On the minimality of the corresponding submanifolds to four-dimensional solvsolitons

アクセス数 : 1328
ダウンロード数 : 607

今月のアクセス数 : 13
今月のダウンロード数 : 8
File
k6358_3.pdf 1.04 MB 種類 : fulltext
File
k6358_1.pdf 73.6 KB 種類 : abstract
File
k6358_2.pdf 181 KB 種類 : abstract
Title ( eng )
On the minimality of the corresponding submanifolds to four-dimensional solvsolitons
Title ( jpn )
4次元可解ソリトンに対応する部分多様体の極小性について
Creator
Abstract
In our previous study, the author and Tamaru proved that a left invariant Riemannian metric on a three-dimensional simply-connected solvable Lie group is a solvsoliton if and only if the corresponding sub manifold is minimal. In this paper, we study the minimality of the corresponding sub manifolds to solvsolitons on four-dimensional cases. In four-dimensional nilpotent cases, we prove that a left-invariant Riemannian metric is a nilsoliton if and only if the corresponding sub manifold is minimal. On the other hand, there exists a four-dimensional simply-connected solvable Lie group so that the above correspondence does not hold. More precisely, there exists a solvsoliton whose corresponding sub manifold is not minimal, and a left-invariant Riemannian metric which is not solvsoliton and whose corresponding sub manifold is minimal.
Keywords
Lie groups
left-invariant Riemannian metrics
solvsolitons
symmetric spaces
minimal submanifolds
NDC
Mathematics [ 410 ]
Language
eng
Resource Type doctoral thesis
Rights
Copyright(c) by Author
Publish Type Not Applicable (or Unknown)
Access Rights open access
Source Identifier
Takahiro Hashinaga, On the minimality of the corresponding submanifolds to fourdimensional solvsolitons. Hiroshima Mathematical Journal (掲載決定) references
Dissertation Number 甲第6358号
Degree Name
Date of Granted 2014-03-23
Degree Grantors
広島大学