to the homogeneity of f and (3.8). By
multiplying (—u)%¢?, we obtain

1 1
—Ug keQquull SO - C( ut E 6 2qu ( ]f) (—U)7(,02 S O
=1
(3.17)



On the other hand, it holds that at (zo, to)

é fu(D?u) = j—? %Fk(DQu)%‘l%(D%)
- L cuyt Z Sk < Clou)Halyl,  (318)
and that
i fi(D*w) > fon(D?u)
=1
— FR(DP)E ()
> %Fk(DQU)%_legull g > Ol—u) habT (3.19)

for some constant 63 > 0 (see [8, (3.2)]), by the hypothesis ugx > Kuy.
Substituting (3.18) and (3.19) into (3.17), we obtain

U2 < O(—u)bp? + (—u)

7¢2
(—ut)ukil S C(n7 k7m27 HUHC'l(D))7
11

at (zg,to). Therefore, for all (z,t) € D and £ € R™ with [£] =1, (—u)*ug <
C holds, so that (—u)?* D?u| can be estimated from above by some constant
C.
(i) wgr < Kug, that is, uj; < Kugq for j =k, k+1,...,n.
By (3.2),
4 i L [ i :
mi__(2af) B l(24M) ioaia G20

Uq1 © U 2 U1




at (xg,to). Substituting (3.20) into (3.14), we obtain

2 / 12
1 U1 o’ 9 9 @ 07 5 9 ©1  A4uy
0> (—u)ifuy (4| — ——= )+ + 2wl — — =+ —

> (—u) f11< <u u2 goulull goull <p2u1u11 <g0 U >>

du,; 1
ut me <— 4 <g0 + U1

u?; 4
- S F18 () — 4
L ”21 k( k-2 ( )u11+ku
1w dug; ¢ 307\ .. ¢, 1, uf
> | (—u)¥ Zz:;fu ( —+ (? T ) it + ol ) T 36(—Ut)’€f11§
3 | — u%l- 1 & 1 U% 4
—Z(—u,)% i —iL —u)E= SN F LS, o (A)—L -
4
=1 I — 3.21
1+ 1o+ o ( )
at (xg,to). First, I; can be estimated from below as
4
I > (—Ut)%elfllui + u C(—Ut)%%
1 4
> (—ue)¥ 50 furuy + -, (3.22)
If u(mo,t0)2u11(x0,t0)2 < 20/91,

provided u(wxo, to)*ui1 (o, t0)> > 2C/6;.
then (3.1) is obvious. Hence we may assume u(zg, to)?u11(zo,t0)? > 2C/6,

hereafter. Second, I, can be also estimated from below as

3 11 U i ll 1_
Iy > —§<_Ut E—Sk __IZSk 14 ( H +2( ) ’“E ZSk 2,14 (

Sl

%Sk(A)%—l (Z <sk_2;u(x) - %S’“;"W) “/\111> >0, (3.23)

i=2
by using A1Sk_2.1:(A) > 3Sk_1./()\)/4 provided K > 0 is sufficiently small (see

= 2(—uy)

[8, Lemma 3.1]).
Substituting (3.22) and (3.23) into (3.21), we obtain

1 4 1
0> (—ut)%§01f11u§1 += (1 + E) . (3.24)

10

Um
U11




By multiplying (—u)*p, we get

1 1
0> 591(—Ut)zfuuf1(—u)490 — C(—u)’p.

It follows from [8, Lemma 3.1] that A;Sk—1.1(A) > 64Sk(A) for some constant
64 > 0, which implies that

1 0 0
fnﬁlzzsgmé*s#mgMAfzz&%@ﬁxlzzg—my%my (3.25)
Hence the inequality
0.0
0> 2= (—w)'oun — C(-u)’p

holds at (zg,ty). Then we have
U < O(—u)’e < C(n, k,my, ||ullcr(p)),

at (zo,tp). Therefore, (—u)*|D?u| can be estimated from above by some
constant C. ]

4. Proof of Theorem 2.1

Before giving a proof of Theorem 2.1, we introduce some notation. For a
subset D C R™ x (—00, 0], a function v defined on D and « € (0, 1), a-Holder
seminorm of v over D is denoted by

['U]a,D _ sup "U(:L', t) — v(y, S)’

(@), (s)eD, ([T —y|> + |t — s])
(@)% (y,5)

(4.1)

a -
2

Moreover, S™*" is defined to be the set of all symmetric n x n matrices, and
ST*™ is the set of all non-negative definite symmetric n x n matrices.

Let u € C*?(R" x (—00,0]) be a strictly convex-monotone solution to
(1.8), which satisfies the growth conditions (2.1) and (2.2). We may assume
without loss of generality that »(0,0) = 0, Du(0,0) = 0, by considering
u(z,t) —u(0,0) — Du(0,0) - z instead of u(z,t). Then it can be seen by (2.2)
that there exists a constant A > 0 such that u(z,0) > A|z|? for all z € R™,

Let R > 0 be fixed. We define v(z,t) = vg(z,t) = u(Rz, R?t)/R?. Then
v is also a strictly convex-monotone classical solution to (1.8), and satisfies

11



v(z,t) = w(Rz, R*t) and v;(z,t) = w;;(Rz, R*t). Moreover, it holds that
for all (z,t) € R™ x (—o0, 0],

—m1 S vt(x,t) S —ma, (42)
and that for all x € R,
v(z,0) > Alz|. (4.3)

First, we shall obtain the local gradient estimate of the solution v. For
q > 0, we set

Q, = {(z,t) € R" x (—o0,0] | v(z,t) < Ag}. (4.4)
Then we can find that €2, is a bounded bowl-shaped domain and
() € 24(0) € B(0,/9), (4.5)

due to (4.2), (4.3) and the strict parabolic-monotonicity of v. Now we estab-
lish the following estimate.

Lemma 4.1. Let v and ), be defined as above. Then there exists a constant
C > 0, independent of ¢ and R, such that for all (z,t) € €,

|Du(z,t)| < Cy/q. (4.6)

Proof. We note that v(z, t) is strictly convex in z, and that v(z, t)—Ag = 0 on
9,Q,. From Newton-Maclaurin inequality it follows that (F,(M)/(}))"* >
F,(M)Y™ for all M € S7™.

By Aleksandrov’s maximum principle (cf. [10]), we obtain that at (z¢,t) €
Qy,

[u(z0, 1) — Ag|™ < C (diam Q,(¢))" " dist(zq, 9, (1))|0v(2(1))]

< O(24/q)" ! dist(xg, 0Q,()) / det D*v(xz,t) dx
(1)

< Cq™7 dist(ao, 0 (1)) / Fu(D(z,1)? da
Qq(t)

= Cq'T dist(zg, 0€2,(t)) / (—vy) " * dx

Qq(t)
< Oq"7 dist(zo, 02(t)) - my | B(0, /)|
= Cq" 2 dist (g, 02,(1)), (4.7)

12



so that
v(2o,t) — Aq| < Cq*~ 2 dist(zg, O ()7 (4.8)

Therefore for all zy € Qg/5(t),

- 1 -~ -
Aq— 5Aq < Aq —v(ao,t) < Cq" 2 dist(zo, O ()7,
which implies the inequality
dist(Qg (1), 02 (2)) > Cq?. (4.9)

Therefore we can see that |Dv(z,t)| < Cq'/? for all (z,t) € /2 by (4.9) and
the convexity of v with respect to z. This ends the proof. O
Especially, | Dv(z,t)| < C for all (z,t) € €, in which C is independent of R.
By applying (3.1) to the function A — v(x,t), one obtains

- 4

(A —o(a, t)) |Du(z,t)] < C

in ;. This implies that

|D*v(z,t)] < C  in Q). (4.10)

The following Evans-Krylov type theorem is needed for the proof of The-
orem 2.1. For the proof, see [11].

Theorem 4.2. Let D and D' be bounded bowl-shaped domains which satisfy
D' C D and dist(D’,0,D) > 0, and u be a C**(D) solution to the equation

G (ug, D*u) =0

in D, where G = G(q, M) is defined for all (g, M) € RxS™"™ with G(-, M) €
CY(R) for each M € S™", and G € C*(R x X) for some X C S™" which is
a neighborhood of D*u(D). Suppose that:

(i) G is uniformly parabolic, i.e., there exist positive constants A and A
such that

“A < Gylg, M) < A, (4.11)
AIN|| < Gg, M + N) - G(q, M) < A|[N]]| (4.12)

13



forallq e R and M, N € S™"™ with N > O.
(ii) G is concave with respect to M.

If ||u||c21(py < K, then there exist positive constants C' depending on A,
A, n, K, D, D' and G(0,0), and o € (0,1) depending on A\, A and n such
that

||u||cz+a,1+%(D,) S C
Then we prove the next lemma in order to use Theorem 4.2.

Lemma 4.3. There exists a constant C > 0, independent of R, such that
diSt(Q%,ﬁpQ%) >C. (4.13)

Proof. Take (x,t) € €5 arbitrarily. Then, putting ¢ = 1/4 in (4.9), we
obtain

dthZ(w,aQ%@))z(T, (4.14)

1
8
where C” is a positive constant independent of R. We set § = Ir}in{fi /(4my), C'}.
If dist((z,t), (2/,t')) < 9§, then |x — 2'| < C" and |t — /| < A/(4m,), which
imply that
t/
v, t') = v(',t) —|—/ v(2', 8)ds
t

<oz’ t) + my|t — ']

1~ A 1-
<-A —=—-A
S AT T g
due to (4.14). Therefore (2',t') € €4/, and this completes the proof. O

We set G(q, M) = (—q)Y*F(M)V/* — 1 = (—¢)"* f(M) — 1 for (¢, M) €
[—my, —mg] X X, where

1 1

, |mij|§Cfori,j:1,...,n},
mq mo

in which C' is a constant appeared in (4.10).
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Since G,(q, M) = (—q)Y/*~1F,(M)*/* /k, we see that there exist constants
A, A > 0 such that (4.11) holds in [—my, —ms] x X. Moreover, we can also
see that (4.12) and (ii) in Theorem 4.2 holds in [—my, —my] x X, due to [5].

Next we can extend G in R x §"*" so that G satisfies (i) and (ii) in
Theorem 4.2 for different constants A, A > 0 if necessary. Then we apply
Theorem 4.2 to G(vy, D*v) = 0 in 4 /2 and obtain that

o]

e

a
02+a,1+7— (Q 1
8

Therefore it follows that [D;;v]a,0,,, < Cfori,j=1,...,nand [v]ae,,, < C.
By substituting v(z,t) = u(Rz, R*t)/R?, we have
[DUU] S CR_a, (415)

< CR™, (4.16)

a,{u(:c,t)<éR2}
[ut]a,{u(m,t)< éRz}

for any R > 0. This implies that for any bounded subset 2 of R™ x (—o0, 0],
[D;julao = 0, and [w]ao = 0. Hence D;;u and u; are constants in R™ x
(—00, 0] and this completes the proof of Theorem 2.1.

5. Final remarks

(i) Viscosity solutions

Here we consider whether Theorem 2.1 also holds for viscosity solutions
to the parabolic k-Hessian equation (1.8). We can show the following propo-
sition.

Proposition 5.1. Let 1 < k < n. Then there exists a conver-monotone
viscosity solution v € C(R™ x (—o00,0]) to (1.8), which does not have the
form u(z,t) = —mt + p(xz) where m > 0 and p is a quadratic polynomial.

Proof. Let ty > 0 be an arbitrary number. We set u by
u(x,t) = C(—t +to)*|z|® in R™ x (—o0,0], (5.1)

where « = 1/(k+ 1), 6 =2k/(k+ 1) and

e (R G |
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Now we define ("71) = 0. Then it can be easily seen that u is convex-

monotone in R™ x (—oo, 0] and that u is a classical solution to (1.8) in (R™\
{0}) x (=00, 0].

For ¢t < 0, there exists no C*! function ¢ which touches u at (0,¢) from
above, because 3 < 2. While, for any admissible C*! function ¢ which
touches u from below at (0,t), ¢:(0,t) must be 0, because u(0,-) = 0. This
implies that —;(0,t)F(D?p)(0,t) = 0 < 1. Therefore u is a viscosity
solution to (1.8) in R™ x (—o0, 0]. O

For £ = n which corresponds to the parabolic Monge-Ampeére equation’s
case, the function u constructed above is almost the same as the one in [11].
We remark that this function u satisfies neither (2.1) nor (2.2), for arbitrary
to > 0. Also, it is not strictly convex-monotone. We would like to know
whether Theorem 2.1 holds for viscosity solutions under the assumptions
(2.1) and (2.2).

(ii) Other parabolic analogues of k-Hessian equation

In this paper we consider the parabolic k-Hessian equation of the form
—uFl,(D?*u) = 1, and obtain Bernstein type theorem for this equation. But
there are different parabolic analogues of k-Hessian equation which have been
studied in the literature.

Ivochkina and Ladyzhenskaya [13] have studied the solvability of the first
initial boundary value problem for

—uy + Fy(D*u)* = 1. (5.3)
X.J. Wang [27] considered a following version of parabolic equation,
—u; + log Fy(D*u) = . (5.4)
For the case k = n, (5.4) reduces to
—u; + log det D*u = 1, (5.5)
which was studied by G. Wang and W. Wang [26]. Moreover,
Se(—ug, A1y .oy An) =1, (5.6)

where A, ..., \, are the eigenvalues of D?u, i.e., —u;Fy_1(D?*u) + Fj(D?*u) =
¥, was considered in [17].
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Our next task is to obtain Bernstein type theorems for other parabolic
analogues of k-Hessian equation.

(iii) Relaxing the assumptions : Growth conditions and convexity

We would like to remove growth conditions (1.5), (1.7), (2.1) and (2.2)
in Theorems 1.2, 1.3 and 2.1 (or, to prove growth conditions are necessary).
As we have stated in Section 1 and Remark 2.1 before, Theorem 1.2 remains
valid without the growth condition (1.5) when k£ = 1 (the case of Poisson
equation) and k£ = n (the case of Monge-Ampere equation), and Theorem
2.1 is true without (2.2) when k£ = n. However, we do not know any more
for other cases.

It is known that k-Hessian operator Fj(D?u) is degenerate elliptic for
k-convex functions, the space of which is strictly wider than that of convex
functions for 1 < k£ < n — 1 (see [5] for the proof). Therefore, when we
study k-Hessian equation, it is natural to seek solutions in the class of k-
convex functions, rather than in the class of convex functions. It seems an
interesting open problem whether Theorems 1.2 and 2.1 remain true if one
replaces “strictly convex” by “strictly k-convex.”
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