Self-similar Solutions to a Parabolic System Modelling Chemotaxis

Journal of Differential Equations 184 巻 2 号 386-421 頁 2002-09-20 発行
アクセス数 : 887
ダウンロード数 : 221

今月のアクセス数 : 2
今月のダウンロード数 : 1
ファイル情報(添付)
JDifferEqu_184_386.pdf 1.29 MB 種類 : 全文
タイトル ( eng )
Self-similar Solutions to a Parabolic System Modelling Chemotaxis
作成者
Naito Yūki
収録物名
Journal of Differential Equations
184
2
開始ページ 386
終了ページ 421
抄録
We study the forward self-similar solutions to a parabolic system modeling chemotaxis ut=∇·(∇u-u∇v), rvt=∇v+u in the whole space R2, where τ is a positive constant. Using the Liouville-type result and the method of moving planes, it is proved that self-similar solutions (u,v) must be radially symmetric about the origin. Then the structure of the set of self-similar solutions is investigated. As a consequence, it is shown that there exists a threshold in ∫R2u for the existence of self-similar solutions. In particular, for 0<r≤1/2, there exists a self-similar solution (u,v) if and only if ∫R2u<8.
NDC分類
数学 [ 410 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier Science
発行日 2002-09-20
権利情報
Copyright (c) 2002 Elsevier Science (USA).
出版タイプ Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0022-0396
[DOI] 10.1006/jdeq.2001.4146
[NCID] AA00696680
[DOI] http://dx.doi.org/10.1006/jdeq.2001.4146