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Bernstein type theorems

for some types of parabolic k-Hessian equations

Saori Nakamori1

Abstract

We are concerned with the characterization of entire solutions to the

parabolic k-Hessian equation of the form −utFk(D2u) = 1 in Rn× (−∞, 0].
We prove that for 1 ≤ k ≤ n, any strictly convex-monotone solution u =
u(x, t) ∈ C4,2(Rn × (−∞, 0]) to −utFk(D2u) = 1 in Rn × (−∞, 0] must be
a linear function of t plus a quadratic polynomial of x, under some growth

assumptions on u.

1 Introduction

In the early 20th century, Bernstein [3] proved the following theorem.

Theorem 1.1. If f ∈ C2(R2) and the graph of z = f(x, y) is a minimal surface
in R3, that is, f satisfies

(1 + f2y )fxx + 2fxfyfxy + (1 + f
2
x)fyy = 0 in R2, (1.1)

then f is necessarily an affine function of x and y.

This theorem gives the characterization of entire solutions to the minimal surface

equation defined in the whole plane R2.

Many problems on the classification of entire solutions to PDEs have been exten-

sively studied. We list some results concerning Bernstein type theorems for fully

nonlinear equations. First, for Monge-Ampère equation, the following theorem is

known.
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Theorem 1.2. Let u ∈ C4(Rn) be a convex solution to

detD2u = 1 in Rn. (1.2)

Then u is a quadratic polynomial.

This theorem was proved by Jörgens [24] for n = 2, by Calabi [10] for n ≤ 5, and
by Pogorelov [36] for arbitrary n ≥ 2 (see also [11] for a simpler proof). Caffarelli
[5] proved that the result holds for viscosity solutions (see also [7]). Moreover,

Jian and Wang [23] obtained Bernstein type result for a certain Monge-Ampère

equation in the half space Rn+.

Here we note that the convexity assumption in Theorem 1.2 is quite natural,

since Monge-Ampère operator detD2u is degenerate elliptic for convex functions

so that we usually seek solutions in the class of convex functions when we deal

with Monge-Ampère equation.

Later, Bao, Chen, Guan and Ji [2] extended this result to the so-called k-Hessian

equation of the form

Fk(D
2u) = 1 in Rn, (1.3)

for 1 ≤ k ≤ n. Here Fk(D2u) is defined by

Fk(D
2u) = Sk(λ1, . . . ,λn), (1.4)

where, for a C2 function u, λ1, . . . ,λn denote the eigenvalues of the Hessian matrix

D2u, and Sk denotes the k-th elementary symmetric function, that is

Sk(λ1, . . . ,λn) =
X

λi1 · · ·λik , (1.5)

where the sum is taken over all increasing k-tuples, 1 ≤ i1 < · · · < ik ≤ n.
Laplace operator ∆u and Monge-Ampère operator detD2u correspond respec-

tively to the special cases k = 1 and k = n in (1.4). Hence, the class of k-Hessian

equations includes important PDEs which arise in physics and geometry. Here we

remark that (1.4) is a linear operator for k = 1 while it is a fully nonlinear operator

for k ≥ 2. It is much harder to study the intermediate case 2 ≤ k ≤ n−1. Though,
there are a number of papers concerning the analysis of k-Hessian equation, such
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as the solvability of the Dirichlet problem, see [8, 13, 20, 41, 42, 43, 44, 45, 46] for

example.

Bao, Chen, Guan and Ji [2] proved the following Bernstein type theorem for

k-Hessian equation (1.3).

Theorem 1.3. Let 1 ≤ k ≤ n and u ∈ C4(Rn) be a strictly convex solution to
(1.3). Suppose that there exist constants A,B > 0 such that for all x ∈ Rn,

u(x) ≥ A|x|2 − B. (1.6)

Then u is a quadratic polynomial.

In this theorem, for the case k = n which corresponds to Monge-Ampère equa-

tion, the assumption (1.6) can be removed, due to Theorem 1.2. Furthermore, for

the case k = 1 which corresponds to Poisson equation ∆u = 1, the assumption

(1.6) can also be removed. It is because the classical convex solution to ∆u = 1 in

Rn must be quadratic, as it follows almost straightforward from Liouville’s theorem

for harmonic functions. The proof is given in [2], but we state the proof here for

the reader’s convenience. Assume u ∈ C2(Rn) is a convex solution to ∆u = 1 in Rn
and let {e1, . . . , en} be the canonical basis of Rn. Then we see that 0 ≤ Dξξu ≤ 1
and Dξξu is harmonic for any unit vector ξ. It follows from Liouville’s theorem

for harmonic functions that Dξξu is a constant. Therefore, Diju is a constant for

i = j. For i 6= j, by the fact Diju = Dξξu− (Diiu+Djju)/2 for ξ = (ei + ej)/
√
2

we obtain that Diju is also a constant. This ends the proof.

Next, Gutiérrez and Huang [19] extended Theorem 1.2 to the parabolic analogue

of Monge-Ampère equation

−ut detD2u = 1 in Rn × (−∞, 0]. (1.7)

Here D2u means the matrix of second partial derivatives with respect to x. This

type of equation was firstly proposed by Krylov [27].

The function u = u(x, t) : Rn× (−∞, 0]→ R is said to be convex-monotone if it

is convex in x and non-increasing in t. We state Bernstein type theorem for (1.7)

which Gutiérrez and Huang [19] proved.
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Theorem 1.4. Let u ∈ C4,2(Rn × (−∞, 0]) be a convex-monotone solution to
(1.7). Suppose that there exist constants m1 ≥ m2 > 0 such that for all (x, t) ∈
Rn × (−∞, 0],

−m1 ≤ ut(x, t) ≤ −m2. (1.8)

Then u has the form u(x, t) = −mt + p(x) where m > 0 is a constant and p is a

quadratic polynomial.

We note that Xiong and Bao [49] have recently obtained Bernstein type theorems

for more general parabolic Monge-Ampère equations, such as ut = (detD2u)1/n

and ut = log detD2u. However, as far as we know, Bernstein type theorems

for parabolic fully nonlinear equations are known only for the parabolic Monge-

Ampère equations.

In this paper, we are concerned with the parabolic analogue of k-Hessian equa-

tion of the following form

−utFk(D2u) = 1 in Rn × (−∞, 0], (1.9)

for 1 ≤ k ≤ n. Here Fk(D2u) is the k-Hessian operator defined in (1.4). We call

(1.9) “parabolic k-Hessian equation” in this paper. For the special case k = n,

(1.9) reduces to the parabolic Monge-Ampère equation (1.7). We shall obtain

Bernstein type theorem for (1.9). Moreover, we deal with other forms of parabolic

k-Hessian equation ut = ρ(Fk(D
2u)1/k) (see Section 5).

This paper is divided as follows. In Section 2, we state our main result and give

the strategy for the proof. In Section 3, we prove Pogorelov type lemma, which

is used later. Section 4 is devoted to the proof of the main result. In Section 5,

we consider more generalized parabolic k-Hessian equations and present Bernstein

type theorem for them. In Section 6, we state some remarks and open problems.

Finally, in Section 7, we prove some lemmas which are used in the proof of main

theorem.

2 Main result

The function u = u(x, t) : Rn × (−∞, 0] → R is said to be strictly convex-

monotone if u is strictly convex in x and decreasing in t. Here is our main result
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of this paper.

Theorem 2.1. Let 1 ≤ k ≤ n and u ∈ C4,2(Rn × (−∞, 0]) be a strictly convex-
monotone solution to (1.9). Suppose that there exist constants m1 ≥ m2 > 0 such

that for all (x, t) ∈ Rn × (−∞, 0],

−m1 ≤ ut(x, t) ≤ −m2, (2.1)

and that there exist constants A,B > 0 such that for all x ∈ Rn,

u(x, 0) ≥ A|x|2 − B. (2.2)

Then u has the form u(x, t) = −mt + p(x) where m > 0 is a constant and p is a

quadratic polynomial.

Remark 2.1. For the case k = n which corresponds to the parabolic Monge-

Ampère equation (1.7), the assumption (2.2) can be removed, due to Theorem

1.4.

The proof of this theorem will be given in subsequent sections. Here we give the

strategy for the proof:

Step 1. Derivation of a local gradient estimate of u.

Step 2. Pogorelov type lemma.

Step 3. Combining these results and Evans-Krylov type theorem, we obtain local α-

Hölder estimates of D2u and ut.

3 Pogorelov type lemma

We introduce some notation. First, if D ⊂ Rn × (−∞, 0] and t ≤ 0, D(t) is

denoted by

D(t) = {x ∈ Rn | (x, t) ∈ D}.

Let D ⊂ Rn × (−∞, 0] be a bounded set and t0 = inf{t ≤ 0 | D(t) 6= ∅}. The
parabolic boundary ∂pD of D is defined by

∂pD =
³
D(t0)× {t0}

´
∪
[
t≤0
(∂D(t)× {t}) ,
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where D(t0) denotes the closure of D(t0) and ∂D(t) denotes the boundary of D(t).

We say that the domain D ⊂ Rn × (−∞, 0] is a bowl-shaped domain if D(t) is
convex for each t ∈ (−∞, 0] and D(t1) ⊂ D(t2) for t1 ≤ t2 ≤ 0.
Next, for λ = (λ1, . . . ,λn) and 1 ≤ m ≤ n, we define

Sm;i1i2...ij(λ) =

⎧⎪⎨⎪⎩
Sm(λ)

¯̄
λi1=λi2=···=λij=0

if ip 6= iq for any 1 ≤ p < q ≤ j,

0 otherwise.

In this section, we prove Pogorelov type lemma. This is an analogue of the

result of Pogorelov [35], who derived interior C2-estimates of a solution from C1-

estimates for Monge-Ampère equation. The idea of the proof of the following

proposition is adapted from that of [12].

Proposition 3.1. Let D be a bounded bowl-shaped domain in Rn × (−∞, 0] and
u ∈ C4,2(D) a strictly convex-monotone solution to −utFk(D2u) = 1 in D with

u = 0 on ∂pD, which satisfies (2.1) in D. Then there exists a constant C =

C(n, k,m2, kukC1(D)) such that

sup
(x,t)∈D

|u(x, t)|4|D2u(x, t)| ≤ C. (3.1)

Proof. We consider the auxiliary function

Ψ(x, t; ξ) = (−u(x, t))4ϕ
µ |Du(x, t)|2

2

¶
Dξξu(x, t), (x, t) ∈ D, |ξ| = 1,

where ϕ(s) = (1− s/M)−1/8 and M = 2 sup(x,t)∈D |Du(x, t)|2.

Then we can take a point (x0, t0) ∈ D and a unit vector ξ0 ∈ Rn which satisfy

Ψ(x0, t0; ξ0) = max{Ψ(x, t; ξ) | (x, t) ∈ D, |ξ| = 1}.

The point (x0, t0) can be taken in D \ ∂pD due to the boundary condition u = 0

on ∂pD. Without loss of generality, we may assume ξ0 = e1 and D
2u(x0, t0) is

diagonal with D11u(x0, t0) ≥ D22u(x0, t0) ≥ · · · ≥ Dnnu(x0, t0) > 0. Then Ψ =

Ψ(x, t; e1) = (−u(x, t))4ϕ(|Du(x, t)|2/2)D11u(x, t) attains its maximum at (x0, t0)

and the eigenvalues ofD2u(x0, t0) are λ = (λ1, . . . ,λn) = (u11(x0, t0), . . . , unn(x0, t0)).

It is enough to consider the case λ1 = u11(x0, t0) ≥ 1. Here and throughout the
paper, we denoted Diu by ui, Diju by uij, and so on.
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Since Ψ attains its maximum at (x0, t0), direct calculation gives

(logΨ)i =
4ui

u
+
ϕi

ϕ
+
u11i

u11
= 0, (3.2)

(logΨ)ii = 4

µ
uii

u
− u

2
i

u2

¶
+
ϕii

ϕ
− ϕ2i
ϕ2
+
u11ii

u11
− u

2
11i

u211
≤ 0, (3.3)

(logΨ)t =
4ut

u
+
ϕt

ϕ
+
u11t

u11
≥ 0, (3.4)

ϕi = ϕ0
µ |Du|2

2

¶ nX
j=1

ujuij = ϕ0
µ |Du|2

2

¶
uiuii, (3.5)

ϕii = ϕ00
µ |Du|2

2

¶Ã nX
j=1

ujuij

!2
+ ϕ0

µ |Du|2
2

¶( nX
j=1

u2ij +

nX
j=1

ujuiij

)

= ϕ00
µ |Du|2

2

¶
u2iu

2
ii + ϕ0

µ |Du|2
2

¶Ã
u2ii +

nX
j=1

ujuiij

!
, (3.6)

ϕt = ϕ0
µ |Du|2

2

¶ nX
j=1

ujujt (3.7)

at (x0, t0), for i = 1, . . . , n. We set f(D
2u) = Fk(D

2u)1/k, then u satisfies

(−ut) 1k f(D2u) = 1 in D. (3.8)

Differentiating (3.8) with respect to xγ (and using (3.8) itself) yields

−1
k
(−ut)−1uγt + (−ut)

1
k fijuijγ = 0. (3.9)

Here, for f = f(M) whereM = (mij)1≤i,j≤n, we write fij = ∂f/∂mij. Multiplying

(3.9) by (−ut)−1/k, differentiating once more with respect to xγ and multiplying
(−ut)1/k, we obtain

−
µ
1

k
+ 1

¶
u2γt

ku2t
+
uγγt

kut
+ (−ut) 1k fiiuiiγγ + (−ut) 1k fij,rsuijγursγ = 0, (3.10)

where fij,rs = ∂2f/∂mij∂mrs.

By the concavity of Sk(λ)
1
k , we obtain

nX
i,j=1

∂2

∂λi∂λj
(Sk(λ))

1
kuiiγujjγ =

nX
i,j=1

h1
k

µ
1

k
− 1
¶
Sk(λ)

1
k
−2Sk−1;i(λ)Sk−1;j(λ)

　 +
1

k
Sk(λ)

1
k
−1Sk−2;ij(λ)

i
uiiγujjγ

≤ 0. (3.11)
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When the matrix D2u is diagonal at (x0, t0), direct calculation gives

fij,rs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

k

µ
1

k
− 1
¶
Sk(λ)

1
k
−2Sk−1;i(λ)Sk−1;r(λ)

+
1

k
Sk(λ)

1
k
−1Sk−2;ir(λ)　 if i = j, r = s,

−1
k
Sk(λ)

1
k
−1Sk−2;ij(λ)　 if i 6= j, r = j, and s = i,

0　 otherwise.

(3.12)

By (3.11) and (3.12), we obtain

fij,rsuijγursγ =

nX
i,j=1

h1
k

µ
1

k
− 1
¶
Sk(λ)

1
k
−2Sk−1;i(λ)Sk−1;j(λ)

+
1

k
Sk(λ)

1
k
−1Sk−2;ij(λ)

i
uiiγujjγ

− 1
k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)u

2
ijγ

≤ −1
k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)u

2
ijγ (3.13)

at (x0, t0). By using (3.10) and (3.13), we get the inequality

uγγt

kut
+ (−ut)

1
k fiiuiiγγ ≥ (−ut)

1
k
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)u

2
ijγ

at (x0, t0). Letting γ = 1 and multiplying 1/u11, we get at (x0, t0)

u11t

kutu11
+ (−ut) 1k fiiu11ii

u11
≥ (−ut) 1k 1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11
. (3.14)

Let L be the linearized operator of (3.8) at (x0, t0). Then one can write

L =
1

kut(x0, t0)
Dt + (−ut(x0, t0))

1
k fij(D

2u(x0, t0))Dij.

By (3.3) and (3.4), we obtain

L(logΨ) = (−ut)
1
k fii

µ
4

µ
uii

u
− u

2
i

u2

¶
+
ϕii

ϕ
− ϕ2i
ϕ2
+
u11ii

u11
− u

2
11i

u211

¶
+

1

kut

µ
4ut

u
+
ϕt

ϕ
+
u11t

u11

¶
≤ 0. (3.15)
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at (x0, t0). By substituting (3.5), (3.6), (3.7), (3.9) and (3.14) into (3.15), we

obtain

(−ut)
1
k fii

µ
4

µ
uii

u
− u

2
i

u2

¶
+
ϕ00

ϕ
u2iu

2
ii +

ϕ0

ϕ
u2ii −

ϕ02

ϕ2
u2iu

2
ii −

u211i
u211

¶
+ (−ut)

1
k
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11
+
4

ku
≤ 0 (3.16)

at (x0, t0).

Now we split into two cases.

(i) ukk ≥ Ku11, where K > 0 is a small constant to be determined later.

By (3.2) and (3.5), we have

u211i
u211

=

µ
4ui

u
+
ϕi

ϕ

¶2
≤ 2

µ
16u2i
u2

+
ϕ02u2iu

2
ii

ϕ2

¶
(3.17)

at (x0, t0). Therefore (3.17) and the fact that the second term of the left hand side

of (3.16) is non-negative yield

(−ut) 1k fii
µ
4

µ
uii

u
− 9u

2
i

u2

¶
+

µ
ϕ00

ϕ
− 3ϕ

02

ϕ2

¶
u2iu

2
ii +

ϕ0

ϕ
u2ii

¶
+
4

ku
≤ 0 (3.18)

at (x0, t0).

We prove the following inequality:

nX
i=1

fiiu
2
ii > fkku

2
kk ≥ θ1

nX
i=1

fiiu
2
11 (3.19)

for some constant θ1 > 0.

The left inequality of (3.19) follows from the fact that

fii = Sk(λ)
1
k
−1Sk−1;i(λ) > 0

due to λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

To prove the right inequality of (3.19), we need the following lemma.

Lemma 3.2. It holds that there exists a constant θ > 0 such that

θSk−1(μ) ≤ μ1 · · ·μk−1 (3.20)

for all μ = (μ1, . . . ,μn) with μ1 ≥ μ2 ≥ · · · ≥ μn > 0.
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Proof.

Sk−1(μ) =
X

1≤i1<···<ik−1≤n
μ1 · · ·μik−1 ≤

Ã
n

k − 1

!
μ1 · · ·μk−1.

Hence (3.20) holds.　 □

Therefore there exists some θ > 0 such that

θSk−1(λ) ≤ λ1 · · ·λk−1.

On the other hand,

fkku
2
kk =

1

k
Sk(λ)

1
k
−1Sk−1;k(λ)u

2
kk. (3.21)

By using Lemma 7.2, we obtain

fkku
2
kk ≥

1

k
Sk(λ)

1
k
−1θ̃λ1λ2 · · ·λk−1u2kk (3.22)

for some constant θ̃ > 0.

By using the assumption ukk ≥ Ku11 and (3.20) we obtain

fkku
2
kk ≥

1

k
Sk(λ)

1
k
−1θ̃λ1λ2 · · ·λk−1K2u211

≥ 1
k
Sk(λ)

1
k
−1θθ̃Sk−1(λ)K

2u211

=
θθ̃K2

k(n− k + 1)Sk(λ)
1
k
−1

nX
i=1

Sk−1;i(λ)u
2
11

= θ1

nX
i=1

fiiu
2
11

for some constant θ1 > 0. Here we used the equality (7.2).

By the inequality (3.19) and ϕ00/ϕ − 3ϕ02/ϕ2 ≥ 0, it can be derived by (3.18)
that at (x0, t0)

(−ut) 1k θ2
nX
i=1

fiiu
2
11 − C(−ut)

1
k
1

u2

nX
i=1

fii +
4

u

µ
1 +

1

k

¶
≤ 0,

10



for some constant θ2 > 0. Here we used the fact that
Pn

i=1 fii(D
2u)uii = f(D

2u) =

(−ut)−1/k at (x0, t0), due to the homogeneity of f and (3.8). By multiplying

(−u)8ϕ2, we obtain

(−ut) 1k θ2
nX
i=1

fiiu
2
11(−u)8ϕ2 − C(−ut)

1
k (−u)6ϕ2

nX
i=1

fii − 4
µ
1 +

1

k

¶
(−u)7ϕ2 ≤ 0.

(3.23)

On the other hand, it holds that at (x0, t0)

nX
i=1

fii(D
2u) =

nX
i=1

1

k
Fk(D

2u)
1
k
−1 ∂Fk
∂mii

(D2u)

=
1

k
(−ut)1− 1

k

nX
i=1

Sk−1;i(λ) ≤ C(−ut)1− 1
kuk−111 , (3.24)

and that

nX
i=1

fii(D
2u) ≥ fnn(D2u)

=
1

k
Fk(D

2u)
1
k
−1 ∂Fk
∂mnn

(D2u)

≥ 1
k
Fk(D

2u)
1
k
−1θ3u11 · · · uk−1,k−1 ≥ C(−ut)1− 1

kuk−111 , (3.25)

for some constant θ3 > 0 (see Lemma 7.2), by the hypothesis ukk ≥ Ku11. Substi-
tuting (3.24) and (3.25) into (3.23), we obtain

Ψ2 ≤ C(−u)6ϕ2 + (−u)7ϕ2
(−ut)uk−111

≤ C(n, k,m2, kukC1(D)),

at (x0, t0). Therefore, for all (x, t) ∈ D and ξ ∈ Rn with |ξ| = 1, (−u)4uξξ ≤ C
holds, so that (−u)4|D2u| can be estimated from above by some constant C.

(ii) ukk ≤ Ku11, that is, ujj ≤ Ku11 for j = k, k + 1, . . . , n.

By (3.2),

u111

u11
= −

µ
ϕ1

ϕ
+
4u1

u

¶
,
ui

u
= −1

4

µ
ϕi

ϕ
+
u11i

u11

¶
, i = 2, . . . , n (3.26)
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at (x0, t0). Substituting (3.26) into (3.16), we obtain

0 ≥ (−ut)
1
k f11

Ã
4

µ
u11

u
− u

2
1

u2

¶
+
ϕ00

ϕ
u21u

2
11 +

ϕ0

ϕ
u211 −

ϕ02

ϕ2
u21u

2
11 −

µ
ϕ1

ϕ
+
4u1

u

¶2!

+ (−ut)
1
k

nX
i=2

fii

Ã
4uii

u
− 1
4

µ
ϕi

ϕ
+
u11i

u11

¶2
+
ϕ00

ϕ
u2iu

2
ii +

ϕ0

ϕ
u2ii −

ϕ02

ϕ2
u2iu

2
ii −

u211i
u211

!

+ (−ut)
1
k
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11
+
4

ku

≥
"
(−ut) 1k

nX
i=1

fii

µ
4uii

u
+

µ
ϕ00

ϕ
− 3ϕ

02

ϕ2

¶
u2iu

2
ii +

ϕ0

ϕ
u2ii

¶
− 36(−ut) 1k f11u

2
1

u2

#

+

"
−3
2
(−ut) 1k

nX
i=2

fii
u211i
u211

+ (−ut) 1k 1
k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11

#
+
4

ku

=: I1 + I2 +
4

ku
, (3.27)

at (x0, t0). First, I1 can be estimated from below as

I1 ≥ (−ut) 1k θ1f11u211 +
4

u
− C(−ut) 1k f11

u2

≥ (−ut) 1k 1
2
θ1f11u

2
11 +

4

u
, (3.28)

provided u(x0, t0)
2u11(x0, t0)

2 ≥ 2C/θ1. If u(x0, t0)
2u11(x0, t0)

2 < 2C/θ1, then

(3.1) is obvious. Hence we may assume u(x0, t0)
2u11(x0, t0)

2 ≥ 2C/θ1 hereafter.
Second, I2 can be also estimated from below as

I2 ≥ −3
2
(−ut)

1
k
1

k
Sk(λ)

1
k
−1

nX
i=2

Sk−1;i(λ)
u211i
u211

+ 2(−ut)
1
k
1

k
Sk(λ)

1
k
−1

nX
i=2

Sk−2;1i(λ)
u211i
u11

= 2(−ut) 1k 1
k
Sk(λ)

1
k
−1
Ã

nX
i=2

µ
Sk−2;1i(λ)− 3

4

Sk−1;i(λ)
λ1

¶
u211i
λ1

!
≥ 0, (3.29)

by using λ1Sk−2;1i(λ) ≥ 3Sk−1;i(λ)/4 provided K > 0 is sufficiently small (see

Lemma 7.3 (ii)).

Substituting (3.28) and (3.29) into (3.27), we obtain

0 ≥ (−ut) 1k 1
2
θ1f11u

2
11 +

4

u

µ
1 +

1

k

¶
. (3.30)

By multiplying (−u)4ϕ, we get

0 ≥ 1
2
θ1(−ut) 1k f11u211(−u)4ϕ− C(−u)3ϕ.

12



It follows from Lemma 7.3 (i) that λ1Sk−1;1(λ) ≥ θ4Sk(λ) for some constant θ4 > 0,

which implies that

f11u
2
11 =

1

k
Sk(λ)

1
k
−1Sk−1;1(λ)λ

2
1 ≥

θ4

k
Sk(λ)

1
kλ1 =

θ4

k
(−ut)−

1
ku11. (3.31)

Hence the inequality

0 ≥ θ1θ4

2k
(−u)4ϕu11 − C(−u)3ϕ

holds at (x0, t0). Then we have

Ψ ≤ C(−u)3ϕ ≤ C(n, k,m2, kukC1(D)),

at (x0, t0). Therefore, (−u)4|D2u| can be estimated from above by some constant

C.

4 Proof of Theorem 2.1

Before giving a proof of Theorem 2.1, we introduce some notation. For a subset

D ⊂ Rn × (−∞, 0], a function v defined on D and α ∈ (0, 1), α-Hölder seminorm
of v over D is denoted by

[v]α,D = sup
(x,t),(y,s)∈D,
(x,t)6=(y,s)

|v(x, t)− v(y, s)|
(|x− y|2 + |t− s|)α2 . (4.1)

Moreover, Sn×n is defined to be the set of all symmetric n× n matrices, and Sn×n+

is the set of all non-negative definite symmetric n× n matrices.
Let u ∈ C4,2(Rn × (−∞, 0]) be a strictly convex-monotone solution to (1.9),

which satisfies the growth conditions (2.1) and (2.2). We may assume without

loss of generality that u(0, 0) = 0, Du(0, 0) = 0, by considering u(x, t)− u(0, 0)−
Du(0, 0) · x instead of u(x, t). Then it can be seen by (2.2) that there exists a
constant Ã > 0 such that u(x, 0) ≥ Ã|x|2 for all x ∈ Rn,
Let R > 0 be fixed. We define v(x, t) = vR(x, t) = u(Rx,R2t)/R2. Then v is

also a strictly convex-monotone classical solution to (1.9), and satisfies vt(x, t) =

ut(Rx,R
2t) and vij(x, t) = uij(Rx,R

2t). Moreover, it holds that for all (x, t) ∈
Rn × (−∞, 0],

−m1 ≤ vt(x, t) ≤ −m2, (4.2)

13



and that for all x ∈ Rn,

v(x, 0) ≥ Ã|x|2. (4.3)

First, we shall obtain the local gradient estimate of the solution v. For q > 0,

we set

Ωq = {(x, t) ∈ Rn × (−∞, 0] | v(x, t) < Ãq}. (4.4)

Then we can find that Ωq is a bounded bowl-shaped domain and

Ωq(t) ⊂ Ωq(0) ⊂ B(0,√q), (4.5)

due to (4.2), (4.3) and the strict parabolic-monotonicity of v. Now we establish

the following estimate.

Lemma 4.1. Let v and Ωq be defined as above. Then there exists a constant

C > 0, independent of q and R, such that for all (x, t) ∈ Ωq,

|Dv(x, t)| ≤ C√q. (4.6)

Proof. We note that v(x, t) is strictly convex in x, and that v(x, t) − Ãq = 0

on ∂pΩq. From Newton-Maclaurin inequality it follows that (Fk(M)/
¡
n

k

¢
)1/k ≥

Fn(M)
1/n for all M ∈ Sn×n+ .

By Aleksandrov’s maximum principle (see Theorem 7.7), we obtain that at

(x0, t) ∈ Ωq,

|v(x0, t)− Ãq|n ≤ C (diamΩq(t))n−1 dist(x0, ∂Ωq(t))|∂v(Ωq(t))|

≤ C(2√q)n−1 dist(x0, ∂Ωq(t))
Z
Ωq(t)

detD2v(x, t) dx

≤ Cq n−12 dist(x0, ∂Ωq(t))

Z
Ωq(t)

Fk(D
2v(x, t))

n
k dx

= Cq
n−1
2 dist(x0, ∂Ωq(t))

Z
Ωq(t)

(−vt)−n
k dx

≤ Cq n−12 dist(x0, ∂Ωq(t)) ·m−
n
k

2 |B(0,√q)|
= Cqn−

1
2 dist(x0, ∂Ωq(t)), (4.7)

so that

|v(x0, t)− Ãq| ≤ Cq1−
1
2n dist(x0, ∂Ωq(t))

1
n . (4.8)

14



Therefore for all x0 ∈ Ωq/2(t),

Ãq − 1
2
Ãq ≤ Ãq − v(x0, t) ≤ Cq1− 1

2ndist(x0, ∂Ωq(t))
1
n ,

which implies the inequality

dist(Ω q
2
(t), ∂Ωq(t)) ≥ Cq 12 . (4.9)

Therefore we can see that |Dv(x, t)| ≤ Cq1/2 for all (x, t) ∈ Ωq/2 by (4.9) and the
convexity of v with respect to x. This ends the proof.

Especially, |Dv(x, t)| ≤ C for all (x, t) ∈ Ω1, in which C is independent of R.

By applying (3.1) to the function Ã− v(x, t), one obtains³
Ã− v(x, t)

´4
|D2v(x, t)| ≤ C

in Ω1. This implies that

|D2v(x, t)| ≤ C in Ω1/2. (4.10)

The following Evans-Krylov type theorem is needed for the proof of Theorem

2.1. For the proof, see Section 7.

Theorem 4.2. (Evans-Krylov type theorem)

Let D and D0 be bounded bowl-shaped domains which satisfy D0 ⊂ D and

dist(D0, ∂pD) > 0, and u be a C4,2(D) solution to the equation

G(ut, D
2u) = 0 (4.11)

in D, where G = G(q,M) is defined for all (q,M) ∈ R × Sn×n with G(·,M) ∈
C1(R) for each M ∈ Sn×n, and G ∈ C2(R × X) for some X ⊂ Sn×n which is a
neighborhood of D2u(D). Suppose that:

(i) G is uniformly parabolic, i.e., there exist positive constants λ and Λ such

that

−Λ ≤ Gq(q,M) ≤ −λ, (4.12)

λkNk ≤ G(q,M +N)−G(q,M) ≤ ΛkNk, (4.13)

for all q ∈ R and M , N ∈ Sn×n with N ≥ O.
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(ii) G is concave with respect to M .

If kukC2,1(D) ≤ K, then there exist positive constants C depending on λ, Λ, n,

K, D, D0 and G(0, 0), and α ∈ (0, 1) depending on λ, Λ and n such that

kuk
C
2+α,1+α

2 (D0) ≤ C.

Then we prove the next lemma in order to use Theorem 4.2.

Lemma 4.3. There exists a constant C > 0, independent of R, such that

dist(Ω 1
8
, ∂pΩ 1

2
) ≥ C. (4.14)

Proof. Take (x, t) ∈ Ω1/8 arbitrarily. Then, putting q = 1/4 in (4.9), we obtain

dist(Ω 1
8
(t), ∂Ω 1

4
(t)) ≥ C 0, (4.15)

where C 0 is a positive constant independent of R. We set δ = min{Ã/(4m1), C
0}.

If dist((x, t), (x0, t0)) < δ, then |x − x0| < C 0 and |t − t0| < Ã/(4m1), which imply

that

v(x0, t0) = v(x0, t) +
Z t0

t

vt(x
0, s)ds

≤ v(x0, t) +m1|t− t0|

≤ 1
4
Ã+m1 · Ã

4m1

=
1

2
Ã,

due to (4.15). Therefore (x0, t0) ∈ Ω1/2 and this completes the proof.

We set G(q,M) = (−q)1/kFk(M)1/k − 1 = (−q)1/kf(M) − 1 for (q,M) ∈
[−m1,−m2]×X, where

X =
n
M = (mij) ∈ Sn×n+

¯̄̄
1

m1

≤ Fk(M) ≤ 1

m2

,

|mij| ≤ C for i, j = 1, . . . , n
o
,

in which C is a constant appeared in (4.10).

Since Gq(q,M) = (−q)1/k−1Fk(M)1/k/k, we see that there exist constants λ,Λ >
0 such that (4.12) holds in [−m1,−m2]×X. Moreover, we can also see that (4.13)
and (ii) in Theorem 4.2 hold in [−m1,−m2]×X, due to [8].
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Next we can extend G in R × Sn×n so that G satisfies (i) and (ii) in Theorem

4.2 for different constants λ,Λ > 0 if necessary. Then we apply Theorem 4.2 to

G(vt, D
2v) = 0 in Ω1/2 and obtain that

kvk
C
2+α,1+α

2 (Ω 1
8
)
≤ C.

Therefore it follows that [Dijv]α,Ω1/8 ≤ C for i, j = 1, . . . , n and [vt]α,Ω1/8 ≤ C.
By substituting v(x, t) = u(Rx,R2t)/R2, we have

[Diju]α,{u(x,t)< Ã
8
R2} ≤ CR−α, (4.16)

[ut]α,{u(x,t)< Ã
8
R2} ≤ CR−α, (4.17)

for any R > 0. This implies that for any bounded subset Ω of Rn × (−∞, 0],
[Diju]α,Ω = 0, and [ut]α,Ω = 0. Hence Diju and ut are constants in Rn × (−∞, 0]
and this completes the proof of Theorem 2.1.

5 Recent progress

Up to this point, we considered the parabolic k-Hessian equation of the form

−utFk(D2u) = 1, and obtained Bernstein type theorem for this equation. In this

section, we deal with other forms of parabolic k-Hessian equations. There are

different parabolic analogues of k-Hessian equation which have been studied in

the literature.

Ivochkina and Ladyzhenskaya [22] have studied the solvability of the first initial

boundary value problem for

−ut + Fk(D2u)
1
k = ψ. (5.1)

X.J. Wang [48] considered a following version of parabolic equation,

−ut + logFk(D2u) = ψ. (5.2)

For the case k = n, (5.2) reduces to

−ut + log detD2u = ψ, (5.3)
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which was studied by G. Wang and W. Wang [47]. Moreover,

Sk(−ut,λ1, . . . ,λn) = ψ, (5.4)

where λ1, . . . ,λn are the eigenvalues of D
2u, i.e., −utFk−1(D2u) + Fk(D

2u) = ψ,

was considered in [29].

Therefore it seems natural to study whether Bernstein type theorems for more

general parabolic k-Hessian equations hold. We obtain the following theorem.

Theorem 5.1. Let ρ ∈ C2(0,∞), 1 ≤ k ≤ n and u ∈ C4,2(Rn × (−∞, 0]) be a
strictly convex-monotone solution to

ut = ρ
³
Fk(D

2u)
1
k

´
in Rn × (−∞, 0]. (5.5)

Suppose that there exist constants m1 ≥ m2 > 0 such that for all (x, t) ∈ Rn ×
(−∞, 0],

−m1 ≤ ut(x, t) ≤ −m2, (5.6)

and that there exist constants A,B > 0 such that for all x ∈ Rn,

u(x, 0) ≥ A|x|2 − B. (5.7)

Moreover, suppose that for all s ∈ (0,∞),

ρ0(s) > 0, ρ00(s) ≤ 0, (5.8)

and that

ρ−1([−m1,−m2]) = [r1, r2] (5.9)

for some positive constants r1, r2, where m1 and m2 are constants appeared in

(5.6).

Then, u has the form u(x, t) = −mt+ p(x) where m > 0 is a constant and p is

a quadratic polynomial.

Remark 5.1. Set eF (M) = ρ(Fk(M)
1/k) = ρ(f(M)). Then the condition (5.8)

guarantees that eF is concave in Sn×n+ . Indeed, easy calculation shows that

eFij,rs = ρ00fijfrs + ρ0fij,rs,
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which yields that for all ξ = (ξij) 1≤i≤n
1≤j≤n

∈ Rn×n,

eFij,rsξijξrs = ρ00
Ã

nX
i,j=1

fijξij

!2
+ ρ0fij,rsξijξrs ≤ 0,

due to the concavity of f in Sn×n+ .

Proof. We shall prove Pogolerov type lemma for (5.5):

Let D be a bounded bowl-shaped domain in Rn × (−∞, 0] and u ∈
C4,2(D) a strictly convex-monotone solution to ut = ρ(Fk(D

2u)1/k) in

D with u = 0 on ∂pD, which satisfies (5.6) in D. Suppose that ρ

satisfies (5.8) for all s ∈ (0,∞) and (5.9) for some positive constants
r1, r2. Then there exists a constant C = C(n, k,m1,m2, ρ, kukC1(D))
such that

sup
(x,t)∈D

|u(x, t)|4|D2u(x, t)| ≤ C. (5.10)

The function u satisfies

−ut + ρ(f(D2u)) = 0 in D, (5.11)

where f(M) = Fk(M)
1/k. Differentiating (5.11) with respect to xγ yields

−uγt + ρ0(f(D2u))fijuijγ = 0. (5.12)

Differentiating once more with respect to xγ, we obtain

−uγγt + ρ00(f(D2u))(fijuijγ)
2 + ρ0(f(D2u))fijuijγγ

+ ρ0(f(D2u))fij,rsuijγursγ = 0. (5.13)

As before, we consider the auxiliary function

Ψ(x, t; ξ) = (−u(x, t))4ϕ
µ |Du(x, t)|2

2

¶
Dξξu(x, t), (x, t) ∈ D, |ξ| = 1,

where ϕ(s) = (1− s/M)−1/8 and M = 2 sup(x,t)∈D |Du(x, t)|2. Then we can take
a point (x0, t0) ∈ D \ ∂pD and a unit vector ξ0 ∈ Rn which satisfy

Ψ(x0, t0; ξ0) = max{Ψ(x, t; ξ) | (x, t) ∈ D, |ξ| = 1}.

19



Rotating the coordinates appropriately, we may take ξ0 = e1 and D
2u(x0, t0)

is diagonal with u11(x0, t0) ≥ u22(x0, t0) ≥ · · · ≥ unn(x0, t0) > 0. Then Ψ =

Ψ(x, t; e1) = (−u(x, t))4ϕ(|Du(x, t)|2/2)u11(x, t) attains its maximum at (x0, t0).

It is enough to consider the case λ1 = u11(x0, t0) ≥ 1.
Letting γ = 1 in (5.13) and using (3.13) and (5.8), we get at (x0, t0)

−u11t + ρ0fiiu11ii ≥ 1
k
ρ0

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)u

2
1ij. (5.14)

Let L be the linearized operator of (5.11) at (x0, t0):

L = −Dt + ρ0(f(D2u(x0, t0)))fij(D
2u(x0, t0))Dij.

By (3.3) and (3.4), we obtain

L(logΨ) = −
µ
4ut

u
+
ϕt

ϕ
+
u11t

u11

¶
+ ρ0fii

µ
4

µ
uii

u
− u

2
i

u2

¶
+
ϕii

ϕ
− ϕ2i
ϕ2
+
u11ii

u11
− u

2
11i

u211

¶
≤ 0 (5.15)

at (x0, t0). By substituting (3.5), (3.6), (3.7), (5.12) and (5.14) into (5.15), we

obtain

−4ut
u
+
1

k
ρ0

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11

+ ρ0fii

µ
4

µ
uii

u
− u

2
i

u2

¶
+
ϕ00

ϕ
u2iu

2
ii +

ϕ0

ϕ
u2ii −

ϕ02

ϕ2
u2iu

2
ii −

u211i
u211

¶
≤ 0 (5.16)

at (x0, t0).

Now we split into two cases.

(i) ukk ≥ Ku11, where K > 0 is a small constant to be determined later.

From (3.17) and the fact that the second term of the left hand side of (5.16) is

non-negative, it follows that

−4ut
u
+ ρ0fii

µ
4

µ
uii

u
− 9u

2
i

u2

¶
+

µ
ϕ00

ϕ
− 3ϕ

02

ϕ2

¶
u2iu

2
ii +

ϕ0

ϕ
u2ii

¶
≤ 0 (5.17)

at (x0, t0). Since (3.19) holds for some constant θ1 > 0, ϕ
00/ϕ − 3ϕ02/ϕ2 ≥ 0 andPn

i=1 fii(D
2u)uii = f(D

2u) at (x0, t0), it can be derived by (5.17) that at (x0, t0)

−4ut
u
+ ρ0

Ã
θ2

nX
i=1

fiiu
2
11 +

4

u
f(D2u)− Cρ

0(r1)
u2

nX
i=1

fii

!
≤ 0,
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for some constant θ2 > 0. We see that f(D2u) = ρ−1(ut) ∈ [r1, r2] in D which

implies that ρ0(f(D2u)) ∈ [ρ0(r2), ρ0(r1)] (we note that ρ0 is non-increasing). There-
fore we obtain at (x0, t0)

4(m1 + r2ρ
0(r1))

u
+ ρ0(r2)θ2

nX
i=1

fiiu
2
11 −

Cρ0(r1)
u2

nX
i=1

fii ≤ 0. (5.18)

It holds that at (x0, t0)

nX
i=1

fii(D
2u) =

nX
i=1

1

k
Fk(D

2u)
1
k
−1 ∂Fk
∂mii

(D2u)

=
1

k

¡
ρ−1(ut)

¢1−k nX
i=1

Sk−1;i(λ) ≤ Cuk−111 , (5.19)

and that

nX
i=1

fii(D
2u) ≥ fnn(D2u)

=
1

k
Fk(D

2u)
1
k
−1 ∂Fk
∂mnn

(D2u)

≥ 1
k

¡
ρ−1(ut)

¢1−k
θ3u11 · · ·uk−1,k−1 ≥ cuk−111 , (5.20)

for some constants θ3, c > 0, by Lemma 7.2 and the hypothesis ukk ≥ Ku11.

Substituting (5.19) and (5.20) into (5.18), we obtain

θuk+111 +
C

u
− C

u2
uk−111 ≤ 0, (5.21)

for some constant θ > 0. Multiplying (−u)8ϕ2u−(k−1)11 /θ by (5.21), we obtain

(−u)8ϕ2u211 ≤ C
(−u)7ϕ2
uk−111

+ C(−u)6ϕ2,

from which follows that Ψ2 ≤ C(n, k,m1, m2, ρ, kukC1(D)) at (x0, t0).

(ii) ukk ≤ Ku11, that is, ujj ≤ Ku11 for j = k, k + 1, . . . , n.

Substituting (3.26) into (5.16), we obtain
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0 ≥ ρ0f11

Ã
4

µ
u11

u
− u

2
1

u2

¶
+
ϕ00

ϕ
u21u

2
11 +

ϕ0

ϕ
u211 −

ϕ02

ϕ2
u21u

2
11 −

µ
ϕ1

ϕ
+
4u1

u

¶2!

+ ρ0
nX
i=2

fii

Ã
4uii

u
− 1
4

µ
ϕi

ϕ
+
u11i

u11

¶2
+
ϕ00

ϕ
u2iu

2
ii +

ϕ0

ϕ
u2ii −

ϕ02

ϕ2
u2iu

2
ii −

u211i
u211

!

+ ρ0
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11
− 4ut
u

≥ ρ0
"

nX
i=1

fii

µ
4uii

u
+

µ
ϕ00

ϕ
− 3ϕ

02

ϕ2

¶
u2iu

2
ii +

ϕ0

ϕ
u2ii

¶
− 36f11u

2
1

u2

#

+ ρ0
"
−3
2

nX
i=2

fii
u211i
u211

+
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11

#
− 4ut
u

=: I1 + I2 − 4ut
u

(5.22)

at (x0, t0). I1 can be estimated from below as

I1 ≥ ρ0
∙
4ρ−1(ut)

u
+ θ1f11u

2
11 −

C

u2
f11

¸
≥ ρ0
∙
1

2
θ1f11u

2
11 −

4ρ−1(ut)
u

¸
, (5.23)

provided u(x0, t0)
2u11(x0, t0)

2 ≥ 2C/θ1. If u(x0, t0)
2u11(x0, t0)

2 < 2C/θ1, then

(5.10) is obvious. I2 can be estimated by 0 from below, provided K > 0 is suffi-

ciently small, as in Section 3. Therefore (5.22) yields

f11u
2
11 ≤ −

C

u
(5.24)

at (x0, t0). On the other hand, it holds that

f11u
2
11 =

1

k
Sk(λ)

1
k
−1Sk−1;1(λ)λ

2
1 ≥

θ4

k
Sk(λ)

1
kλ1 =

θ4

k
ρ−1(ut)u11, (5.25)

for some constant θ4, by Lemma 7.3 (i). Combining (5.24) and (5.25), we obtain

u11 ≤ −C
u

(5.26)

at (x0, t0). Multiplying (−u)4ϕ by (5.26), we get

(−u)4ϕu11 ≤ C(−u)3ϕ,
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from which follows that Ψ ≤ C(n, k,m1, m2, ρ, kukC1(D)) at (x0, t0).

Hence (5.10) is proved. The rest of the proof of Theorem 5.1 is similar to that

of Theorem 2.1, so we omit it.

Example 5.1. (1) If we set ρ(s) = −s−k, then the equation (5.5) reduces to (1.9).
Therefore we can obtain Theorem 2.1 again.

(2) If we set ρ(s) = −1/s, then we can obtain Bernstein type theorem for

−utFk(D2u)
1
k = 1 in Rn × (−∞, 0].

(3) If we set ρ(s) = k log s, then we can obtain Bernstein type theorem for the

following equation

ut = logFk(D
2u),

which has been studied by X.J. Wang [48]. It should be noted that in this case

the condition (5.6) can be replaced by the boundedness of ut in Rn × (−∞, 0].
Therefore, u needs not to be decreasing in t, while u must be strictly convex in

t. Indeed, if we consider v(x, t) = u(x, t) − ct for sufficiently large c > 0 and set
ρ(s) = k log s− c, then we get the desired result.

(4) For the following version of parabolic k-Hessian equation

ut = Fk(D
2u)

1
k in Rn × (−∞, 0], (5.27)

which has been studied by Ivochkina and Ladyzhenskaya [22], we can also obtain

Bernstein type theorem. We remark that for k = 1, (5.27) reduces to the heat

equation which is well-known.

Corollary 5.2. Let 1 ≤ k ≤ n and u ∈ C4,2(Rn× (−∞, 0]) be a solution to (5.27)
which is strictly convex in x. Suppose that there exist constants c2 ≥ c1 > 0 such
that for all (x, t) ∈ Rn × (−∞, 0],

c1 ≤ ut(x, t) ≤ c2, (5.28)

and that there exist constants A,B > 0 such that (5.7) holds for all x ∈ Rn.
Then, u has the form u(x, t) = Ct+ p(x) where C > 0 is a constant and p is a

quadratic polynomial.
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Proof. We set v(x, t) = u(x, t)− (c2+1)t. Then u ∈ C4,2(Rn× (−∞, 0]) is strictly
convex-monotone solution to

vt = Fk(D
2v)

1
k − (c2 + 1) in Rn × (−∞, 0]

and satisfies −(c2 − c1 + 1) ≤ vt ≤ −1 in Rn × (−∞, 0] and v(x, 0) ≥ A|x|2 − B
for all x ∈ Rn. Applying Theorem 5.1 for ρ(s) = s− (c2 + 1), we are done.

6 Final remarks

(i) Viscosity solutions

We define the notion of viscosity solutions of the parabolic k-Hessian equation

−utFk(D2u) = ψ(x, t) in Ω (6.1)

where Ω is an arbitrary bowl-shaped domain in Rn × (−∞, 0] and ψ ∈ C(Rn ×
(−∞, 0]) is a non-negative function. The theory of viscosity solutions to the first
order equations and the second order ones was developed in the 1980’s by Crandall,

Evans, Ishii, Koike, Lions and so on. See, for example, [14, 15, 16, 25, 31]. But

the equation (6.1) is not parabolic on all smooth functions, so that the definitions

need to be modified slightly. A definition of the viscosity solutions for k-Hessian

equations can be seen in, for example, [46].

Let D be a domain in Rn. First, we define the admissible set of elementary

symmetric function Sk by

Γk = {λ ∈ Rn | Sk(λ+ η) > Sk(λ) for all ηi ≥ 0}
= {λ ∈ Rn | Sj(λ) > 0, for all j = 1, . . . , k}.

We say that a function v ∈ C2(D) is k-convex for the operator Fk if λ =

(λ1, . . . ,λn) belongs to Γk for every point x ∈ Ω, where λ1, . . . ,λn denote the

eigenvalues of D2v (at x). Except for the case k = 1, the operator Fk(D
2v) is not

elliptic on all functions v ∈ C2(D), but Caffarelli, Nirenberg and Spruck [8] have
shown that Fk is degenerate elliptic for k-convex functions. Obviously,

Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γn = Γ+ = {λ ∈ Rn | λi > 0, i = 1, . . . , n},
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which implies that v ∈ C2(D) is convex if and only if v is n-convex, and that
if v ∈ C2(D) is convex, then it is k-convex for any k = 1, . . . , n. Alternative

characterizations of Γk are also known (see [26]).

Let Ω be a bowl-shaped domain in Rn× (−∞, 0]. We define a viscosity solution
to (6.1). We say that ϕ ∈ C2,1(Ω) is said to be parabolically k-convex if ϕ is k-
convex in x and non-increasing in t. Therefore, if ϕ ∈ C2,1(Ω) is convex-monotone,
then it is parabolically k-convex for k = 1, . . . , n.

Definition 6.1. Let Ω be a bowl-shaped domain in Rn × (−∞, 0].

(i) A function u ∈ C(Ω) is said to be a viscosity subsolution to (6.1) in Ω if for
any parabolically k-convex function ϕ ∈ C2,1(Ω) and any point (x0, t0) ∈ Ω
which is a maximum point of u− ϕ, we have

−ϕt(x0, t0)Fk(D2ϕ(x0, t0)) ≥ ψ(x0, t0). (6.2)

(ii) A function u ∈ C(Ω) is said to be a viscosity supersolution to (6.1) in Ω if for
any parabolically k-convex function ϕ ∈ C2,1(Ω) and any point (x0, t0) ∈ Ω
which is a minimum point of u− ϕ, we have

−ϕt(x0, t0)Fk(D2ϕ(x0, t0)) ≤ ψ(x0, t0). (6.3)

(iii) A function u ∈ C(Ω) is said to be a viscosity solution to (6.1) in Ω if it is
both a viscosity subsolution and supersolution to (6.1) in Ω.

We note that the notion of viscosity subsolution does not change if all C2,1(Ω)

functions which are non-increasing in t are allowed as comparison functions ϕ.

One can prove that a function u ∈ C2,1(Ω) is a viscosity solution to (6.1) if and
only if it is a parabolically k-convex classical solution.

Here we consider whether Theorem 2.1 also holds for viscosity solutions to the

parabolic k-Hessian equation (1.9). We can show the following proposition.

Proposition 6.2. Let 1 ≤ k ≤ n. Then there exists a convex-monotone viscosity
solution u ∈ C(Rn × (−∞, 0]) to (1.9), which does not have the form u(x, t) =

−mt+ p(x) where m ≥ 0 and p is a quadratic polynomial.
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Proof. Let t0 ≥ 0 be an arbitrary number. We set u by

u(x, t) = C(−t+ t0)α|x|β in Rn × (−∞, 0], (6.4)

where α = 1/(k + 1), β = 2k/(k + 1) and

C =

½
αβk
∙
(β − 1)

µ
n− 1
k − 1

¶
+

µ
n− 1
k

¶¸¾− 1
k+1

. (6.5)

Now we define
¡
n−1
n

¢
= 0. Then it can be easily seen that u is convex-monotone

in Rn× (−∞, 0] and that u is a classical solution to (1.9) in (Rn \ {0})× (−∞, 0].
For t ≤ 0, there exists no C2,1 function ϕ which touches u at (0, t) from above,

because β < 2. While, for any parabolically k-convex C2,1 function ϕ which

touches u from below at (0, t), ϕt(0, t) must be 0, because u(0, ·) ≡ 0. This implies
that −ϕt(0, t)Fk(D2ϕ(0, t)) = 0 ≤ 1. Therefore u is a viscosity solution to (1.9) in
Rn × (−∞, 0].

For k = n which corresponds to the parabolic Monge-Ampère equation’s case,

the function u constructed above is almost the same as the one in [19]. We remark

that this function u satisfies neither (2.1) nor (2.2), for arbitrary t0 ≥ 0. Also, it is
not strictly convex-monotone. We would like to know whether Theorem 2.1 holds

for viscosity solutions under the assumptions (2.1) and (2.2).

(ii) Relaxing the assumptions : Growth conditions and convexity

We would like to remove growth conditions (1.6), (1.8), (2.1) and (2.2) in The-

orems 1.3, 1.4 and 2.1 (or, to prove growth conditions are necessary). As we have

stated in Section 1 and Remark 2.1 before, Theorem 1.3 remains valid without

the growth condition (1.6) when k = 1 (the case of Poisson equation) and k = n

(the case of Monge-Ampère equation), and Theorem 2.1 is true without (2.2) when

k = n. However, we do not know any more for other cases.

As we have said in (i), k-Hessian operator Fk is degenerate elliptic for k-convex

functions (see [8] for the proof). Therefore, when we study k-Hessian equation, it

is natural to seek solutions in the class of k-convex functions, rather than in the

class of convex functions. It seems an interesting open problem whether Theorems

1.3 and 2.1 remain true if one replaces “strictly convex” by “strictly k-convex.”

(iii) k-curvature equation
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Here we deal with the so-called curvature equations of the form

Hk[u] = Sk(κ1, . . . ,κn) = ψ in Rn, (6.6)

for 1 ≤ k ≤ n, where ψ is a function defined in Rn and for a function u ∈ C2(Rn),
κ = (κ1, . . . ,κn) denotes the principal curvatures of the graph of the function u,

namely, the eigenvalues of the matrix

C = D
Ã

Dup
1 + |Du|2

!
=

1p
1 + |Du|2

µ
I − Du⊗Du

1 + |Du|2
¶
D2u. (6.7)

Also Sk denotes the k-th elementary symmetric function which is defined in (1.5).

The mean, scalar and Gauss curvature equations correspond respectively to the

special cases k = 1, 2, n in (6.6). We call the equation (6.6) “k-curvature equation.”

We remark that (6.6) is a quasilinear equation for k = 1 while it is a fully non-

linear equation for k ≥ 2. In the particular case that k = n, it is an equation

of Monge-Ampère type. The cases k = 1 and k = n, corresponding to the mean

and Gauss curvature equations respectively, are well understood. Although it is

much harder to analyze the intermediate cases 2 ≤ k ≤ n− 1, some progress have
been made in the last three decades, such as the study of the classical Dirichlet

problem. See for instance [9, 21, 40]. Recently, the author and Takimoto [34]

considered the boundary blowup problem for k-curvature equations and obtained

the uniqueness of a boundary blowup solution under some hypotheses (see also

[38]). It was the first result for the uniqueness of boundary blowup solutions for

k-curvature equations, even for the mean curvature equation which corresponds

to the case of k = 1 for (6.6).

When n = 2, k = 1 and ψ ≡ 0, the graph of a solution u = u(x1, x2) to (6.6)
is a minimal surface in R3, so that u must be an affine function due to Theorem

1.1, which is the classical Bernstein’s theorem for the minimal surface equation.

We remark that Theorem 1.1 can also be derived from Bernstein type theorem for

Monge-Ampère equation (Theorem 1.2). For the detail, see [24, 33].

It is quite natural to study whether Bernstein type theorem holds for k-curvature

equation (6.6). First we consider the case ψ ≡ 0 and give the following problem.

Problem. Let u = u(x1, . . . , xn) be a solution to the homogeneous k-curvature
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equation

Hk[u] = 0 in Rn. (6.8)

Then, can we say that u must be an affine function of x1, . . . , xn, that is, the graph

of u must be a hyperplane in Rn+1?

For the case k = 1 which corresponds to the minimal surface equation, Bernstein

conjectured that it is true. Many mathematicians have attacked to this problem.

It was solved affirmatively by de Giorgi [17] for n = 3, by Almgren [1] for n = 4,

and by Simons [37] for n ≤ 7. However, Bombieri, de Giorgi and Giusti [4] proved
that for n ≥ 8, there exists a solution to the minimal surface equation in Rn which
is not an affine function.

While, for the case k ≥ 2, our problem can be solved negatively, even if we add

additional hypotheses such as the convexity of u. In fact, u(x) = ϕ(x1) where ϕ

is any C2 function defined in R solves (6.8), because n− 1 principal curvatures of
u are 0.

Next, we consider the case ψ ≡ const. > 0. In this case, however, there exist no
(k-admissible) solutions to Hk[u] = ψ ≡ const. > 0 in Rn, due to [39]. Indeed, the
condition

k

Z
B(0,R)

ψ dx ≤ (1− χ)

Z
∂B(0,R)

Hk−1[∂B(0, R)] ds, (6.9)

for some positive constant χ does not hold for sufficiently large R. Here, for a

C2 domain Ω ⊂ Rn, Hk−1[∂Ω] = Sk−1(κ01, . . . ,κ
0
n−1) where κ

0
1, . . . , κ

0
n−1 are the

principal curvatures of ∂Ω. It is because the left-hand side of (6.9) is const.×Rn
while the right-hand side is const.×Rn−k.

Our next task is to consider the appropriate formulation of Bernstein type prob-

lems for k-curvature equations and parabolic k-curvature equations.
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7 Appendix

We begin with some notation. The k-th elementary symmetric function of n

variables Sk is considered in the corresponding cone Γk in Rn, given by

Γk = {λ ∈ Rn | Sj(λ) > 0, for all j = 1, . . . , k}.

The following properties of the functions Sk are used in Section 3 and in the

proof of Lemma 7.1.

Sk(λ) = Sk;i(λ) + λiSk−1;i(λ), (7.1)

nX
i=1

Sk;i(λ) = (n− k)Sk(λ) (7.2)

for all λ ∈ Rn. Furthermore, if λ ∈ Γk, then at least k of the numbers λ1, . . . ,λn
are positive and moreover

Sl;i1i2...is(λ) > 0

for all {i1, i2, . . . , is} ⊆ {1, 2, . . . , n}, l + s ≤ k (see [26]).
It is known that the Newton inequalities

Sk(λ)Sk−2(λ) ≤ (k − 1)(n− k + 1)
k(n− k + 2) [Sk−1(λ)]

2 (7.3)

for λ ∈ Rn, k ≥ 2 and the Maclaurin inequalities"
Sk(λ)¡
n

k

¢ # 1
k

≤
"
Sl(λ)¡
n

l

¢ # 1
l

(7.4)

for λ ∈ Γk, k ≥ l ≥ 1 hold (see [32]).
The following lemma is used in Section 3 ([30]).

Lemma 7.1. There exists a constant θ > 0, depending only on n and k, such that

Sk−1;k(λ) ≥ θSk−1(λ), (7.5)

for all λ ∈ Γk.
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Proof. First, we prove

|Sk−1;1k(λ)| ≤ CkSk−1;k(λ), Ck =

r
k(n− k)
n− 1 . (7.6)

By using (7.1), we have

Sk;1k(λ) + λ1Sk−1;1k(λ) = Sk;k(λ) = Sk(λ)− λkSk−1;k(λ)

≥ −λkSk−1;k(λ), (7.7)

Sk−1;1k(λ) + λ1Sk−2;1k(λ) = Sk−1;k(λ). (7.8)

Eliminating λ1 from (7.7) and (7.8) gives

(Sk−1;1k(λ))
2 − Sk;1k(λ)Sk−2;1k(λ) ≤ Sk−1;k(λ)(Sk−1;1k(λ) + λkSk−2;1k(λ))

= Sk−1;k(λ)Sk−1;1(λ)

so that by Newton’s inequality (7.3) we obtainµ
1− (k − 1)(n− k − 1)

k(n− k)

¶
(Sk−1;1k(λ))

2 ≤ (Sk−1;k(λ))2. (7.9)

Therefore (7.6) follows.

By using (7.6) and (7.8), we obtain

CkSk−1;k(λ) ≥ −Sk−1;k(λ) + λ1Sk−2;1k(λ) (7.10)

so that

Sk−1;k(λ) ≥ λ1

1 + Ck
Sk−2;1k(λ). (7.11)

Let us now suppose that (7.5) is valid wherever k and n are replaced by k − 1
and n− 1, that is for some positive constant θ = θ(k − 1, n− 1), we have

Sk−2;1k(λ) ≥ θSk−2;1(λ). (7.12)

By using (7.11) and (7.12), we obtain

Sk−1;k(λ) ≥ λ1θ

1 + Ck
Sk−2;1(λ) =

θ

1 + Ck
(Sk−1(λ)− Sk−1;1(λ)).

Therefore we obtain

Sk−1;k(λ) ≥ θ

θ + 1 + Ck
Sk−1(λ). (7.13)

Hence (7.5) holds.
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Moreover, we prove some lemmas used in Section 3. These lemmas can be proved

by using properties of the k-th elementary symmetric function Sk.

Lemma 7.2. It holds that there exists some constant θ > 0 such that

Sk−1;i(λ) ≥ θλ1λ2 · · ·λk−1 (7.14)

for i ≥ k and all λ = (λ1, . . . ,λn) ∈ Γk with λ1 ≥ λ2 ≥ · · · ≥ λn.

Proof. By using the inequality (7.11), we obtain

Sk−1;i(λ) = Sk−1(λ1, . . . ,λk−1,λk, . . . ,λi−1, 0,λi+1, . . . ,λn)

≥ Sk−1(λ1, . . . ,λk−1,λk+1, . . . ,λi, 0,λi+1, . . . ,λn)
= Sk−1;k(λ)

≥ θ1λ1Sk−2;1k(λ)

≥ θ2λ1λ2Sk−3;12k(λ)

≥ · · ·
≥ θλ1λ2 · · ·λk−1S0;12···k(λ)
= θλ1λ2 · · ·λk−1,

for some positive constants θ1, θ2, . . . , and θ.

Lemma 7.3. Suppose λ ∈ Γk and λ1 ≥ λ2 ≥ · · · ≥ λn.

(i) There exists some θ > 0, which depends only n and k, such that

λ1Sk−1;1(λ) ≥ θSk(λ). (7.15)

(ii) For any δ ∈ (0, 1) there exists K > 0 such that if

Sk(λ) ≤ Kλk1 or |λi| ≤ Kλ1 for i = k + 1, . . . , n,

we have

λ1Sk−1;1(λ) ≥ (1− δ)Sk(λ). (7.16)
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Proof. (i) We have

Sk(λ) = λ1Sk−1;1(λ) + Sk;1(λ). (7.17)

By

Sk;1(λ) ≤ Cn,kS
k

k−1
k−1;1(λ) ≤ Cλ1Sk−1;1(λ),

(7.15) follows.

(ii) To prove (7.16), we first consider the case Sk(λ) ≤ Kλk1. We may assume
Sk(λ) = 1. If (7.16) is not true, then

Sk−1;1(λ) <
1− δ

λ1
≤ K 1

k ,

hence

Sk;1(λ) ≤ CS
k

k−1
k−1;1(λ) ≤ CK

1
k−1 .

In view of (7.17), (7.16) follows.

Next, we consider the case |λi| ≤ Kλ1 for i = k + 1, . . . , n. Observing that if

λk ¿ λ1, we have Sk(λ) ¿ λk1, and so (7.16) holds. Hence we may assume that

|λi| ¿ λk for i = k + 1, . . . , n. In this case, both Sk(λ) and λ1Sk−1;1(λ) are equal

to λ1λ2 · · ·λk(1 + o(1)) with o(1)→ 0 as K → 0. Again (7.16) holds.

Next, we prove a theorem called Alexsandrov’s maximum principle. Before

giving a proof, we introduce some notation.

Definition 7.4. (supporting hyperplane)

Let Ω be an open subset of Rn and u : Ω → R. Given x0 ∈ Ω, a supporting
hyperplane to the function u at the point (x0, u(x0)) is an affine function l(x) =

u(x0) + p · (x− x0) such that u(x) ≥ l(x) for all x ∈ Ω.

Definition 7.5. (normal mapping)

Let Ω be an open set in Rn and u ∈ C(Ω). The normal mapping of u, or
subdifferential of u, is the set-valued function ∂u : Ω→ P(Rn) defined by

∂u(x0) = {p ∈ Rn | u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ω}.

Given E ⊂ Ω, we define ∂u(E) = ∪x∈E∂u(x).
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Lemma 7.6. Let Ω ⊂ Rn be a bounded open set, and u, v ∈ C(Ω). If u = v on
∂Ω and v ≥ u in Ω, then

∂v(Ω) ⊂ ∂u(Ω).

Proof. Let p ∈ ∂v(Ω). There exists x0 ∈ Ω such that

v(x) ≥ v(x0) + p · (x− x0), ∀x ∈ Ω.

Let

a = sup
x∈Ω
{v(x0) + p · (x− x0)− u(x)}.

Since v(x0) ≥ u(x0), it follows that a ≥ 0. If a > 0, we claim that v(x0) + p ·
(x−x0)−a is a supporting hyperplane to the function u at some point in Ω. Since
Ω is bounded, there exists x1 ∈ Ω such that a = v(x0) + p · (x1 − x0)− u(x1). We
have

v(x1) ≥ v(x0) + p · (x1 − x0) = u(x1) + a.

Hence, since a > 0, then x1 6∈ ∂Ω, so the claim holds in this case.

On the other hand, if a = 0, then

u(x) ≥ v(x0) + p · (x− x0) ≥ u(x0) + p · (x− x0), ∀x ∈ Ω

and consequently u(x0)+p·(x−x0) is a supporting hyperplane to u at x0. Therefore,
it holds that p ∈ ∂u(Ω).

Now we prove Aleksandrov’s maximum principle (see [18]). It is used in the

proof of Lemma 4.1, in order to derive a local gradient estimate of a solution to

(1.9).

Theorem 7.7. (Aleksandrov’s maximum principle)

If Ω ⊂ Rn is a bounded, open and convex set with diameter ∆, and u ∈ C(Ω) is
convex with u = 0 on ∂Ω, then

|u(x0)|n ≤ Cn∆n−1 dist(x0, ∂Ω)|∂u(Ω)|

for all x0 ∈ Ω, where Cn is a constant depending only on the dimension n.
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Proof. Fix x0 ∈ Ω and let v be the convex function whose graph is the upside down
cone with vertex (x0, u(x0)) and base Ω, with v = 0 on ∂Ω. Since u is convex,

v ≥ u in Ω. By Lemma 7.6

∂v(Ω) ⊂ ∂u(Ω). (7.18)

To prove this theorem, we shall estimate |∂v(Ω)| from below. We first notice

that the set ∂v(Ω) is convex. This is true, because, if p ∈ ∂v(Ω), then there

exists x1 ∈ Ω such that p ∈ ∂v(x1). If x1 6= x0, since the graph of v is a cone,

then v(x1) + p · (x− x1) is a supporting hyperplane at x0, that is p ∈ ∂v(x0). So
∂v(Ω) = ∂v(x0) and since ∂v(x0) is convex, we are done.

Second, we notice that there exists p0 ∈ ∂v(Ω) such that |p0| = −u(x0)
dist(x0, ∂Ω)

.

This follows because Ω is convex. Indeed, we take x1 ∈ ∂Ω such that |x1 − x0| =
dist(x0, ∂Ω) and H is a supporting hyperplane to the set Ω at x1. The hyperplane

in Rn+1 generated by H and the point (x0, u(x0)) is a supporting hyperplane to v

that has the desired slope.

Now notice that the ball B with center at the origin and radius
−u(x0)
∆

is

contained in ∂v(Ω), and |p0| ≥ −u(x0)
∆

. Hence the convex hull of B and p0 is

contained in ∂v(Ω) and it has measure

Cn

µ−u(x0)
∆

¶n−1
|p0|. (7.19)

By the definition of |p0|, (7.18) and (7.19), we obtain

|∂u(Ω)| ≥ |∂v(Ω)| ≥ Cn|u(x0)|n
∆n−1 dist(x0, ∂Ω)

.

Therefore the proof is completed.

Finally, we prove Evans-Krylov type theorem (see [18]). By using this theorem,

we can estimate local α-Hölder estimates of D2u and ut in the proof of Theorem

2.1.

Theorem 4.2 (Evans-Krylov type theorem)

Let D and D0 be bounded bowl-shaped domains which satisfy D0 ⊂ D and

dist(D0, ∂pD) > 0, and u be a C4,2(D) solution to the equation

G(ut, D
2u) = 0 (4.11)
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in D, where G = G(q,M) is defined for all (q,M) ∈ R × Sn×n with G(·,M) ∈
C1(R) for each M ∈ Sn×n, and G ∈ C2(R × X) for some X ⊂ Sn×n which is a
neighborhood of D2u(D). Suppose that:

(i) G is uniformly parabolic, i.e., there exist positive constants λ and Λ such

that

−Λ ≤ Gq(q,M) ≤ −λ, (4.12)

λkNk ≤ G(q,M +N)−G(q,M) ≤ ΛkNk, (4.13)

for all q ∈ R and M , N ∈ Sn×n with N ≥ O.
(ii) G is concave with respect to M .

If kukC2,1(D) ≤ K, then there exist positive constants C depending on λ, Λ, n,

K, D, D0 and G(0, 0), and α ∈ (0, 1) depending on λ, Λ and n such that

kuk
C
2+α,1+α

2 (D0) ≤ C.

Proof. By the smoothness ofG on the range ofD2u and differentiating the equation

(4.11) with respect to t, we obtain

Gq(ut, D
2u)(ut)t +Gij(ut, D

2u)Dij(ut) = 0,

where

Gij =
∂G

∂mij

.

Dividing the last equation by Gq, by (4.12), we obtain a uniformly parabolic

equation, and by Harnack inequality [29], we obtain

[ut]γ,D3/4 ≤ CkutkL∞(D),

where D3/4 = B(0, 3/4) × (−3/4, 0] and some 0 < γ < 1. For the estimation of

second x-derivatives, fix t. Then, v(x) = u(x, t) satisfies

eG(x,D2v(x)) = G(ut(x, t), D
2u(x, t)) = 0.
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By [6, Theorem 8.1], we have the estimate kD2vkCβ(B(0,1/2)) ≤ C uniformly in t
for some 0 < β < 1. To show that D2u is Hölder continuous in t, we note that by

differentiating (4.11) with respect to xk we get that Dku satisfies

Gq(ut, D
2u)(Dku)t +Gij(ut, D

2u)Dij(Dku) = 0,

and as before, we get

[Du]α,D1/2 ≤ CkDukL∞(D),

for some 0 < α < 1. We have

|Du(x, t1)−Du(x, t2)| ≤ C1|x1 − x2|α (7.20)

and

|D2u(x1, t)−D2u(x2, t)| ≤ C2|x1 − x2|β. (7.21)

This implies |D2u(x, t1) − D2u(x, t2)| ≤ C|t1 − t2|αβ/(1+β). Here we shall give its
proof, which is found in [28, p.78].

We fix x ∈ B(0, 1/2), 1 ≤ i, j ≤ n and t1, t2 ∈ (−1/2, 0] which satisfies |t1−t2| ≤
ε where ε > 0 is a constant which will be determined later.

We set h(s) = |Diu(x + sej, t1) −Diu(x, t1) −Diu(x + sej, t2) +Diu(x, t2)| for
s ∈ R with x+ sej ∈ B(0, 1/2). First (7.20) yields

h(s) ≤ |Diu(x+ sej, t1)−Diu(x+ sej, t2)|+ |Diu(x, t1)−Diu(x, t2)|
≤ 2C1|t1 − t2|α. (7.22)

Next, h(s) can be estimated as

h(s) =

¯̄̄̄Z s

0

¡
Diju(x+ ξej, t1)−Diju(x+ ξej, t2)

¢
dξ

¯̄̄̄
=

¯̄̄Z s

0

¡
Diju(x+ ξej, t1)−Diju(x, t1)

¢
dξ

−
Z s

0

¡
Diju(x+ ξej, t2)−Diju(x, t1)

¢
dξ

¯̄̄
≥
¯̄̄̄Z s

0

¡
Diju(x+ ξej, t1)−Diju(x, t1)

¢
dξ

¯̄̄̄
−
¯̄̄̄Z s

0

¡
Diju(x+ ξej, t2)−Diju(x, t1)

¢
dξ

¯̄̄̄
=: I1 − I2. (7.23)
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It follows from (7.21) that

I1 ≤
¯̄̄̄Z s

0

¯̄
Diju(x+ ξej, t1)−Diju(x, t1)

¯̄
dξ

¯̄̄̄
≤
¯̄̄̄Z s

0

C2|ξ|β dξ
¯̄̄̄

=
C2

1 + β
|s|1+β ≤ C2|s|1+β. (7.24)

And It follows from the mean value theorem that

I2 =

¯̄̄
s
¡
Diju(x+ eξej, t2)−Diju(x, t1)

¢¯̄̄
,

for some eξ which is between 0 and s. Therefore, by (7.21) we obtain that
I2 = |s|

¯̄¡
Diju(x+ eξej, t2)−Diju(x, t2)

¢− ¡Diju(x, t1)−Diju(x, t2)
¢¯̄

≥ |s|
¯̄
Diju(x, t1)−Diju(x, t2)

¯̄
− C2|s||eξ|β

≥ |s|
¯̄
Diju(x, t1)−Diju(x, t2)

¯̄
− C2|s|1+β. (7.25)

Substituting (7.24) and (7.25) into (7.23), we have

h(s) ≥ |s|
¯̄
Diju(x, t1)−Diju(x, t2)

¯̄
− C2|s|1+β. (7.26)

Combining (7.22) and (7.26), we obtain that¯̄
Diju(x, t1)−Diju(x, t2)

¯̄
≤ 2C1|s| |t1 − t2|

α + 2C2|s|β.

If we choose s = (C1/(βC2))
1/(1+β)|t1 − t2|α/(1+β) or s = −(C1/(βC2))1/(1+β)|t1 −

t2|α/(1+β), then we have the following inequality:¯̄
Diju(x, t1)−Diju(x, t2)

¯̄
≤ C|t1 − t2|

αβ
1+β . (7.27)

Here C is some positive constant. We note that there exists some positive constant

ε > 0 such that if |t1− t2| < ε then the point x+sej for s = (C1/(βC2))
1/(1+β)|t1−

t2|α/(1+β) or s = −(C1/(βC2))1/(1+β)|t1− t2|α/(1+β) is in B(0, 1/2). Therefore (7.27)
holds for x ∈ B(0, 1/2) and |t1 − t2| is suffiently small, and the desired Hölder
continuity follows.
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UNIQUENESS OF BOUNDARY BLOWUP SOLUTIONS TO

k-CURVATURE EQUATION

SAORI NAKAMORI AND KAZUHIRO TAKIMOTO

Abstract. We consider the boundary blowup problem for k-curvature
equation, i.e., Hk[u] = f(u)g(|Du|) in an n-dimensional domain Ω, with
the boundary condition u(x) → ∞ as dist(x, ∂Ω) → 0. We prove the
uniqueness result under some hypotheses.

1. Introduction

This paper deals with the so-called curvature equations of the form

(1.1) Hk[u] = Sk(κ1, . . . , κn) = f(u)g(|Du|) in Ω,

with the following boundary condition

(1.2) u(x) → ∞ as dist(x, ∂Ω) → 0.

Here Ω is a bounded domain in Rn and for a function u ∈ C2(Ω), κ =
(κ1, . . . , κn) denotes the principal curvatures of the graph of the function u,
namely, the eigenvalues of the matrix

(1.3) C = D

(
Du√

1 + |Du|2

)
=

1√
1 + |Du|2

(
I − Du⊗Du

1 + |Du|2

)
D2u,

and Sk, k = 1, . . . , n, denotes the k-th elementary symmetric function, i.e.,

(1.4) Sk(κ) =
∑

κi1 · · ·κik ,

where the sum is taken over increasing k-tuples, 1 ≤ i1 < i2 < · · · < ik ≤
n. The mean, scalar and Gauss curvatures correspond respectively to the
special cases k = 1, 2, n in (1.4). In this paper we call the equation (1.1)
“k-curvature equation.”

In [28] we have studied the existence and non-existence result of a solution
to (1.1)-(1.2). In addition, we have obtained the result for the asymptotic
behavior near ∂Ω of such solution. In this paper, we deal with the uniqueness
of solutions to (1.1)-(1.2).

We remark that (1.1) is a quasilinear equation for k = 1 while it is a
fully nonlinear equation for k ≥ 2. In the particular case that k = n, it
is an equation of Monge-Ampère type. It is much harder to analyze fully
nonlinear equations, but the study of the classical Dirichlet problem for k-
curvature equations in the case that 2 ≤ k ≤ n − 1 has been developed in
the last two decades, see for instance [4, 14, 29].

The condition (1.2) is called the “boundary blowup condition,” and a so-
lution which satisfies (1.2) is called a “boundary blowup solution,” a “large
solution,” or an “explosive solution.” The boundary blowup problems arise
from physics, geometry and many branches of mathematics, see for instance

1



2 SAORI NAKAMORI AND KAZUHIRO TAKIMOTO

[15, 22, 26]. The existence and the asymptotic behavior of solutions for such
problems starts from the pioneering works of Bieberbach [3] and Rademacher
[26] who considered ∆u = eu in two and three dimensional domain respec-
tively. For the case of semilinear equations, they have extensively been
studied (see, for example, [16, 25] and [2, 5, 7, 17, 18, 19, 22, 23, 24]). The
case of quasilinear equations of divergence type to which the mean curvature
equation (k = 1 in (1.1)) belongs has been treated in [1, 11, 12]. However,
there are only a few results concerning such problems for fully nonlinear
PDEs, such as [6, 13, 20] for Monge-Ampère equation, [27] for k-Hessian
equations, and [28] by the author for k-curvature equations.

In some works among them, the uniqueness of boundary blowup solutions
has been also discussed, see [1, 19, 22, 24, 27] for example. But there were
no results for the uniqueness of boundary blowup solutions for k-curvature
equations, even for the mean curvature equation which corresponds to the
case of k = 1 for (1.1). In this paper, we shall obtain the uniqueness result
for (1.1)-(1.2), which is stated in Sections 3 and 4.

Throughout the paper, we assume the following conditions on f and g:

• Let t0 ∈ [−∞,∞). f ∈ C∞(t0,∞) is a positive function and satisfies
f ′(t) > 0 for all t ∈ (t0,∞).

• If t0 > −∞, then f(t) → 0 as t→ t0+0; otherwise (i.e., if t0 = −∞),

(1.5)

∫ t

−∞
f(s) ds <∞ for all t ∈ R.

• g ∈ C∞[0,∞) is a positive function.

The first condition assures us that the comparison principle for solutions to
(1.1) holds. The typical examples of f are f(t) = tp (p > 0), t0 = 0 and
f(t) = et, t0 = −∞.

This paper is divided as follows. In the next section, we state our results
for the existence and the estimate of the asymptotic behavior of a solu-
tion near the boundary to the boundary blowup problem (1.1)-(1.2), for the
sake of completeness. This includes the improved results for the asymptotic
behavior of boundary blowup solutions. In Section 3, we state our unique-
ness result and prove it. However, the case k = n is excluded from these
theorems. We consider the particular case in Section 4.

2. Results for existence and asymptotic behavior of a solution

In this section we review the results for the existence and the asymptotic
behavior of a solution to (1.1)-(1.2). The following existence result has been
proved in [28].

Theorem 2.1. Let 2 ≤ k ≤ n− 1. We assume that Ω, f and g satisfy the
following conditions.

(A1) Ω is a bounded and uniformly k-convex domain with boundary ∂Ω ∈
C∞.

(A2) There exists a constant T > 0 such that g is non-increasing in [T,∞),
and limt→∞ g(t) = 0.
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(A3) Set g̃(t) = g(t)/t and F (t) =
∫ t
t0
f(s) ds. Then

(2.1)

∫ ∞ dt

g̃−1
(

1
F (t)

) <∞.

(A4) Set

(2.2) H(t) =

∫ t

0

sk

g(s) (1 + s2)(k+2)/2
ds.

Then limt→∞H(t) = ∞.

(A5) Set ϕ(t) = g(t)(1+ t2)k/2. Then ϕ(t) is a convex function in [0,∞).
(A6) lim supt→∞ |g′(t)|t2 <∞.

Then there exists a viscosity solution to (1.1)-(1.2).

We note that for k = 1 the existence has been already studied in [12], so
that we focus here on the case k ≥ 2. For the definition and the general
theory of viscosity solutions to PDEs, we refer to, for example, [8, 9, 10, 21].
For the viscosity theory for curvature equations in particular, see [29].

Example 2.1. Let 2 ≤ k ≤ n − 1 and p, q be positive constants. Suppose
Ω is a bounded and uniformly k-convex domain with boundary ∂Ω ∈ C∞.
We consider these two equations:

(i) Hk[u] = up/
(
1 + |Du|2

)q/2
in Ω.

From Theorem 2.1, it follows that there exists a boundary blowup solution
provided p > q and 1 ≤ q ≤ k − 1.

(ii) Hk[u] = epu/
(
1 + |Du|2

)q/2
in Ω.

There exists a boundary blowup solution provided 1 ≤ q ≤ k − 1.

Remark 2.1. In the preceding paper [28], we have also obtained a necessary
condition for boundary blowup solutions to exist, so that we have given an
example of f and g for which there does not exist any boundary blowup
solution.

Next we establish the asymptotic behavior of a solution to (1.1)-(1.2)
near ∂Ω. We shall prove the following, which is slightly improved than the
corresponding one in [28], so that we give its proof here.

Theorem 2.2. Let 1 ≤ k ≤ n − 1. We assume that (A1), (A2) and (A3)
in Theorem 2.1 and the conditions given below are satisfied.

(B1) t0 = −∞, or t0 > −∞ and f1/k is Lipschitz continuous at t0.
(B2) There exists a constant T ′ > t0 such that f is a convex function in

[T ′,∞).

(B3) Set h(t) =
t

g(t)1/k
√
1 + t2

. Then there exists a constant α > 0 such

that h(t)/tα is non-decreasing in (0,∞).

(B4) lim
t→∞

g(t)

(1 + t2)g′(t)
= 0.

Then there exist positive constants C1, C2 such that every solution u to (1.1)-
(1.2) satisfies

(2.3) ψ−1(C1 dist(x, ∂Ω))−O(1) ≤ u(x) ≤ ψ−1(C2 dist(x, ∂Ω)) +O(1)
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near ∂Ω, where ψ is defined by

(2.4) ψ(t) =

∫ ∞

t

ds

h−1
(
f(s)1/k

) .
Proof. Let u be a solution to (1.1)-(1.2). From now on, we use the following
notation: d(x) = dist(x, ∂Ω) and Ωr = {x ∈ Ω | d(x) < r} for r > 0.

It follows from (A1) that there exists a positive constant R such that the
following conditions are satisfied:

(a) d = d(x) is a C∞ function in ΩR;
(b) For each point x ∈ ΩR, there exists a unique point z(x) ∈ ∂Ω such

that d(x) = |x− z(x)|;
(c) There exist positive constants m,M such that for every point x ∈

ΩR, it holds that

(2.5) κ̃ = (κ̃1, . . . , κ̃n−1) :=

(
κ′1

1− d(x)κ′1
, . . . ,

κ′n−1

1− d(x)κ′n−1

)
∈ Γk(Rn−1)

and that

(2.6) m ≤ Sk(κ̃) ≤M,

where κ′1, . . . , κ
′
n−1 denote the principal curvatures of ∂Ω at z(x).

First, we prove the first inequality in (2.3). Let ṽ1 = ṽ1(r) be a solution
to the following problem

(2.7)



(
n−1
k−1

)
u′′

(1+u′2)
3/2

(
u′

r
√

1+u′2

)k−1

+
(
n−1
k

)(
u′

r
√

1+u′2

)k

= f(u)g(|u′|), in (0, diamΩ),

u(0) = u0 > t0, u′(0) = 0,

u(r) → ∞ as r → diamΩ− 0.

The existence of the solution ṽ1 is guaranteed by the hypotheses (A2), (A3),
(B1) and (B3); see [28, Theorem 3.6] for the proof. We set v1(x) = ṽ1(|x|), so
that v1 is a classical radially symmetric solution to (1.1) with the boundary
blowup condition

(2.8) v1(x) → ∞ as dist(x,BdiamΩ(0)) → 0.

For y ∈ Ω which satisfies d(y) = 3R/4, it follows from the comparison
principle that

(2.9) u(x) ≥ v1(x− y) in

{
x ∈ Ω

∣∣∣∣ |x− y| < R

2

}
.

Therefore, setting C := v1(0), we obtain that for any solution u to (1.1) and
any point y ∈ Ω which satisfies d(y) = 3R/4,

(2.10) u(y) ≥ C.
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Next, we see that there exists a constant w1 > t0 such that a non-
increasing, convex solution w on (0, R] to the following problem

(2.11)


f(w)g(|w′|) =

(
|w′|√
1+w′2

)k

·m in (0, R),

w(r) → ∞ as r → +0,

w(R) = w1

exists. Indeed, by the same argument as in [28, Section 3], one can prove the
existence of such solution. We omit its proof. For ε ∈ (0, R/4), we define

(2.12) v1ε(x) = w(d(x) + ε) + L, x ∈ Ω3R/4,

where L = min{C−w(3R/4), 0}. Then it follows that u(x) → ∞ as d(x) → 0
while v1ε(x) takes finite value on the set {d(x) = 0} = ∂Ω. Moreover, for
any x which satisfies d(x) = 3R/4 we have

(2.13) v1ε(x) = w

(
3

4
R+ ε

)
+ L ≤ w

(
3

4
R

)
+ L ≤ C ≤ u(x)

due to (2.10). Finally, it holds that for x ∈ Ω3R/4

Hk[v1ε](x) =

(
|w′(d(x) + ε)|√
1 + w′(d(x) + ε)2

)k

Sk(κ̃)

(2.14)

+
w′′(d(x) + ε)

(1 + w′(d(x) + ε)2)3/2

(
|w′(d(x) + ε)|√
1 + w′(d(x) + ε)2

)k−1

Sk−1(κ̃)

≥

(
|w′(d(x) + ε)|√
1 + w′(d(x) + ε)2

)k

·m

= f(w(d(x) + ε)) g(|w′(d(x) + ε)|)
= f(v1ε(x)− L) g(|Dv1ε(x)|) ≥ f(v1ε(x)) g(|Dv1ε(x)|).

Here we note that L ≤ 0. Therefore we can deduce by the comparison
principle that

(2.15) v1ε(x) = w(d(x) + ε) + L ≤ u(x)

for x ∈ Ω3R/4. Taking the limit ε→ +0, we get that

(2.16) w(d(x)) + L ≤ u(x)

for x ∈ Ω3R/4.
Using (2.11) and the condition (B3), we obtain that

|w′| = −w′ = h−1
(
m−1/kf(w)1/k

)
(2.17)

≤ max
{
1,m−1/αk

}
h−1(f(w)1/k).

Integrating from 0 to r yields that

(2.18) ψ(w(r)) =

∫ ∞

w(r)

ds

h−1(f(s)1/k)
≤ max

{
1,m−1/αk

}
r
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for r ∈ (0, R). Combining (2.16) and (2.18), we conclude that the first
inequality in (2.3) holds.

Next we prove the second inequality in (2.3). As we have argued before,
we see that there exists a constant w2 > t0 such that a non-increasing,
convex solution w̃ on (0, R] to the following problem

(2.19)


f(w̃)g(|w̃′|) =

(
|w̃′|√
1+(w̃′)2

)k

·M in (0, R)

w̃(r) → ∞ as r → +0,

w̃(R) = w2

exists. We choose a constant R′ ∈ (0, R) such that w̃(R′) ≥ T ′, where T ′ is
a constant which appears in the condition (B2). For ε ∈ (0, R′/4), we define

(2.20) v2ε(x) = w̃(d(x)− ε) + L′, x ∈ ΩR′ \ Ωε,

where L′ is a positive constant to be determined later.
Hereafter, we use the abbreviation: v2ε = v2ε(x) and w̃ = w̃(d(x) − ε).

Then it follows from (B2) that

(2.21) f(w̃) = f(v2ε − L′) ≤ f(v2ε)− L′f ′(w̃) in ΩR′ .

By differentiating the ODE in (2.19), we have

(2.22) w̃′′ =
f ′(w̃)w̃′g(|w̃′|)2

(
1 + (w̃′)2

)3/2
M |w̃′| (1 + (w̃′)2) g′(|w̃′|)−Mkg(|w̃′|)

(
|w̃′|√

1 + (w̃′)2

)−(k−1)

,

which implies that

Hk[v2ε] =

(
|w̃′|√

1 + (w̃′)2

)k

Sk(κ̃) +
w̃′′

(1 + (w̃′)2)3/2

(
|w̃′|√

1 + (w̃′)2

)k−1

Sk−1(κ̃)

(2.23)

≤ f(w̃)g(|w̃′|) + f ′(w̃)w̃′g(|w̃′|)2

M |w̃′| (1 + (w̃′)2) g′(|w̃′|)−Mkg(|w̃′|)
Sk−1(κ̃)

≤ g(|Dv2ε|)

f(v2ε)− f ′(w̃)

L′ +
Sk−1(κ̃)

M (1+(w̃′)2)g′(|w̃′|)
g(|w̃′|) + Mk

w̃′

 .

Here we used (2.21). By the boundedness of Sk−1(κ̃) in ΩR′ and the condi-
tion (B4), one sees that there exists R′′ ∈ (0, R′) (which depends on L′, but
does not depend on ε) such that

(2.24) Hk[v2ε] ≤ f(v2ε) g(|Dv2ε|) in ΩR′′ \ Ωε.

Now we choose L′ sufficiently large so that L′ > ṽ2(0)−w2 where ṽ2 = ṽ2(r)
is a solution to

(2.25)



(
n−1
k−1

)
u′′

(1+u′2)
3/2

(
u′

r
√

1+u′2

)k−1

+
(
n−1
k

)(
u′

r
√

1+u′2

)k

= f(u)g(|u′|), r > 0

u(0) = ṽ2(0) > t0, u′(0) = 0,

u(r) → ∞ as r → R′′/2− 0.
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It is possible because as L′ is larger and larger, we can choose R′′ larger and
larger so that ṽ2(0) becomes smaller and smaller. We set v2(x) = ṽ2(|x|).

Then, it follows from the comparison principle that u(y) ≤ v2(0) = ṽ2(0)
for any y ∈ Ω which satisfies d(y) = R′′. Thus we have that

(2.26) v2ε(y) = w̃(R′′ − ε) + L′ ≥ w2 + L′ > ṽ2(0) ≥ u(y)

for any y ∈ Ω which satisfies d(y) = R′′. Moreover, it holds that v2ε(x) → ∞
as d(x) → ε+ 0 while u(x) takes finite value if d(x) = ε. Therefore, we can
deduce by the comparison principle that

(2.27) v2ε(x) = w̃(d(x)− ε) + L′ ≥ u(x)

for x ∈ ΩR′′ \ Ωε. Taking the limit ε→ +0, we get that

(2.28) w̃(d(x)) + L′ ≥ u(x)

for x ∈ ΩR′′ .
Using (2.19) and the condition (B3), we obtain that

−w̃′ = h−1
(
M−1/kf(w̃)1/k

)
(2.29)

≥ min
{
1,M−1/αk

}
h−1(f(w̃)1/k).

Integrating from 0 to r yields that

(2.30) ψ(w(r)) =

∫ ∞

w(r)

ds

h−1(f(s)1/k)
≥ min

{
1,M−1/αk

}
r

for r ∈ (0, R′′). Combining (2.28) and (2.30), we conclude that the second
inequality in (2.3) holds. �

Example 2.2. Let 1 ≤ k ≤ n − 1 and p, q > 0. Suppose Ω is a bounded
and uniformly k-convex domain with boundary ∂Ω ∈ C∞. We consider the
same equations as in Example 2.1:

(i) Hk[u] = up/
(
1 + |Du|2

)q/2
in Ω.

Theorem 2.2 implies that a boundary blowup solution u (if it exists)
satisfies

(2.31) C1 dist(x, ∂Ω)
− q

p−q ≤ u(x) ≤ C2 dist(x, ∂Ω)
− q

p−q near ∂Ω

for some constants C1, C2 > 0, provided p ≥ k and p > q.

(ii) Hk[u] = epu/
(
1 + |Du|2

)q/2
in Ω.

We can also see that a boundary blowup solution u (if it exists) satisfies

(2.32) u(x) = −q
p
log dist(x, ∂Ω) +O(1) near ∂Ω,

provided q > 0.

Remark 2.2. The case k = n, which corresponds to Gauss curvature equa-
tion, is excluded from Theorems 2.1 and 2.2. Alternative results for the case
k = n are given in Section 4.
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3. Uniqueness results for boundary blowup problem

In this section, we give the uniqueness result for the boundary blowup
problem (1.1)-(1.2) for 1 ≤ k ≤ n− 1.

Theorem 3.1. Let 1 ≤ k ≤ n − 1. We assume that the conditions in
Theorem 2.2 are satisfied. Also, we assume the following.

(C1) Ω is star-shaped (with respect to some point x0 ∈ Ω).
(C2) There exists constants β > 0 and T ′′ > 0 such that f(t)/tβ is non-

decreasing in [T ′′,∞).
(C3) lims→+0 sψ

−1(s) = 0, where ψ is defined in Theorem 2.2.

Then the problem (1.1)-(1.2) has at most one viscosity solution.

Proof. In this proof, we denote the notation d(x) = dist(x, ∂Ω) again. With-
out loss of generality, we may assume that x0 = 0. Suppose that u1 and u2
be solutions to (1.1)-(1.2). In the following proof, we argue in the classical
sense, but one can justify it in the viscosity sense.

For λ ∈ (1, 2), we define a function ũ2,λ in Ω by ũ2,λ(x) = λu2(x/λ)−φ(λ),
where φ(λ) is a positive constant to be determined later. It can be defined
due to the condition (C1). Then it holds that

(3.1) Hk[ũ2,λ] =
1

λk
Hk[u2]

(x
λ

)
.

Later, we will determine φ(λ) appropriately, in such a way as to satisfy that
ũ2,λ is a subsolution to (1.1) and that φ(λ) → 0 as λ→ 1 + 0.

Meanwhile, we suppose that one can choose φ(λ) as above. Now u1(x) →
∞ as d(x) → 0, while ũ2,λ has finite value on ∂Ω. It follows from the
comparison principle that

(3.2) u1(x) ≥ ũ2,λ

(x
λ

)
− φ(λ).

Letting λ→ 1 + 0, we get u1 ≥ u2 in Ω.
Now we prove that φ(λ) can be chosen as desired. Noticing Dũ2,λ(x) =

Du2(x/λ), we have by (3.1) that

(3.3) Hk[ũ2,λ] =
1

λk
f
(
u2

(x
λ

))
g(|Dũ2,λ(x)|).

Therefore, ũ2,λ is a subsolution to (1.1) if and only if it holds that for any
x ∈ Ω,

(3.4)
1

λk
f
(
u2

(x
λ

))
≥ f(ũ2,λ(x)) = f

(
λu2

(x
λ

)
− φ(λ)

)
.

By Theorem 2.2, we obtain that there exist constants c > t0 and c1, c2 > 0
such that for any x ∈ Ω,

(3.5) c ≤ u2

(x
λ

)
≤ ψ−1

(
λ− 1

λ
c1

)
+ c2,

because d(x/λ) ≥ (1−1/λ)c1 for some c1 > 0 which is independent of x ∈ Ω.
Therefore it is enough to prove that there exists φ(λ) > 0 such that

(3.6) f−1

(
1

λk
f(s)

)
≥ λs− φ(λ) for any c ≤ s ≤ ψ−1

(
λ− 1

λ
c1

)
+ c2,

and that φ(λ) → 0 as λ→ 1 + 0.
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We set

(3.7) ψ(λ, s) = λs− f−1

(
1

λk
f(s)

)
, λ ∈ [1, 2], s ∈ (s0,∞),

and

(3.8) η(λ) = sup
c≤s≤2k/βT ′′

|ψ(λ, s)|, λ ∈ [1, 2],

where β and T ′′ are constants which appear in the condition (C2). We
note that ψ(1, s) ≡ 0 which implies η(1) = 0. Then it is easily seen that
limλ→1+0 η(λ) = 0.

Now we define

(3.9) φ(λ) =
(
λ− λ−k/β

)(
ψ−1

(
λ− 1

λ
c1

)
+ c2

)
+ η(λ).

We fix arbitrary s which satisfies c ≤ s ≤ ψ−1((λ − 1)c1/λ) + c2. First, if

c ≤ s ≤ 2k/βT ′′, then we get that

(3.10) f−1

(
1

λk
f(s)

)
= λs− ψ(λ, s) ≥ λs− η(λ) ≥ λs− φ(λ).

Next, if 2k/βT ′′ ≤ s ≤ ψ−1((λ− 1)c1/λ) + c2, then it holds that

(3.11) f−1

(
1

λk
f(s)

)
≥ s

λk/β
= λs−

(
λ− λ−k/β

)
s ≥ λs− φ(λ).

Here we used the condition (C2). Furthermore, it holds that
(3.12)

φ(λ) =
λ
(
λ− λ−k/β

)
(λ− 1)c1

[
(λ− 1)c1

λ

(
ψ−1

(
λ− 1

λ
c1

)
+ c2

)]
+ η(λ) → 0

as λ→ 1 + 0, due to the condition (C3). This completes the proof.

By the similar argument, we see that u1 ≤ u2 in Ω and hence u1 = u2 in
Ω. �

Example 3.1. Let 1 ≤ k ≤ n − 1 and p, q > 0. Suppose Ω is a bounded,
star-shaped and uniformly k-convex domain with boundary ∂Ω ∈ C∞. We
consider again the same equations as in the last section:

(i) Hk[u] = up/
(
1 + |Du|2

)q/2
in Ω.

Theorem 3.1 implies that there exists at most one boundary blowup so-
lution, provided p ≥ k and p > 2q.

(ii) Hk[u] = epu/
(
1 + |Du|2

)q/2
in Ω.

It follows that there exists at most one boundary blowup solution for any
p, q > 0.
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4. The case of Gauss curvature equation

The case k = n, which corresponds to Gauss curvature equation

(4.1)
detD2u

(1 + |Du|2)(n+2)/2
= f(u)g(|Du|)

is excluded from all theorems in Sections 2 and 3. In this section, we shall
obtain the alternative results for the case k = n.

First, we state results for the existence and for the asymptotic behavior
of a boundary blowup solution, which we have already proved in [28].

Theorem 4.1. Let k = n. We assume that Ω is a bounded and strictly
convex domain with boundary ∂Ω ∈ C∞. Furthermore, we also assume that
the conditions (A3) is satisfied and that lim supt→∞ g(t)t < ∞. Then there
exists a viscosity solution to (1.1)-(1.2).

Theorem 4.2. Let k = n. We assume that Ω is a bounded and strictly
convex domain with boundary ∂Ω ∈ C∞. Furthermore, we also assume that
the conditions (A3), (B1), (B2) and

(B5) There exists a constant α > 0 such that H(t)/tα is non-decreasing
for t > 0, where

(4.2) H(t) =

∫ t

0

sn

g(s) (1 + s2)(n+2)/2
ds,

are satisfied. Then there exist positive constants C1, C2 such that every
solution u to (1.1)-(1.2) satisfies

(4.3) C1 dist(x, ∂Ω) ≤ Ψ(u(x)) ≤ C2 dist(x, ∂Ω),

where Ψ is defined by

(4.4) Ψ(t) =

∫ ∞

t

ds

H−1(F (s))
.

Next, we establish the uniqueness result for the case k = n.

Theorem 4.3. Let k = n. We assume that the conditions in Theorem 4.2
are satisfied. Also, we assume that the conditions (C2) and

(C3)’ lims→+0 sΨ
−1(s) = 0, where Ψ is defined in Theorem 4.2,

are satisfied. Then the problem (1.1)-(1.2) has at most one viscosity solu-
tion.

The proof of this theorem is mostly the same as that of Theorem 3.1, so
we omit it. Finally, we give some examples.

Example 4.1. Let k = n and p, q > 0. Suppose Ω is a bounded and
strictly convex domain with boundary ∂Ω ∈ C∞. We consider again the
same equations given before:

(i) Hn[u] = up/
(
1 + |Du|2

)q/2
in Ω.

Theorem 2.1 implies that if p > q ≥ 1, then there exists a boundary
blowup solution, and it follows from Theorem 2.2 that any boundary blowup
solution satisfies

(4.5) C1 dist(x, ∂Ω)
− q−1

p−q+2 ≤ u(x) ≤ C2 dist(x, ∂Ω)
− q−1

p−q+2 near ∂Ω
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for some constants C1, C2 > 0, provided p ≥ n and p > q > 1. Moreover,
Theorem 2.2 implies that there exists at most one boundary blowup solution,
provided p ≥ n, p > 2q − 3 and q > 1.

(ii) Hn[u] = epu/
(
1 + |Du|2

)q/2
in Ω.

One can see that there exists a unique boundary blowup solution which
satisfies

(4.6) u(x) = −q − 1

p
log dist(x, ∂Ω) +O(1) near ∂Ω,

provided q > 1.

Acknowledgement. This research is partially supported by Grant-in-Aid
for Scientific Research (No. 22740091) from Japan Society for the Promotion
of Science.
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Abstract

We are concerned with the characterization of entire solutions to the parabolic

k-Hessian equation of the form −utFk(D2u) = 1 in Rn × (−∞, 0]. We prove
that for 1 ≤ k ≤ n, any strictly convex-monotone solution u = u(x, t) ∈
C4,2(Rn × (−∞, 0]) to −utFk(D2u) = 1 in Rn × (−∞, 0] must be a linear
function of t plus a quadratic polynomial of x, under some growth assump-

tions on u.
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1. Introduction

In the early 20th century, Bernstein [2] proved the following theorem;

If f ∈ C2(R2) and the graph of z = f(x, y) is a minimal surface in R3,
then f is necessarily a linear function of x and y. This theorem gives the

characterization of entire solutions to the minimal surface equation defined

in the whole plane R2.
Many problems on the classification of entire solutions to PDEs have

been extensively studied. We list some results concerning Bernstein type
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theorems for fully nonlinear equations. First, for Monge-Ampère equation,

the following theorem is known.

Theorem 1.1. Let u ∈ C4(Rn) be a convex solution to

detD2u = 1 in Rn. (1.1)

Then u is a quadratic polynomial.

This theorem was proved by Jörgens [15] for n = 2, by Calabi [6] for

n ≤ 5, and by Pogorelov [19] for arbitrary n ≥ 2 (see also [7] for a simpler
proof). Caffarelli [3] proved that the result holds for viscosity solutions (see

also [4]). Moreover, Jian and Wang [14] obtained Bernstein type result for a

certain Monge-Ampère equation in the half space Rn+.
Here we note that the convexity assumption in Theorem 1.1 is quite nat-

ural, since Monge-Ampère operator detD2u is degenerate elliptic for convex

functions so that we usually seek solutions in the class of convex functions

when we deal with Monge-Ampère equation.

Later, Bao, Chen, Guan and Ji [1] extended this result to the so-called

k-Hessian equation of the form

Fk(D
2u) = 1 in Rn, (1.2)

for 1 ≤ k ≤ n. Here Fk(D2u) is defined by

Fk(D
2u) = Sk(λ1, . . . ,λn), (1.3)

where, for a C2 function u, λ1, . . . ,λn denote the eigenvalues of the Hessian

matrix D2u, and Sk denotes the k-th elementary symmetric function, that is

Sk(λ1, . . . ,λn) =
X

λi1 · · ·λik , (1.4)

where the sum is taken over all increasing k-tuples, 1 ≤ i1 < · · · < ik ≤ n.
Laplace operator ∆u and Monge-Ampère operator detD2u correspond

respectively to the special cases k = 1 and k = n in (1.3). Hence, the class

of k-Hessian equations includes important PDEs which arise in physics and

geometry. Here we remark that (1.3) is a linear operator for k = 1 while

it is a fully nonlinear operator for k ≥ 2. It is much harder to study the

intermediate case 2 ≤ k ≤ n − 1. Though, there are a number of papers
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concerning the analysis of k-Hessian equation, such as the solvability of the

Dirichlet problem, see [5, 9, 12, 20, 21, 22, 23, 24, 25] for example.

Bao, Chen, Guan and Ji [1] proved the following Bernstein type theorem

for k-Hessian equation (1.2).

Theorem 1.2. Let 1 ≤ k ≤ n and u ∈ C4(Rn) be a strictly convex solution
to (1.2). Suppose that there exist constants A,B > 0 such that for all x ∈ Rn,

u(x) ≥ A|x|2 − B. (1.5)

Then u is a quadratic polynomial.

In this theorem, for the case k = n which corresponds to Monge-Ampère

equation, the assumption (1.5) can be removed, due to Theorem 1.1. Fur-

thermore, for the case k = 1 which corresponds to Poisson equation ∆u = 1,

the assumption (1.5) can also be removed. It is because the classical convex

solution to ∆u = 1 in Rn must be quadratic, as it follows almost straightfor-
ward from Liouville’s theorem for harmonic functions.

Next, Gutiérrez and Huang [11] extended Theorem 1.1 to the parabolic

analogue of Monge-Ampère equation

−ut detD2u = 1 in Rn × (−∞, 0]. (1.6)

Here D2u means the matrix of second partial derivatives with respect to x.

This type of equation was firstly proposed by Krylov [16].

The function u = u(x, t) : Rn × (−∞, 0] → R is said to be convex-

monotone if it is convex in x and non-increasing in t. We state Bernstein

type theorem for (1.6) which Gutiérrez and Huang [11] proved.

Theorem 1.3. Let u ∈ C4,2(Rn × (−∞, 0]) be a convex-monotone solution
to (1.6). Suppose that there exist constants m1 ≥ m2 > 0 such that for all

(x, t) ∈ Rn × (−∞, 0],

−m1 ≤ ut(x, t) ≤ −m2. (1.7)

Then u has the form u(x, t) = −mt+ p(x) where m > 0 is a constant and p

is a quadratic polynomial.
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We note that Xiong and Bao [28] have recently obtained Bernstein type

theorems for more general parabolic Monge-Ampère equations, such as ut =

(detD2u)1/n and ut = log detD2u. However, as far as we know, Bernstein

type theorems for parabolic fully nonlinear equations are known only for the

parabolic Monge-Ampère equations.

In this paper, we are concerned with the parabolic analogue of k-Hessian

equation of the following form

−utFk(D2u) = 1 in Rn × (−∞, 0], (1.8)

for 1 ≤ k ≤ n. Here Fk(D2u) is the k-Hessian operator defined in (1.3). We

call (1.8) “parabolic k-Hessian equation” in this paper. For the special case

k = n, (1.8) reduces to the parabolic Monge-Ampère equation (1.6). We

shall obtain Bernstein type theorem for (1.8).

This paper is divided as follows. In Section 2, we state our main result

and give the strategy for the proof. In Section 3, we prove Pogorelov type

lemma, which is used later. Section 4 is devoted to the proof of the main

result. Finally, in Section 5, we state some remarks and open problems.

2. Main result

The function u = u(x, t) : Rn× (−∞, 0]→ R is said to be strictly convex-
monotone if u is strictly convex in x and decreasing in t. Here is our main

result of this paper.

Theorem 2.1. Let 1 ≤ k ≤ n and u ∈ C4,2(Rn × (−∞, 0]) be a strictly
convex-monotone solution to (1.8). Suppose that there exist constants m1 ≥
m2 > 0 such that for all (x, t) ∈ Rn × (−∞, 0],

−m1 ≤ ut(x, t) ≤ −m2, (2.1)

and that there exist constants A,B > 0 such that for all x ∈ Rn,
u(x, 0) ≥ A|x|2 − B. (2.2)

Then u has the form u(x, t) = −mt+ p(x) where m > 0 is a constant and p

is a quadratic polynomial.

Remark 2.1. For the case k = n which corresponds to the parabolic Monge-

Ampère equation (1.6), the assumption (2.2) can be removed, due to Theorem

1.3.
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The proof of this theorem will be given in subsequent sections. Here we

give the strategy for the proof:

Step 1. Derivation of a local gradient estimate of u.

Step 2. Pogorelov type lemma.

Step 3. Combining these results and Evans-Krylov type theorem, we obtain

local α-Hölder estimates of D2u and ut.

3. Pogorelov type lemma

We introduce some notation. First, if D ⊂ Rn× (−∞, 0] and t ≤ 0, D(t)
is denoted by

D(t) = {x ∈ Rn | (x, t) ∈ D}.
Let D ⊂ Rn × (−∞, 0] be a bounded set and t0 = inf{t ≤ 0 | D(t) 6= ∅}.
The parabolic boundary ∂pD of D is defined by

∂pD =
³
D(t0)× {t0}

´
∪
[
t≤0
(∂D(t)× {t}) ,

where D(t0) denotes the closure of D(t0) and ∂D(t) denotes the boundary of

D(t). We say that the domain D ⊂ Rn× (−∞, 0] is a bowl-shaped domain if
D(t) is convex for each t ∈ (−∞, 0] and D(t1) ⊂ D(t2) for t1 ≤ t2 ≤ 0.
Next, for λ = (λ1, . . . ,λn) and 1 ≤ m ≤ n, we define

Sm;i1i2...ij(λ) =

(
Sm(λ)

¯̄
λi1=λi2=···=λij=0

if ip 6= iq for any 1 ≤ p < q ≤ j,
0 otherwise.

In this section, we prove Pogorelov type lemma. This is an analogue of

the result of Pogorelov [18], who derived interior C2-estimates of a solution

from C1-estimates for Monge-Ampère equation. The idea of the proof of the

following proposition is adapted from that of [8].

Proposition 3.1. Let D be a bounded bowl-shaped domain in Rn× (−∞, 0]
and u ∈ C4,2(D) a strictly convex-monotone solution to −utFk(D2u) = 1

in D with u = 0 on ∂pD, which satisfies (2.1) in D. Then there exists a

constant C = C(n, k,m2, kukC1(D)) such that
sup

(x,t)∈D
|u(x, t)|4|D2u(x, t)| ≤ C. (3.1)
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Proof. We consider the auxiliary function

Ψ(x, t; ξ) = (−u(x, t))4ϕ
µ |Du(x, t)|2

2

¶
Dξξu(x, t), (x, t) ∈ D, |ξ| = 1,

where ϕ(s) = (1− s/M)−1/8 and M = 2 sup(x,t)∈D |Du(x, t)|2.
Then we can take a point (x0, t0) ∈ D and a unit vector ξ0 ∈ Rn which

satisfy

Ψ(x0, t0; ξ0) = max{Ψ(x, t; ξ) | (x, t) ∈ D, |ξ| = 1}.
The point (x0, t0) can be taken in D\∂pD due to the boundary condition u =
0 on ∂pD. Without loss of generality, we may assume ξ0 = e1 and D

2u(x0, t0)

is diagonal with D11u(x0, t0) ≥ D22u(x0, t0) ≥ · · · ≥ Dnnu(x0, t0) > 0.

ThenΨ = Ψ(x, t; e1) = (−u(x, t))4ϕ(|Du(x, t)|2/2)D11u(x, t) attains its max-

imum at (x0, t0) and the eigenvalues of D
2u(x0, t0) are λ = (λ1, . . . ,λn) =

(u11(x0, t0), . . . , unn(x0, t0)). It is enough to consider the case λ1 = u11(x0, t0) ≥
1. Here and throughout the paper, we denoted Diu by ui, Diju by uij, and

so on.

Since Ψ attains its maximum at (x0, t0), direct calculation gives

(logΨ)i =
4ui

u
+
ϕi

ϕ
+
u11i

u11
= 0, (3.2)

(logΨ)ii = 4

µ
uii

u
− u

2
i

u2

¶
+
ϕii

ϕ
− ϕ2i
ϕ2
+
u11ii

u11
− u

2
11i

u211
≤ 0, (3.3)

(logΨ)t =
4ut

u
+
ϕt

ϕ
+
u11t

u11
≥ 0, (3.4)

ϕi = ϕ0
µ |Du|2

2

¶
uiuii, (3.5)

ϕii = ϕ00
µ |Du|2

2

¶
u2iu

2
ii + ϕ0

µ |Du|2
2

¶Ã
u2ii +

nX
j=1

ujuiij

!
, (3.6)

ϕt = ϕ0
µ |Du|2

2

¶ nX
j=1

ujujt (3.7)

at (x0, t0), for i = 1, . . . , n. We set f(D
2u) = Fk(D

2u)1/k, then u satisfies

(−ut)
1
k f(D2u) = 1 in D. (3.8)
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Differentiating (3.8) with respect to xγ (and using (3.8) itself) yields

−1
k
(−ut)−1uγt + (−ut)

1
k fijuijγ = 0. (3.9)

Here, for f = f(M) where M = (mij)1≤i,j≤n, we write fij = ∂f/∂mij.

Multiplying (3.9) by (−ut)−1/k, differentiating once more with respect to xγ
and multiplying (−ut)1/k, we obtain

−
µ
1

k
+ 1

¶
u2γt

ku2t
+
uγγt

kut
+ (−ut)

1
k fiiuiiγγ + (−ut)

1
k fij,rsuijγursγ = 0, (3.10)

where fij,rs = ∂2f/∂mij∂mrs. It follows from the calculation in [8, Section

4] that

fij,rsuijγursγ ≤ −1
k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)u

2
ijγ (3.11)

at (x0, t0). By using (3.10) and (3.11), we get the inequality

uγγt

kut
+ (−ut) 1k fiiuiiγγ ≥ (−ut) 1k 1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)u

2
ijγ

at (x0, t0). Letting γ = 1 and multiplying 1/u11, we get at (x0, t0)

u11t

kutu11
+ (−ut)

1
k fii

u11ii

u11
≥ (−ut)

1
k
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11
. (3.12)

Let L be the linearized operator of (3.8) at (x0, t0). Then one can write

L =
1

kut(x0, t0)
Dt + (−ut(x0, t0))

1
k fij(D

2u(x0, t0))Dij.

By (3.3) and (3.4), we obtain

L(logΨ) = (−ut)
1
k fii

µ
4

µ
uii

u
− u

2
i

u2

¶
+
ϕii

ϕ
− ϕ2i
ϕ2
+
u11ii

u11
− u

2
11i

u211

¶
+

1

kut

µ
4ut

u
+
ϕt

ϕ
+
u11t

u11

¶
≤ 0. (3.13)
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at (x0, t0). By substituting (3.6), (3.7), (3.9) and (3.12) into (3.13), we obtain

(−ut)
1
k fii

µ
4

µ
uii

u
− u

2
i

u2

¶
+
ϕ00

ϕ
u2iu

2
ii +

ϕ0

ϕ
u2ii −

ϕ02

ϕ2
u2iu

2
ii −

u211i
u211

¶
+ (−ut)

1
k
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11
+
4

ku
≤ 0 (3.14)

at (x0, t0).

Now we split into two cases.

(i) ukk ≥ Ku11, where K > 0 is a small constant to be determined later.

By (3.2) and (3.5), we have

u211i
u211

=

µ
4ui

u
+
ϕi

ϕ

¶2
≤ 2

µ
16u2i
u2

+
ϕ02u2iu

2
ii

ϕ2

¶
(3.15)

at (x0, t0). Therefore (3.15) and the fact that the second term of the left

hand side of (3.14) is non-negative yield

(−ut)
1
k fii

µ
4

µ
uii

u
− 9u

2
i

u2

¶
+

µ
ϕ00

ϕ
− 3ϕ

02

ϕ2

¶
u2iu

2
ii +

ϕ0

ϕ
u2ii

¶
+
4

ku
≤ 0

at (x0, t0). Since

nX
i=1

fiiu
2
ii > fkku

2
kk ≥ θ1

nX
i=1

fiiu
2
11 (3.16)

holds for some constant θ1 > 0 (cf. [8]) and ϕ
00/ϕ − 3ϕ02/ϕ2 ≥ 0, it can be

derived by (3.15) that at (x0, t0)

(−ut)
1
k θ2

nX
i=1

fiiu
2
11 − C(−ut)

1
k
1

u2

nX
i=1

fii +
4

u

µ
1 +

1

k

¶
≤ 0,

for some constant θ2 > 0. Here we used the fact that
Pn

i=1 fii(D
2u)uii =

f(D2u) = (−ut)−1/k at (x0, t0), due to the homogeneity of f and (3.8). By
multiplying (−u)8ϕ2, we obtain

(−ut) 1k θ2
nX
i=1

fiiu
2
11(−u)8ϕ2 − C(−ut)

1
k (−u)6ϕ2

nX
i=1

fii − 4
µ
1 +

1

k

¶
(−u)7ϕ2 ≤ 0.

(3.17)
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On the other hand, it holds that at (x0, t0)

nX
i=1

fii(D
2u) =

nX
i=1

1

k
Fk(D

2u)
1
k
−1 ∂Fk
∂mii

(D2u)

=
1

k
(−ut)1−

1
k

nX
i=1

Sk−1;i(λ) ≤ C(−ut)1−
1
kuk−111 , (3.18)

and that

nX
i=1

fii(D
2u) ≥ fnn(D2u)

=
1

k
Fk(D

2u)
1
k
−1 ∂Fk
∂mnn

(D2u)

≥ 1
k
Fk(D

2u)
1
k
−1θ3u11 · · · uk−1,k−1 ≥ C(−ut)1−

1
kuk−111 , (3.19)

for some constant θ3 > 0 (see [8, (3.2)]), by the hypothesis ukk ≥ Ku11.

Substituting (3.18) and (3.19) into (3.17), we obtain

Ψ2 ≤ C(−u)6ϕ2 + (−u)7ϕ2
(−ut)uk−111

≤ C(n, k,m2, kukC1(D)),

at (x0, t0). Therefore, for all (x, t) ∈ D and ξ ∈ Rn with |ξ| = 1, (−u)4uξξ ≤
C holds, so that (−u)4|D2u| can be estimated from above by some constant

C.

(ii) ukk ≤ Ku11, that is, ujj ≤ Ku11 for j = k, k + 1, . . . , n.
By (3.2),

u111

u11
= −

µ
ϕ1

ϕ
+
4u1

u

¶
,
ui

u
= −1

4

µ
ϕi

ϕ
+
u11i

u11

¶
, i = 2, . . . , n (3.20)
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at (x0, t0). Substituting (3.20) into (3.14), we obtain

0 ≥ (−ut)
1
k f11

Ã
4

µ
u11

u
− u

2
1

u2

¶
+
ϕ00

ϕ
u21u

2
11 +

ϕ0

ϕ
u211 −

ϕ02

ϕ2
u21u

2
11 −

µ
ϕ1

ϕ
+
4u1

u

¶2!

+ (−ut)
1
k

nX
i=2

fii

Ã
4uii

u
− 1
4

µ
ϕi

ϕ
+
u11i

u11

¶2
+
ϕ00

ϕ
u2iu

2
ii +

ϕ0

ϕ
u2ii −

ϕ02

ϕ2
u2iu

2
ii −

u211i
u211

!

+ (−ut)
1
k
1

k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11
+
4

ku

≥
"
(−ut) 1k

nX
i=1

fii

µ
4uii

u
+

µ
ϕ00

ϕ
− 3ϕ

02

ϕ2

¶
u2iu

2
ii +

ϕ0

ϕ
u2ii

¶
− 36(−ut) 1k f11u

2
1

u2

#

+

"
−3
2
(−ut) 1k

nX
i=2

fii
u211i
u211

+ (−ut) 1k 1
k

nX
i,j=1

Sk(λ)
1
k
−1Sk−2;ij(λ)

u21ij

u11

#
+
4

ku

=: I1 + I2 +
4

ku
, (3.21)

at (x0, t0). First, I1 can be estimated from below as

I1 ≥ (−ut)
1
k θ1f11u

2
11 +

4

u
− C(−ut)

1
k
f11

u2

≥ (−ut) 1k 1
2
θ1f11u

2
11 +

4

u
, (3.22)

provided u(x0, t0)
2u11(x0, t0)

2 ≥ 2C/θ1. If u(x0, t0)
2u11(x0, t0)

2 < 2C/θ1,

then (3.1) is obvious. Hence we may assume u(x0, t0)
2u11(x0, t0)

2 ≥ 2C/θ1
hereafter. Second, I2 can be also estimated from below as

I2 ≥ −3
2
(−ut)

1
k
1

k
Sk(λ)

1
k
−1

nX
i=2

Sk−1;i(λ)
u211i
u211

+ 2(−ut)
1
k
1

k
Sk(λ)

1
k
−1

nX
i=2

Sk−2;1i(λ)
u211i
u11

= 2(−ut)
1
k
1

k
Sk(λ)

1
k
−1
Ã

nX
i=2

µ
Sk−2;1i(λ)− 3

4

Sk−1;i(λ)
λ1

¶
u211i
λ1

!
≥ 0, (3.23)

by using λ1Sk−2;1i(λ) ≥ 3Sk−1;i(λ)/4 provided K > 0 is sufficiently small (see

[8, Lemma 3.1]).

Substituting (3.22) and (3.23) into (3.21), we obtain

0 ≥ (−ut)
1
k
1

2
θ1f11u

2
11 +

4

u

µ
1 +

1

k

¶
. (3.24)
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By multiplying (−u)4ϕ, we get

0 ≥ 1
2
θ1(−ut)

1
k f11u

2
11(−u)4ϕ− C(−u)3ϕ.

It follows from [8, Lemma 3.1] that λ1Sk−1;1(λ) ≥ θ4Sk(λ) for some constant

θ4 > 0, which implies that

f11u
2
11 =

1

k
Sk(λ)

1
k
−1Sk−1;1(λ)λ

2
1 ≥

θ4

k
Sk(λ)

1
kλ1 =

θ4

k
(−ut)− 1

ku11. (3.25)

Hence the inequality

0 ≥ θ1θ4

2k
(−u)4ϕu11 − C(−u)3ϕ

holds at (x0, t0). Then we have

Ψ ≤ C(−u)3ϕ ≤ C(n, k,m2, kukC1(D)),

at (x0, t0). Therefore, (−u)4|D2u| can be estimated from above by some

constant C.

4. Proof of Theorem 2.1

Before giving a proof of Theorem 2.1, we introduce some notation. For a

subset D ⊂ Rn×(−∞, 0], a function v defined on D and α ∈ (0, 1), α-Hölder
seminorm of v over D is denoted by

[v]α,D = sup
(x,t),(y,s)∈D,
(x,t)6=(y,s)

|v(x, t)− v(y, s)|
(|x− y|2 + |t− s|)α2 . (4.1)

Moreover, Sn×n is defined to be the set of all symmetric n× n matrices, and
Sn×n+ is the set of all non-negative definite symmetric n× n matrices.
Let u ∈ C4,2(Rn × (−∞, 0]) be a strictly convex-monotone solution to

(1.8), which satisfies the growth conditions (2.1) and (2.2). We may assume

without loss of generality that u(0, 0) = 0, Du(0, 0) = 0, by considering

u(x, t)− u(0, 0)−Du(0, 0) · x instead of u(x, t). Then it can be seen by (2.2)
that there exists a constant Ã > 0 such that u(x, 0) ≥ Ã|x|2 for all x ∈ Rn,
Let R > 0 be fixed. We define v(x, t) = vR(x, t) = u(Rx,R

2t)/R2. Then

v is also a strictly convex-monotone classical solution to (1.8), and satisfies
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vt(x, t) = ut(Rx,R
2t) and vij(x, t) = uij(Rx,R

2t). Moreover, it holds that

for all (x, t) ∈ Rn × (−∞, 0],
−m1 ≤ vt(x, t) ≤ −m2, (4.2)

and that for all x ∈ Rn,
v(x, 0) ≥ Ã|x|2. (4.3)

First, we shall obtain the local gradient estimate of the solution v. For

q > 0, we set

Ωq = {(x, t) ∈ Rn × (−∞, 0] | v(x, t) < Ãq}. (4.4)

Then we can find that Ωq is a bounded bowl-shaped domain and

Ωq(t) ⊂ Ωq(0) ⊂ B(0,√q), (4.5)

due to (4.2), (4.3) and the strict parabolic-monotonicity of v. Now we estab-

lish the following estimate.

Lemma 4.1. Let v and Ωq be defined as above. Then there exists a constant

C > 0, independent of q and R, such that for all (x, t) ∈ Ωq,
|Dv(x, t)| ≤ C√q. (4.6)

Proof. We note that v(x, t) is strictly convex in x, and that v(x, t)−Ãq = 0 on
∂pΩq. From Newton-Maclaurin inequality it follows that (Fk(M)/

¡
n

k

¢
)1/k ≥

Fn(M)
1/n for all M ∈ Sn×n+ .

By Aleksandrov’s maximum principle (cf. [10]), we obtain that at (x0, t) ∈
Ωq,

|v(x0, t)− Ãq|n ≤ C (diamΩq(t))n−1 dist(x0, ∂Ωq(t))|∂v(Ωq(t))|
≤ C(2√q)n−1 dist(x0, ∂Ωq(t))

Z
Ωq(t)

detD2v(x, t) dx

≤ Cq n−12 dist(x0, ∂Ωq(t))

Z
Ωq(t)

Fk(D
2v(x, t))

n
k dx

= Cq
n−1
2 dist(x0, ∂Ωq(t))

Z
Ωq(t)

(−vt)−
n
k dx

≤ Cq n−12 dist(x0, ∂Ωq(t)) ·m−
n
k

2 |B(0,√q)|
= Cqn−

1
2 dist(x0, ∂Ωq(t)), (4.7)

12



so that

|v(x0, t)− Ãq| ≤ Cq1− 1
2n dist(x0, ∂Ωq(t))

1
n . (4.8)

Therefore for all x0 ∈ Ωq/2(t),

Ãq − 1
2
Ãq ≤ Ãq − v(x0, t) ≤ Cq1−

1
2ndist(x0, ∂Ωq(t))

1
n ,

which implies the inequality

dist(Ω q
2
(t), ∂Ωq(t)) ≥ Cq 12 . (4.9)

Therefore we can see that |Dv(x, t)| ≤ Cq1/2 for all (x, t) ∈ Ωq/2 by (4.9) and
the convexity of v with respect to x. This ends the proof.

Especially, |Dv(x, t)| ≤ C for all (x, t) ∈ Ω1, in which C is independent of R.
By applying (3.1) to the function Ã− v(x, t), one obtains³

Ã− v(x, t)
´4
|D2v(x, t)| ≤ C

in Ω1. This implies that

|D2v(x, t)| ≤ C in Ω1/2. (4.10)

The following Evans-Krylov type theorem is needed for the proof of The-

orem 2.1. For the proof, see [11].

Theorem 4.2. Let D and D0 be bounded bowl-shaped domains which satisfy
D0 ⊂ D and dist(D0, ∂pD) > 0, and u be a C4,2(D) solution to the equation

G(ut, D
2u) = 0

in D, where G = G(q,M) is defined for all (q,M) ∈ R×Sn×n with G(·,M) ∈
C1(R) for each M ∈ Sn×n, and G ∈ C2(R×X) for some X ⊂ Sn×n which is
a neighborhood of D2u(D). Suppose that:

(i) G is uniformly parabolic, i.e., there exist positive constants λ and Λ

such that

−Λ ≤ Gq(q,M) ≤ −λ, (4.11)

λkNk ≤ G(q,M +N)−G(q,M) ≤ ΛkNk, (4.12)

13



for all q ∈ R and M , N ∈ Sn×n with N ≥ O.
(ii) G is concave with respect to M .

If kukC2,1(D) ≤ K, then there exist positive constants C depending on λ,

Λ, n, K, D, D0 and G(0, 0), and α ∈ (0, 1) depending on λ, Λ and n such

that

kuk
C
2+α,1+α

2 (D0) ≤ C.

Then we prove the next lemma in order to use Theorem 4.2.

Lemma 4.3. There exists a constant C > 0, independent of R, such that

dist(Ω 1
8
, ∂pΩ 1

2
) ≥ C. (4.13)

Proof. Take (x, t) ∈ Ω1/8 arbitrarily. Then, putting q = 1/4 in (4.9), we

obtain

dist(Ω 1
8
(t), ∂Ω 1

4
(t)) ≥ C 0, (4.14)

where C 0 is a positive constant independent ofR. We set δ = min{Ã/(4m1), C
0}.

If dist((x, t), (x0, t0)) < δ, then |x − x0| < C 0 and |t − t0| < Ã/(4m1), which

imply that

v(x0, t0) = v(x0, t) +
Z t0

t

vt(x
0, s)ds

≤ v(x0, t) +m1|t− t0|

≤ 1
4
Ã+m1 · Ã

4m1

=
1

2
Ã,

due to (4.14). Therefore (x0, t0) ∈ Ω1/2 and this completes the proof.
We set G(q,M) = (−q)1/kFk(M)1/k − 1 = (−q)1/kf(M)− 1 for (q,M) ∈

[−m1,−m2]×X, where

X =

½
M = (mij) ∈ Sn×n+

¯̄̄̄
1

m1

≤ Fk(M) ≤ 1

m2

, |mij| ≤ C for i, j = 1, . . . , n
¾
,

in which C is a constant appeared in (4.10).
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Since Gq(q,M) = (−q)1/k−1Fk(M)1/k/k, we see that there exist constants
λ,Λ > 0 such that (4.11) holds in [−m1,−m2] ×X . Moreover, we can also
see that (4.12) and (ii) in Theorem 4.2 holds in [−m1,−m2]×X , due to [5].
Next we can extend G in R × Sn×n so that G satisfies (i) and (ii) in

Theorem 4.2 for different constants λ,Λ > 0 if necessary. Then we apply

Theorem 4.2 to G(vt, D
2v) = 0 in Ω1/2 and obtain that

kvk
C
2+α,1+α

2 (Ω 1
8
)
≤ C.

Therefore it follows that [Dijv]α,Ω1/8 ≤ C for i, j = 1, . . . , n and [vt]α,Ω1/8 ≤ C.
By substituting v(x, t) = u(Rx,R2t)/R2, we have

[Diju]α,{u(x,t)< Ã
8
R2} ≤ CR−α, (4.15)

[ut]α,{u(x,t)< Ã
8
R2} ≤ CR−α, (4.16)

for any R > 0. This implies that for any bounded subset Ω of Rn× (−∞, 0],
[Diju]α,Ω = 0, and [ut]α,Ω = 0. Hence Diju and ut are constants in Rn ×
(−∞, 0] and this completes the proof of Theorem 2.1.

5. Final remarks

(i) Viscosity solutions

Here we consider whether Theorem 2.1 also holds for viscosity solutions

to the parabolic k-Hessian equation (1.8). We can show the following propo-

sition.

Proposition 5.1. Let 1 ≤ k ≤ n. Then there exists a convex-monotone

viscosity solution u ∈ C(Rn × (−∞, 0]) to (1.8), which does not have the
form u(x, t) = −mt+ p(x) where m ≥ 0 and p is a quadratic polynomial.
Proof. Let t0 ≥ 0 be an arbitrary number. We set u by

u(x, t) = C(−t+ t0)α|x|β in Rn × (−∞, 0], (5.1)

where α = 1/(k + 1), β = 2k/(k + 1) and

C =

½
αβk
∙
(β − 1)

µ
n− 1
k − 1

¶
+

µ
n− 1
k

¶¸¾− 1
k+1

. (5.2)
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Now we define
¡
n−1
n

¢
= 0. Then it can be easily seen that u is convex-

monotone in Rn× (−∞, 0] and that u is a classical solution to (1.8) in (Rn \
{0})× (−∞, 0].
For t ≤ 0, there exists no C2,1 function ϕ which touches u at (0, t) from

above, because β < 2. While, for any admissible C2,1 function ϕ which

touches u from below at (0, t), ϕt(0, t) must be 0, because u(0, ·) ≡ 0. This
implies that −ϕt(0, t)Fk(D2ϕ)(0, t) = 0 ≤ 1. Therefore u is a viscosity

solution to (1.8) in Rn × (−∞, 0].
For k = n which corresponds to the parabolic Monge-Ampère equation’s

case, the function u constructed above is almost the same as the one in [11].

We remark that this function u satisfies neither (2.1) nor (2.2), for arbitrary

t0 ≥ 0. Also, it is not strictly convex-monotone. We would like to know

whether Theorem 2.1 holds for viscosity solutions under the assumptions

(2.1) and (2.2).

(ii) Other parabolic analogues of k-Hessian equation

In this paper we consider the parabolic k-Hessian equation of the form

−utFk(D2u) = 1, and obtain Bernstein type theorem for this equation. But

there are different parabolic analogues of k-Hessian equation which have been

studied in the literature.

Ivochkina and Ladyzhenskaya [13] have studied the solvability of the first

initial boundary value problem for

−ut + Fk(D2u)
1
k = ψ. (5.3)

X.J. Wang [27] considered a following version of parabolic equation,

−ut + logFk(D2u) = ψ. (5.4)

For the case k = n, (5.4) reduces to

−ut + log detD2u = ψ, (5.5)

which was studied by G. Wang and W. Wang [26]. Moreover,

Sk(−ut,λ1, . . . ,λn) = ψ, (5.6)

where λ1, . . . ,λn are the eigenvalues of D
2u, i.e., −utFk−1(D2u)+Fk(D

2u) =

ψ, was considered in [17].
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Our next task is to obtain Bernstein type theorems for other parabolic

analogues of k-Hessian equation.

(iii) Relaxing the assumptions : Growth conditions and convexity

We would like to remove growth conditions (1.5), (1.7), (2.1) and (2.2)

in Theorems 1.2, 1.3 and 2.1 (or, to prove growth conditions are necessary).

As we have stated in Section 1 and Remark 2.1 before, Theorem 1.2 remains

valid without the growth condition (1.5) when k = 1 (the case of Poisson

equation) and k = n (the case of Monge-Ampère equation), and Theorem

2.1 is true without (2.2) when k = n. However, we do not know any more

for other cases.

It is known that k-Hessian operator Fk(D
2u) is degenerate elliptic for

k-convex functions, the space of which is strictly wider than that of convex

functions for 1 ≤ k ≤ n − 1 (see [5] for the proof). Therefore, when we
study k-Hessian equation, it is natural to seek solutions in the class of k-

convex functions, rather than in the class of convex functions. It seems an

interesting open problem whether Theorems 1.2 and 2.1 remain true if one

replaces “strictly convex” by “strictly k-convex.”
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