On the minimality of the corresponding submanifolds to four-dimensional solvsolitons
アクセス数 : 1328 件
ダウンロード数 : 607 件
今月のアクセス数 : 13 件
今月のダウンロード数 : 8 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00035939
File |
k6358_3.pdf
1.04 MB
種類 :
fulltext
|
File |
k6358_1.pdf
73.6 KB
種類 :
abstract
|
File |
k6358_2.pdf
181 KB
種類 :
abstract
|
Title ( eng ) |
On the minimality of the corresponding submanifolds to four-dimensional solvsolitons
|
Title ( jpn ) |
4次元可解ソリトンに対応する部分多様体の極小性について
|
Creator | |
Abstract |
In our previous study, the author and Tamaru proved that a left invariant Riemannian metric on a three-dimensional simply-connected solvable Lie group is a solvsoliton if and only if the corresponding sub manifold is minimal. In this paper, we study the minimality of the corresponding sub manifolds to solvsolitons on four-dimensional cases. In four-dimensional nilpotent cases, we prove that a left-invariant Riemannian metric is a nilsoliton if and only if the corresponding sub manifold is minimal. On the other hand, there exists a four-dimensional simply-connected solvable Lie group so that the above correspondence does not hold. More precisely, there exists a solvsoliton whose corresponding sub manifold is not minimal, and a left-invariant Riemannian metric which is not solvsoliton and whose corresponding sub manifold is minimal.
|
Keywords |
Lie groups
left-invariant Riemannian metrics
solvsolitons
symmetric spaces
minimal submanifolds
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | doctoral thesis |
Rights |
Copyright(c) by Author
|
Publish Type | Not Applicable (or Unknown) |
Access Rights | open access |
Source Identifier |
Takahiro Hashinaga, On the minimality of the corresponding submanifolds to fourdimensional solvsolitons. Hiroshima Mathematical Journal (掲載決定)
references
|
Dissertation Number | 甲第6358号 |
Degree Name | |
Date of Granted | 2014-03-23 |
Degree Grantors |
広島大学
|