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Abstract. We study the forward self-similar solutions to a parabolic system modeling
chemotaxis

ut=V•E(Vu-uVv), rvt=Av+u

in the whole space R2, where r is a positive constant. Using the Liouville type result
and the method of moving planes, it is proved that self-similar solutions (u,v) must be
radially symmetric about the oritgin. Then the structure of the set of self-similar solutions
is investigated. As a consequence, it is shown that there exists a threshold in /K2 u for the
existence of self-similar solutions. In particular, for 0 < r < 1/2, there exists a self-similar
solution {u,v) if and only if /R2 u < 8it.

1. Introduction

Weare concerned with the parabolic system of the form

f ^=V-(Vu-wVw)

IT~di= +U

for x eMN and t > 0, where r > 0 is a constant. This is a simplified system of the one given
by Keller and Segel [16] describing chemotactic feature of cellular slime molds sensitive to
the gradient of a chemical substance secreted by themselves. The functions u(x, t) > 0
and v(x, t) > 0 denote the cell density of cellular slime molds and the concentration of the

chemical substance at the place x and the time t, respectively.
Backward self-similar solutions are studied in [12] for r = 0. The present paper is devoted

to the forward self-similar solutions. Namely, this system is invariant under the similarity

t ransform at io n
ux(x,t) =X2u(Xx,\H) and vx{x,t) =v{Xx,A2i)

for A > 0, that is, if(u,v) is asolution of(1.1) globally in time, thenso is (u\,vx). A solution
(u, v) is said to be self-similar, when the solution is invariant under this transformation,
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that is, u(x,t) = u\(x,t) and v(x,t) = v^(x,t) for all A > 0. Letting A = l/y/i, we see that

(u,v) has the form

(1.2) u{x,t)=^<j>(^\ and v(x,t)=^(^j

for x E RN and t > 0. It follows that

(
1.3) /Hu(x,t)dx =iP-W If 6{y)dy

JJit " Já"

for <f> £ Ll(RN). Therefore, self-similar solution (u, v) preserves the mass ||w(-,t)ILi(R2) if

and only if N = 2. On the other hand, the mass conservation of u(-, t) follows formally in
the original system (1.1) in any space dimensions. Regarding this fact, we study the case

N = 2 in this paper.
By a direct computation it is shown that («,«)'in (1.2) satisfies (1.1) if and only if (<f>,V)

satisfies
f V•E(V<£-<£VV>)+\x•EV(j)+<j>=0, a;eK2,

\ A^+^x-Vip+(f>^0, xeR2.

We are concerned with the classical solutions (</>, i/0 à¬ C2(R2) x C^M2) of (1.4) satisfying

(1.5) (j>,tp>0 inR2 and <f>(x),il>{x) -»•E0 as |rc|->oo.

Define the solution set 5 of (1.4) as

(1.6) S = {(<£,V) G <^2(K2) x C2(R2) •E•E(<^>^) is a solution of (1.4) with (1.5)}.

The existence of radial solutions (<£,V0 à¬ S has been known by [20, Theorem 1] and [22,

Theorem 1.1]. We investigate the structure of the solution set <S.

Theorem 1. Any (<£,V0 e S is radially symmetric about the origin, and satisfies (f>, ijj e

Theorem 2. The solution set S is expressed as a one parameter family:

5={M0,V(*)).: «à¬R}.

If\{s) = ||tf(«)||Li(R»), then (^(a), ^(s)) and A(s) satisfy the following properties:

(i) s t->' ((f>(s),ip{s)) e C2(E2) x C2(M2) ancf s i-> A(s) 6 E are continuous;

(ii) (^(s^VCs)) -> (0,0) in C2(R2) x C2(E2) and X(s) -> 0 as s ->•E-oo;

(iii) ||V'(<s)ILoo(R2) ^- oo,

,X(S) _). 8vr, and <f)(s)dx -s- 87r50(rfo;) m i/ie sense o/measure as s -¥ oo,



where 8o(dx) denotes Dirac's delta function with the support in origin;
(iv) 0 < A(s) < 8?rfors à¬ R, f/0 < r < 1/2, and0 < A(s) < max{47T3/3,4tt3t2/3} for

seR, ifr>1/2.

As a consequence of Theorem 2 we obtain the following:

Corollary. There exists a constant A* satisfying A* = 87r, if0, < t < 1/2, and 8tt <
A* < max{47r3/3,47r3r2/3}, i/r > 1/2, such that

(i) for every A à¬E(0,A*), i/ier-e exwis a solution (^,^p) 6 <S satisfying ||^||x,i(R2) = A;

(ii) for A > A*, there exists no solution ((j),ip) à¬ S satisfying ||0||x,i(r2) = A.

Remark. Biler [1] has shown that the system (1.4) with r = 1 has a radial solution
{hip) satisfying i|^||ii(K2) = A for every A G (0,8tt), and has no radial solutions ((p,ip)
satisfying ||^||Li(K2)/27r > 7.82....

Theorem 1 is a consequence of the following:

Theorem- 3. Assume that (4>,tp) is a nonnegative solution of (1.4) satisfying (j>, ip £
L°°(E2). Then <j> and i/> are positive, and there exists a constant a > 0 such that

(1.7) (j)(x) = ae-W^W.

Assume furthermore that ip(x) -» 0 as \x\ -» oo. Then <f> and tp are radially symmetric
about the origin, and satisfy d(f>/dr < 0 and dip/dr < 0 for r = \x\ > 0, and

cj>{x) = O(e-lIl2/4) and ^(a:) = O(e-min{T'1}|ai|a/4) as \x\ -f oo.

The proofofTheorem 3 consists of two steps. First we show that (1.7) holds by employing
the Liouville type result essentially due to Meyers and Serrin [19]. Then we show the radial
symmetry of solutions by the method of moving planes. This device was first developed by
Serrin [28] in PDE theory, and later extended and generalized by Gidas, Ni, and Nirenberg
[7, 8]. We will obtain a symmetry result for Eq. (1.8) below with a change of variables as
in[23].

By Theorem 3 it follows that under the condition (j),tp G L°°(R2) the system (1.4) is

reduced to the equation

(1.8) Aip+-x•EV</>+(7e"|x|a/4c*.= 0 inR2

for some positive constant a. Moreover, (<p,ip) à¬ S if and only if tp satisfies (1.8) with

(1.9) ip(x)-»0 as \x\->oo,



and <f> is given by (1.7). Let A = ||0||z,i(R*)- Prom (1.7) we see that

A =a [ e-^2l"e^dy.
Ju2

Then (1.8) is rewritten as the elliptic equation with nonlocal term,

(1.10) A^+\xå VV>+Xe~^2^/ [2e-^^e^dy=0 inR2.
2"

The proofofTheorem 2 is based on the ODE arguments to Eqs. (1.8) and (1.10). Further-
more, we employ the results by Brezis and Merle [2] concerning the asymptotic behavior

of sequences of solutions of

(1.ll) -Auk=Vk(x)eu» inft,

where ft C R2 is a bounded domain and Vk is a nonnegative continuous functions. We also
need Theorem 4 below in order to prove Theorem 2. Here we recall Theorem 3 in [2].

Theorem A [2]. Suppose that

(1.12) 0<Vk(x) <Co, xGft,

for some positive constant CQ. Let {uk} be a sequence of solutions of (1.ll) satisfying

( I 13) limsup / eUkdx < oo.
V ' ' fc-*oo JO.

Then there exists a subsequence {still denoted by {uk}) satisfying one of the following

alternatives:
(i) {uk} is bounded in I%c(ft);
(ii) uk -Y -oo uniformly on compact subset of ft;
(iii) there exists afinite blow-up set B' = {ai,...,ae} C ft such that, for any 1 < t < £,

there exists {xk} C ft, xk ->•Eat, vk(xk) -»å oo, and vk -»•E-oo uniformly on compact subsets
ofn\B. Moreover, VkeUkdx ->>£i=i a^dx) in the sense of measure with on > 4tt, where

8a.(dx) is Dirac's delta function with the support in x = a*.

It was conjectured in [2] that each ai can be written as on = 87rm* for some positive
integer m*. This was established by Li and Shafrir in [18].. Chen has shown in. [3] that any
positive integer m* can occur in the case V = 1 and ft is a unit disc. On the other hand,
under more restrictive assumption that Vk à¬Cx(ft) we obtain the following theorem. It is

related to Theorem 0.3 of Li [17] and is proven in the appendix of the present paper.

Theorem 4. Suppose that Vk G Cl(Q) satisfies (1.12) and

(1.14) HVVfclU-o(n) < Ci



for some positive constants Co and C\. Let {u^} be a sequence of solutions of (1.ll)

satisfying (1.13) and

( 1.15) maxlife - miniifc < Ci
v ' an en.

for some positive constant C2- Assume that the alternative (iii) in Theorem A holds. Then
an=87rforeachià¬ {1,2,...,£}.

Recently, attentions have been paid to blowup problems for the system

^=V-(Vu-uW),

dv
T-=A.V-JV+U,

Oil

du_dv_

u (x,0)=u0, v(x,0)=f0,

x£Q,t>0,

a;efi, £>0,

xgan,t>o,

xef2,

where Cl C R2 is a bounded domain with smooth boundary d£l, r and 7 are positive
constants, and u is the outer normal unit vector. Childress and Percus [5] and Childress
[4] have studied the stationary problem and have conjectured that there exists a threshold
in ||uo||z,i(n) for the blowup of the solution (u,v). Their arguments were heuristic, while
recent studies are supporting their validity rigorously, see, [11], [13], [24], [26], and [27].

On the other hand, it is asserted that self-similar solutions take an important role in
the asymptotic behavior of the solution to the Cauchy problem for the semilinear parabolic

equation, see, e.g., [6], [14], and [15]. Prom Corollary, we are led to the following conjectures
for the problem (1.1) subject to the initial condition u(x,0) = uQ and v(x,0) = v0 in r2-

,For 0 < r < 1/2, if |Klli,i(R2) < 8?r then the soiution °fthe Cauchy problem to (1.1)

exists globally in time, and i/ ||uo||z,i(«) > 87r then the solution can blowuP in a finite time.

We organize this paper as follows. In Section 2 we show that (1.7) holds by employing
the Liouville type result. In Section 3 we show the radial symmetry of solutions by the
method of moving planes, and then give the proof of Theorem 3. In Section 4 we give the
ODE arguments to investigate the properties of radial solutions of (1.8). We study the
behavior of sequences {(</>k,ipk)} C <S satisfying ||^fc1li,~(R8) ~* °° in Section 5. In Section

6 we investigate the upper bounds of |M|Li(K2). Finally, in Section 7 we prove Theorems
2 by using of the results in Sections 4-6. In the appendixes, we are concerned with the
existence of solutions to the problem (1.8) and (1.9), and give the proof of Theorem 4.



2. Reduction to the single equation

In this section we show that the system (1.4) is reduced to Eq. (1.8) if <£, ip à¬ L°°(R2).

More precisely, we have the following:

Proposition 2.1. Let {(j),^) be a nonnegative solution of (1.4) with <£, tp e L°°(K2).

Then the relation (1.7) holds with some constant a > 0.

To prove this proposition we use the Liouville type result for second order elliptic in-

equalities essentially due to Meyers and Serrin [19].

Lemma2.1. Let u satisfy

(2.1) Au+V6-Vw>0 inR2.

Assume thatxå Vb{x) < 0 for large \x\. Ifsup^u{x) < oo then u must be a constant

function.

Proof. Take a function \i as fi{r) = l/log(l + r). Then n satisfies the Meyers-Serrin
AA*tJi^l/\V1
CUilUltlUil / _+ ../_\

M!lw+ - á" whprpfcfTl = fivn(- /*^-ds\rhQLdt=oo, wherek{t)=exp(-/*
A t ' V J1

Definev as , ,.
.(0-^*, r>l.

Then v{r) is positive and increasing for r à¬ (l.oo), and satisfies v{r) -)å  oo as r -> oo.

Furthermore v = v(|aj|) solves

A*;+V6•EVv= ^M(-^(1^1)+xå Vb(x)).
\x\

By the assumption, there exists a large R > 0 such that

(2.2) Av+Vb'-Vv<0. for |x| >R.

Nowassume to the contrary that u is not a constant function. Without loss of generality

wemay assume that u is not a constant function in \x\ < R. Define

U(r) =sup{w(o;) : \x\ =r}.

Then U(r) is strictly increasing for r > R. To see why, suppose R < n < r2 and
U(ri) > U(r2). Then u attains its maximum for \x\ < r2 at an interior point and by the
strong maximumprinciple u is constant, which contradicts the assumption. Therefore U(r)

is strictly increasing, and we have U(R+ 1) > U(R). Choose 5 > 0 so small that

(2'3) °<6< v\r+1)-v{R) -



Put w(x) = u(x) - 5v{\x\). Then it follows from (2.1) and (2.2) that

(2.4) Aio+V6•EVw>0 for|z|>R.

Prom (2.3) we obtain U{R+ 1) - 5«(H+ 1) > E/(J?) - <*«(£). This implies

sup w(x) > sup w(x).
\x\=R+l \x\-R

Since tu(rc) -» -oo as |rc| ->å  oo, w has the maximum at apoint x0 £ K , |a?o| > -R- Then

we have Aty+V6•EVw < 0 at x = rc0. This contradicts (2.4). Hence, u must be a constant

function.

Lemma 2.2. lei (^,å 0) 6e a nonnegative solution of (1.4) uni/i <j>, i> à¬ L°°(R2). Then

VV> à¬ L°°(R2).

Proo/. Define it and u by (1.2), respectively. Then (u, v) solves (1.1), and it holds that

M*)IIl«(r») = ^IMIl~(r») and ll«(*)IL«-(Ra) = IIV'IIl^cr2)-

Take t0 > 0. Prom the second equation of (1.1) we have

v(t) = e^-tD^Av(t0) + - fe^-s^T)Au(s)ds = vi(t) +v2(t), t > t0,

where {e*A} is the heat semigroup. We recall the U-Lq estimates for the linear heat

equation,

(2.5) ||Ve^)Aw||L,(R2) < CfW-^WwW^

for t > 0 with 1 <p < q < oo, where C = C(t) is apositive constant. See, e.g., [10]. In

particular we have

IIVe^wH^., < Cr^WwW^^ for* > 0.

Then it follows that

IIVuiWIL-^) < c(t - *o)-1/2II«(«o)!Il-(r«) < c^ - *o)-1/2IMI*-(pt»)

and
l|VU2(t)||Loo(R2) < Cj\t - a)-1/a||t*(«)|U-dar < CI^IIj^ j\t - s)-V2s-'ds

for t > t0. Consequently, we obtain llVu^H^^ < oo for each t > t0. By the definition
ofv it follows that ||Vv{t)11^^) =r1/2||Vi/>||L-(lR2). Thus we have VV à¬ L°°(R2). å¡



Proof of Proposition 2.1. Put w(x) = -(j>{x)eWI*e-*W < 0. Then e-W2/Wiu =

-V<£ - X(f>/2 + 4>Vij). Prom the first equation of (1.4) we have

V.(e-W2/Ww)=0, or Aw+Vb-Vw=0 inR2,

where V6(rc) = -z/2 + Vijj(x). Prom Lemma 2.2 we have

x•EV&(z)= f-M-+a;•EVi/>(z)) <0

for large \x\. As a consequence of Lemma 2.1, w must be a constant function. This

completes the proof of Proposition 2.1. n

3. Radial symmetry: Proof of Theorem 3

In this section we investigate the radial symmetry of solutions to (1.8) and prove Theorem

3. Namely, we show the following:

Proposition 3.1. Let ip à¬ C2(R2) be a positive solution of (1.8) with (1.9). Then ip

must be radially symmetric about the origin.

We prepare several lemmas.

Lemma3.1. We have

(3.1) 1>(x) < Ce-á""^'1^!2/4 forx e

w ith some constant C > 0.

i2

Proof. Define
Lu=-Ait--x•EVu

and put kt = min{l,r}. Let C be a positive constant and let v(x) = Ce ^l2/*. Then

Lv =Ckt(l+ {^^-\xA e-^2" >C^e-W/*.

Since Lip = aeH*!2/4^, if we choose C so large that Ckt > aem^^2), then Lv > Lip in

R2. Since v,ip ->•E0 as \x\ -> oo, by the maximum principle we have v > i> in K2. This

implies (3.1). D

We define w(x,t) by
ID,ll

x \ a e"
"L°°(

(1 O\ nnfn* +\ -+~anl< I *" 1 \ilt\\oro ru-
V >-*)

u

jyju, uj - Y

\ 7tJ'
YYXX\_fi.\j \Jb

T



Lemma3.2 (i) For everyT > 0 we have sup0<t<Tw{x,t) -»å 0 as \x\ ->å  oo.

(ii) For every//> 0 we havesup^^^w(x,t) ->0 ast-»0.

Proo/. Prom Lemma 3.1 we have \y\2aip(y) -+'0 as |y| -*•E oo, that is, for all e > 0 there

exists R > 0 such that

(3.3) ll/fXl/)<£ for bl^*•E

From (3.2) we have

0.4) w»k*> =(Sr* fe) -
(i) Fix T > 0. From (3.3) and (3.4) it follows that

sup \x\2aw{x,t) <e for|z|>B.VT.
0<t<T

Since e > 0 is arbitrary, we obtain sup0<t<Tu/(M) -> 0 as \x\ -> oo.

(ii) From (3.3) and (3.4) it follows that

ix2asupw{x,t) < sup \x\2aw{x,t) <e for0<t< (^/R)2-
\x\>/t \x\>n

Then we have sup^^w(x,t) -> 0 as t-> 0. D

For // à¬ Rwe define TA and EA by

T/i={a;=(x1,a;2)eR2|a;1=/x} and SM={x6M2^</*},

respectively. For a; à¬ R2 and ^ 6 R let a;'1 be the reflection ofx with respect to TM, that is,

rc^ = (2/x-rrx,x2). It is easy to see that if/x > 0,

|^|>|a;|fora;GE^ and K:xGEM}={x:m>/i}C{x:\x\>/j}.-

By Lemma 3.2 we have the following:

Lemma3.3. (i) For everyT > 0 we have supo<t<rw(a;/i,t) -»•E0 as |z| -> oo, rr à¬ SA.

(ii) For every(ji> 0 we havesup^^w(x>M,t) =0 ast->0.

Lemma 3.4. Letn > 0. Define z(x,t) = w{x,t) - w(a;'\t). T/ien

(3.5) rzt>Az+Cn(x,t)z inSMx(0,oo) and z=0 onT^x(0,oo),

where

(
3.6) cM(x,t) = 7 f-or+(re-W'/W /X jH'UWX-WMds).

t \ Jo '

9



We have Cn(x,t) < 0 inR2 x (0,oo).

Proof. By virtue of (3.2) we have

TWt = Aw-.?Lw + at-a-le-W/Uet°Ut
it

Let wll(x) t) = iy(a;'i, t). Then iuM satisfies

rwt =Aw"--vf+ar^e-^^e^.
Since |a;/t| > \x\, we obtain

Then we obtain rzt > Az + c^z, where cM is the function in (3.6). Since a satisfies
olt=aem^(^,wehavetc^x,t) < -or+aeim^^2) =0for {x,t) eE2 x (0,oo). å¡

Lemma 3.5. Let/i> 0. Wehavew(x,t) >w{x^,t) for {x,t) à¬ EA x (0,oo).

Proo/. Let z(x,t) = w(x,t)-wixll,t). Weshowthat z(x,t) > 0 for (x,t) G EM x (0,oo).

Assume to the contrary that there exists a (xo,to) 6 SM x (0,oo) such that?(x0,t0) < 0.

Take 5 > 0 so.small that z(rc0)i0) < -& By (ii) ofLemma 3.3 we can take To à¬ (O,*o) so

that iu(a;'1,To) < 5 for a; e SM. Then it follows from w(x,t) > 0 that

(3.7) z(x,TQ)>-6 forxGE^.

Fix T > t0- By (i) ofLemma 3.3 we can take R > \xo\ so large that w{xfl,t) < 5 for

|z| > R, x e B^ te [T0,T]. Thenwe obtain

(3.8) z{x,t)>-8 forxà¬£ , |a;|>R, te[To,T].

Define Q = {x à¬ SM : \x\ < R}. Let T be a parabolic boundary ofQ x {T0,T), that is,

r=(Qx{To})U(0Qx (To,T)).

From (3.5), (3.7), and (3.8) we have

rzt>Az+c(x,t)z inQx{T0,T) and «>-6 onT.

Put Z = z + 8. Because c^z,i) < 0, it follows from the above inequality that

TZt>AZ+Cll(x,t)Z in Qx(T0,T) and Z>0 onT.

By the maximum principle [25] we have Z > 0 on Q x [TO)T]( which implies that

(3.9) z(x,t)>-8 onQx[T0)T].

10



On the other hand {xQ,t0) à¬ Q x {To,T) and z(xo,to) < -5. This contradicts to (3.9).

Hencez(x,t) > 0for {x,t) <E EM x (0,oo). å¡

Proof of Proposition 3.1. Prom Lemma 3.5 we have w(x,t) > w(x'J',t) for \x > 0 and
(x,t) e E^ x (0,oo). Prom the continuity ofw we have w(x,t) > w(x°,t) for (x,t) £

Eo x (0, oo). We can repeat the previous arguments for the negative zi-direction to conclude
that w(x,t) < w(x°,t) for (x,t) à¬ Eo x (0,oo). Hence w(x,t) is symmetric with respect
to the plane X\ = 0, which implies that ip is symmetric with respect to the plane X\ - 0.

Since the equation (1.8) is invariant under the rotation, it follows that tp is symmetric in
every direction. Therefore if) is radially symmetric with respect to the origin. Q

Proof of Theorem 3. Let (<£,tp) be a nonnegative solution of (1.4) with cf>, tp e L°°(]R2).

Then <j) is given by (1.7) for some constant a > 0 from Proposition 2.1. It follows that
(j> > 0 in R2, and 0(z) = O(e~|x|2/4) as |x| -> oo. Prom the second equation of (1.4), ip
satisfies the equation (1.8). By the strong maximum principle, ip > 0 in R2.

Assume furthermore that i/j(x) -» 0 as \x\ -» co. Then, by Proposition 3.1, ip must
be radially symmetric about the origin. Hence -0 = ip(r), r = |rr|, satisfies the ordinary

differential equation

V
,rr+ fI+lr^r+ae-'-2/V =0) or (re-2/4V,r)r+are(r-l)rW =0 forr > 0.

\r 2 /
Prom Vv(0) = 0, we have

reTr2/4Vv = -cr r8e(T-1)ai/4e+ds < 0 for r > 0.
./o

This implies that ipr{r) < 0 for r > 0. Prom Lemma 3.1 we obtain ip(r) = O(e-min<T'1}r2/4)

as r -> oo. This.completes the proof of Theorem 3. n

4. Structure of the solutions set to (1.8) with (1.9)

Prom Theorem 3 the solution ip of (1.8).with (1.9) must be radially symmetric about the

origin. Then the study of the solutions is reduced to the problem:

f ^+(I+lr)^+ae-T2'W=0, r>0,
( 4.1), \ \r 2J

[ t/v(Q)=O and lim^ooVW=°»

where a > 0. In this section we investigate the structure of the pair (cr,ip) of a parameter

and a solution. Define the set C as

(4.2) C = {(a,V) : a > 0 and j> £ C2(0,oo).nC^O,oo) is asolution of (4.1)*}.

For (o-jV') G C we have t/» G C2[0,oo) by Lemma 4.1 below.

ll



Proposition 4.1. The set C is written by one parameter families (a(s),ip(r;s)) on

s à¬R, that is, C = {(a(s),ip(r;s)) : s 6 R}. The pairs (a(s),ip{r;s)) satisfy the following

properties:
(i) s (-»å  (a(s),V(s«)) G (0,oo) x C2[0,oo) is continuous;

(ii) lims_>_oo a(s) = 0 and lims_+_oo ip{-, s) = 0 in C2[0, 00);

(iii) lim^oo ||^(-; s)||z,~[o,oo) = lim,_^oo V»(0; «) = oo-

First we show the following:

Lemma4.1. Let %j) E C2(0,oo) nC^O.oo) 6e a sofeiion to (4.1),. Then tj> 6 C2[0,oo)

and supr>0 ^(r) = V'(O). Moreover we have

(4.3) suphMr)l < 7r1/2^°> and sup|Wr(r)| < ^^ae^°\

Proof. From (4.1), we have {rerr2^r)r + are^-^'/V =0 for r > 0. From Vv(O) = 0,

it follows that

( 4.4) Mr) =--e~f̂^"^V^.
v ' r Jo

By using the L'Hospital's rule we obtain

r-^o .r r-K> r2eTr>4Jo *

which implies V à¬ C2[0,oo). Since ipr(r) < 0 for r > 0 from (4.4), we have supr>oi/>(r) =

iKO).
From (4.4) we have

(4.5) Mr)\ < ££&-*»*) **«0)-

Wesee that (1/r) /or^e"«a/4df < /0°° e'fdt ^ tt1/2. Then the left hand side of (4.3) holds.

From the equation in (4.1)ff we have

\AAr)\ < (i+£r) |^(r)|+^^ < (\+^r) |^(r)|+ae^l

Wenote here that

( 4.6) (I+ir)Irf.-ei^< i f«+ir{.-?/««=5+r.
v ; \r 2/rio rzJo 2Jo *

It follows from (4.5) and (4.6) that

( l,T\I//My1+2r rf(0)
(;+ 2r) '^r^' - ~~2~ae
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Therefore we obtain the right hand side of (4.3). This completes the proof of Lemma 4.1.

D

To prove Proposition 4.1 we consider the initial value problem

f wrr+(-+£r)wr+e~r2/V=0, r>0,
( 4.7). ( \r 2J

[ wr(0)=0 and u;(0)=s,

where s 6 l We denote by w(r; s) the solution of the problem (4.7)fl. We easily see that

w(r\ s) and wr(r; s) satisfy, respectively,

(4.8) w(r;s) = a- fi -e~^^ (j*ne^^^^di^ d£

and

( 4.9) wr(r;s) =--e^ f̂^^e^df.
r Jo

Define I(r) as

Jo f \Jo j
Prom [21, Lemma 1] it follows that/(r) = (logr)/(r- 1) ifr ^ 1, I(r) = 1 ifr = 1. We

easily obtain wr(r;s) < 0 for r > 0 and w{r;s) > s - esl{r) for r > 0. (See [21, Lemma

2].) Then limr_).oow(r; s) exists and is a finite value. Put t(s) = lim^oow(r; s).

Lemma4.2. For s e R, letip(r;s) = w(r;s) -t(s). Then ip(r;s) is a solution to
(4.1)^ with a = et(s). Conversely, letij){r) be a solution of(4.1),. Then, for some s à¬R,

ij;(r) = i/j(r;s) and a - e^s\

Proof. It is clear that i/>(r;s) is a solution to (4.1)0- with a = e*W. Conversely, let

ip(r) be a solution of (4.1),, and let iu(r) = ip(r) + loga. Then w(r) satisfies (4.7), with

s = i/>(0) +loga. By the uniqueness we obtain w(r) = w(r\s) with s = ip(0) +loga. We
have limr_,oow(r;s) = lim^w(r) = loga. Then i(s) = loga, that is, a = e^sl Hence

we obtain i/j(r) = w{r) - loga = iw(r;s) - t(s), which implies ^(r) = i/>(r; s). å¡

From [21, (ii) ofLemma 5] it follows that, for s1: s2 G K,

(4.10) sup|io(r;si) - ti;(r; s2)| < Ci|si - s2|,

where C\ = exp(em/(r)) and m = max{s1( s2}- Moreover we have the following:

Lemma4.3. LetS\, s2 GR, and letm=max{si,s2}. Then we have
(i) supr>0 |iwr(r;Si) - wr(r\s2)\ < C2\si - s2\, where C2 = Tr1/2emCx;

13



(ii) supr>0 \wrr(r;si) - wrT(r;s2)\ < C3\sx - s2\, where C3 = (3+2r)emd/2.

Proof. Prom (4.9) we have

K
(r; 5X) - wr{r;s2)\ < -e^'* f^O-WV^'0 - ew«"8>|d£.

r jo

Note that |e^!Sl) - e^(ti52)| < em\w{t\sx) - w(t;s2)\ with m = max{si,s2}. Then from

(4.10) we have \ew{t>s^ - e^'^l < Ciem|si - s2\. Then it follows that

(4.ll) K(r;«i) -wr(r;s2)\ < Cxem\Sl - s2\ (ijTfc"^4^).

Prom (l/r).jy ee-?2/4^ < /o°° e~?V4^ = tt1/2, we obtain (i).
Prom.(4.7), we see that wrT{r; s) = -(1/r + rr/2)wr(r; s) - e~r2/Ae^s\ Then we have

Kr(r;si) -wrr(r;s2)\ < (-+ \r\ Mr;sx) -w(r;s2)\ +em\w(r;8l) - w(r;s2)\.

Then from (4.ll) and (4.6) we obtain

Therefore we obtain (ii). n

Lemma4.4. Letsi, s2 GM, and /eim=max{si,s2}. Then we have

(i) |t(*i) - i(s2)| < Ci|ai - a2|, where C\ = exp(em/(r));

(ii) lim^_oo(s - t(s)) = 0;

(iii) sups6Rt{s) < - logJ(t).

Proof. Lettingr -> oo in (4.10), we have (i). Since iu(r;s) < s for r > 0, it follows from

(4.8) that

0 < a-w{r,s) < e* f\e~^^ ([*^-^"dv) d£.
Jo (^ \y0 J

Letting r -+ oo we have 0 < s -t(s) < esl(r) for s 6 R. This implies that (ii) holds.

Since w{r\ s) is decreasing in r > 0, it follows form (4.9) that

W
r{r. s) < _Ie«(r;.)e-rrV4 f ^-l^df.

v ;~ r ^o

Then we obtain

dr \ å  / r Jo
Integrating the above on [0,oo) we have e~*(s) - e~s> I(r) or e~*^ > I(t). This implies

that (iii) holds. D

14



Proof of Proposition 4.1. By Lemma 4.2 we have C = {(<r(s),i/>(-;s)) : s e R}, where

a(s) = e*W and V»(r;«) = w(r;s) -t(s). We see that w(-;s) E C2[0,oo) and t(s) e R are

continuous for s à¬ R by Lemma 4.3 and (i) of Lemma 4.4, respectively. Thus (i) holds.

By (ii) ofLemma4.4we have a{s) =e*W -» 0 and ^(0;s) = s-t(s) ->å 0 as s ->•E-oo.

Then, by Lemma 4.1 we conclude that ^(-;s) ->•E0 in C2[0,oo) as s -> -oo. Thus (ii)

holds.
From Lemma 4.1 we have ||V>(-;s)||l°°[o,oo) = 1>{0]s). FYom (iii) of Lemma 4.4 we have

lim^oo^s) = lmv+oo(s - t{s)) > lim^oo(s + log/(r)) = oo. Thus (iii) holds. This

completes the proof of Proposition 4.1. D

5. Blow-up analysis to self-similar solutions

This section is concerned with the case (iii) of Theorem 2. We study the asymptotic
behavior of sequences {(^fc, ^)} C S satisfying H^IL^r2) -> oo as k ->å oo. We show the

following:

Proposition 5.1. Let (<pk,ipk) & S, and let Xk = ||<^llz,i(R2)- Assume that

(5.1) l|V>fcilL-(R2) ->å  °° as k -^ oo.

and that {Xk} is bounded. Then there exists a subsequence, which we call again {ipk,fa)

and Xk, satisfying Xk -> 8tt as k ->å oo and

(5.2) fa(x)dx ->å 8,7r50(dx) as k -> oo

in the sense of measure, where 60(dx) is Dirac's delta function with the support in origin.

In order to prove Proposition 5.1 we make use of Theorems A and Theorem 4 in Section

1. We also need the following result by Brezis and Merle [2].

Theorem B [2]. Assume {uk} is a sequence ofsolutions o/ (l.ll) such that

\\Vk\\L-m<C, htWiHn)<Ct and f^e^dx<to,

for some constant C > 0, where w+ = max{u,0}. Then {u^} is bounded in i^.(fl).

Nowwe prepare several lemmas.

Lemma5.1. Assume that f G C(R2) nL1^2)- Let w G C2(R2) nLX(R2) be a solution

of
_

r-7... _j: £ r- TD)2
(5.3) -Aw-^-x•EVw-f forx6

la

15



Then we have ||HIli(R2) + U^HIl^R2) - ^II/IIlMK2) for some V^sitive constant C.

Proof. Define W and F respectively as

WM-«($) and F(x,t)=\s(£}.

Then W &nd,F satisfy

(5.4) \\W(;t)\\W) =t\\w\\z>&) and II^(-.*)IIli(r«) = II/IIli(r«)

for t > 0. Furthermore, from (5.3) we have rWt = AW+F in R2 x (0,oo). Since W -> 0

in Ll(R2) as t -»å  0 from (5.4), we obtain

W(x,t)= - fte^t-s^AF(;s)ds.
TJO

Then it follows from (5.4) that

t\\á"\\LHR>) = IIWMLhr.) < ^ ifllFO.^IlLUR')^ < 7II/IIli(R»)-

Therefore we obtain |M|Li(R2) < r "L||/|iz,i(K2}-

Next we show ||VHLi(R2) < C\\f\\Lip*y By the JJ-U estimates (2.5) with p = q = l

wehave

||Ve((*-)/T)AF(.) g)||Li(R2) < C{t _ S)-^\\F(; s)\y{mi) = C(t - S)-1/2||/||L1(E*).

Then we obtain

\\VW{',t)\\W) < ;jf HVe«*-)/T)AF(.,S)||L1(R.)da < C^\\f\\Ll^y

By the definition of W it follows that HVWO,*)^^) = t^WVwW^^y Therefore we
conclude that ||Vty||£1(Ra) < C\\f\\Lip*y This completes the proof of Lemma 5.1. °

Let {<f>k,ipk) à¬ S, and let Xk = ||^||Li(r2). Then {Xk,ipk) solves (1.10), that is,

(5.5) Aipk+-xå Vipk+Afce-N2/4e^/f e-\y\V^"^dy=0 forxGM2.

FromTheorem 3 wehaveipk à¬I^QR2), Vfc = V'fcW. r = kl» and 5^/^ < 0 for r > 0.
Assume that (5.1) holds. Then ||V>fclL°°(]R2) = ^*(°) ~> °° as k "^ °°' We always use Br to
denote a ball of radius r centered at origin, that is, Br = {x e 1R2 : \x\ < r}.

Lemma 5.2. (i) We have Ukh^2) + IIW*ILi(R8) = 0(1) as.A; -> oo.

(ii) For all r > 0 we have sup^ ||'^jfeilx,~(M2\Br) < °°i
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Proof, (i) Put
fk(x) = Ajfce-M'/VfcM / /2 e-M'/«c*Wdv.

Then /fc à¬ C2(M2) nL1^*)- We have Vfc à¬ L1^2) and

-AV>*-^•EV^>fe=fk fora;à¬K2.

By Lemma 5.1 we obtain ||V)fc|lz,i(K2) + l|VV)fc|Li(K2) < C||/fc|lLi(R2) for some constant C > 0.
Since l|/fc|Jz,i(K2) = ^ = 0(1) as k -> oo, the assertion of (i) holds.

(ii) Assume to the contrary that supfc ||V;A;||l°°(r2\.b,.o) = oo for some r0 > 0. Since ^(r)
is decreasing in r > 0, there exists a subsequence, which we call again {ipk}i such t^at
mfj,eBr Vfc(y) ->å oo as fc -4 cx3. Then HV^Hl^r2) "^ °° as k ~^ °°' whicl1 contradicts the

assertion (i). n

Take R > 0. Let #fc be a unique solution of the problem

-Agk=-x•EV^ inBr, ffo=0 on5JBfl.

Lemma5.3. VFe Aoue ||5fclU°°(sfl) = 0(1) and \\Vgk\\L^BR) = 0(1) as k -> oo.

Proo/. We have 9k = 9k(r), r = \x\, since ^ = *l>k(r)- We see that gk{r) satisfies

-W=p^*, 0<r<i?, yfc(0)=p*(12)=0,

where ' = d/dr. We will show that

(5.6) \\9k\\L°°[o,R] = 0(1), !KIU~[o,jq = 0(1) as k -+ oo.

By integrating the equation above, we obtain

-rg'k(r) = T-[ s^k(s)ds.

Then it follows that

\9[(r)\ < YJls2Wk^)\^< \JlsWk(s)\ds forO<r<R.

Thus we obtain

(5.7) H$fclU~[o,a) < I JO «IV>fc(*)M«-

Wenote that JrRg'k(s)ds = gk(R) - gk(r) = -gk{r). Then

\9k(r)\ < fR\9'k(s)\ds<RUh^R] for0 < r<R.
**0
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From (5.7) we obtain

(5.8) \\9k\\L~[o,R] < if]o s\^'k(s)\ds.

By (i) of Lemma 5.2 we have

2tt [Rs\iP'k(s)\ds = ||V^||z,i(BR) < ||V^||li(r2) = 0{l) as k -^ oo.

JO

From (5.7) and (5.8) we obtain (5.6). This completes the proof of Lemma 5.3. å¡

Nowdefine vk as

(5.9). vk(x) = ih(x) - gk(x) - log (jf, e^/V^dy).

It follows from (5.5) that

(5.10) -Avk = -Ail>k- T-x•EWfc=\ke-W*e9keVk forx G BR.

Then we have

(5.ll) -Avk=Vk{x)evi inBRt

where Vk{x) = Xke-^2^e9k. Since {A^} is bounded and by Lemma 5.3, we have 0 < Vk(x) <

Co and ||VT4||l=c(b«) < Ci for some constants Co and Cv Since vk is radial symmetry and

satisfies -Avk > 0 in BR, vk(r) is nonincreasing in r à¬ (0, R) by the maximum principle.

Lemma5.4. There exists a subsequence, which we call again {vk}, such that vk(0) -» oo

and vk(x) ->•E-oo uniformly on compact subset ofBR \ {0} as k -^ oo. Moreover,

(5.12) / VkeVkdx-> 8?r as /c-»å oo

and

(
5.13) / e-|y|2/4e^(s/)d2/ -»•Eoo as k -»•Eoo.

yR2

Proo/. We see that

/" e^'^dv < e"*11*00^) / c^^Jdi/ / / c"ll'|S/4+**(l')di/ < C

for some constant C > 0. Hence, by applying Theorem' A, there exists a subsequence (still

denoted by {vk}) satisfying one of the alternatives (i), (ii), and (iii) in Theorem A.

18



Assume that the first alternative (i) holds. Since {vk} and {gk} are bounded in L^C(BR)

and ^fc(O) -> oo as k -»•Eoo, it follows from (5.9) that

log f/ e-|j/|2/4e^(j/)d2/N) = ^Jt(O) - fffc(O) - Ufc(O) -»•Eoo as A; -»å  oo.

Let yQ e BR \ {0}. Then from (5.9) we have tpk(yo) -> oo as A; -» oo. This contradicts (ii)

of Lemma 5.2.
Assume that the second alternative (ii) holds. Since vk{r) is nonincreasing in r, we have

vk -»•E-oo uniformly on B^. Then

(5.14) /,, eVkdx->0 ask-»oo.
IB*

Put
Wk

=^k-gk and Wk(x)=Vk(x)/ I' e^^e^^dy.

Then we have -Awk = WkeWkin BR. Because Vfc > 0, we have

Wk{x) < Vk{x)jj^ e-^l"dy < C

for some constant C > 0. We find that |K||li(Bb) < \\M\l^br) + hk\\v{BR) = 0(1) as

k -> (x, by Lemmas 5.2 and 5.3. It follows from (5.14) that

/ Wk{y)ew»(y)dy= / Vk(y)eVk{y)dy<C0 [ ev^y)dy^0 as k-4oo.
Jbr Jbr Jbr

Hence, by applying Theorem B we obtain ||wjtlU<»(Brj = ^C1) as /c -)å  oo. This contradicts

Wk(0) =ijjk(O) -gk(Q) -> oo as k -> oo.
Therefore, the third alternative (iii) must hold. By (ii) of Lemma 5.2 we have the blow-up

set B = {0}. Then vk(0) -» oo and vk(x) ->å -oo uniformly on compact subset of £k\{0}.

Moreover

(5.15) I VkeVkdx-»a ask-»oo

for some a > 4tt. Since ua; is radial symmetry, we have max.dBRvk - min^u*vk = 0. By

applying Theorem 4, we obtain a - 8?r in (5.15).

Let z0 à¬BR\{0}. From Ufc(^o) -»å -oo as A; -> oo we have

logf/ e"12'1'/^^^^ =Vfc^o)-9k{xo) ~vk(xo) -»•Eoo as fe ^oo,
VK2 /

which implies that (5.13) holds. D

Proof of Proposition 5.1. Let {vk} be a subsequence obtained in Lemma 5.4. First we

verify that, for all r > 0,

(5.16) [ VkeVkdy^Q ask-+oo.
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From (ii) ofLemma 5.2 there exists a constant M = M(r) > 0 such that 1^(^)1 < M for
\x\ > r. Since

A f e-\v\V*eMv)dy XkeMf e-^lAdy
[ Vk(y)e^dy= T^ < ,W : ,

Jr2 Jr2

it follows from (5.13) that (5.16) holds.
Prom (5.10), (5.ll), and the second equation of (1.4) we have

VkeVk - -Avk= -Aipk- -x•EV^ = </>&•E

Prom (5.12) and (5.16) we have

A, = UhWl^) = /R2Vh?»dv = JBrVke"dy+J^Vkev"dy ^ Stt as fc -+ oo.

Thus Xk -> 8tt as k ->å oo. Since {^fc} is bounded in L^R2), we may extract a subsequence,
which we call again {fa}, such that fa converges in the sense of measures on M2 to some

nonnegative bounded measure /x, i.e.,

J^ fa(x)r,dx -> JR2 r)d»

for every r) à¬ C(R2) with compact support. From (5.16) we have fU2\Br fa(x)dx ->å 0 as
k ^ oo ior every r > 0. Then,fa -> 0 in ^..(M2 \{0}) and hence /i is supported on {0}.

Thus we obtain d/x = a(50(da;) with a = 8tt, which implies that (5.2) holds. This completes

the proof of Proposition 5.1. a

6. i1-norms of self-similar solutions

This section is concerned with the case (iv) of Theorem 2 and we investigate the upper

bounds of ||0||z,i(r2) for (faip) à¬ S.

Proposition 6.1. Let (c/),^) E S. Then

II^ILi(iR2) ^ max{37r3' 37r3r2} '

Moreover, ifO < r < 1/2 then ||0||li(r2) < Sir.

We prove Proposition 6.1, following the idea of Biler[l]. By Theorem 1 the solution

(<£,V0 à¬ S must be radially symmetric about the origin. Define $ and #, respectively, as

$(s) = I ['(f>{y/i)dt and *(s) = I ['ip(y/i)dt.
2Jo &Jo
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First we show the following:

 Lemma 6.1. We have ||^||x,i(R«) = 27rlims_>00 $(s). Moreover, ($, \P) solves

   { $»+i$'_2$V=0

                      4

                4s*"+rsty'-r^f+$ =0

/ors > 0, w/iere ' = d/ds.

 Proof. We see that

   j^ <f>(\y\)dy = 2*fi°r<Kr)dr = 2tt Q ^°° 0(>/*)dt) ,

which implies ||^||i,i(r2) = 27r lims_>00 $(s).

 Define « and v as

    u(r,t)=j<A(t^J and v{r,t)=i\>I~j,

respectively. Put £/ and V as

                                 /•E r                                /-r       U(r,t)= / su(s,t)ds and V(r,£)= / sv(s,t)ds.
                 Jo                 Jo

Then, by the change of variables, we obtain

   f(r.*) = I frVt<t>(V~
s)ds and V(r,t) = | T'7'V(V^)^.

By the definition of W and $ we have
» 2\ /^,.-r. /

(6.2) U(r,t)=$ljj and V(r,*)=*.¥(yj.

Now we verify that (U, V) satisfies

( Ut =r(r-'Ur)r - Ur{r^VrX
(6.3)

[ TVt=r(r-1Vr)r+U

for (r,t) e [0,oo) x (0,oo). Since (u,v) solves (1.1), we see that

rut= {rur)r-rurvr-u(rvr)r and rrvt = (rvr)r+ru.

Then we obtain

I sut(s,t)ds-ruT-ruvr and r svt(s,t)ds=rvr+ / su(s,t)ds.
Jo Jo Jo
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Thus we obtain (6.3). By virtue of (6.2) we have (6.1).

Lemma6.2. We have

(6.4) -sV"(s) = \e~Ts/4 f'ert/A$'{t)dt > 0 fors > 0.

Proof. Put W(s) = -4s\l>"(s). Prom the second equation of (6.1) we have

$' = (-4s*")' -rs^l" = W'+ T-W.

Since sW{s) = y/sil/{y/s)/4, we have W(0) = lim,_^0 W(s) = 0. Then we obtain

W{s) = e-Ts/A f eTt/A$'{t)dt.
JO

Since $'(s) = ^(•Ev/s)/2 > 0, we obtain the assertion.

Lemma6.3. We Ziave s$"(s) -> 0 as s-*oo and, /ors > 0,

r r r

å¡

0<*(s)-sV'(s)< \

r rs
4 Jo e rt/4 _1

dt<s ifO<r<l,

I Jo e */4 - 1
dt ifr>l.

 Proof. From the first equation of (6.1) and (6.4) we have

      $» + !$' + Jie-á"/4$' ['eTt/A$'(t)dt = 0.

                4   2s    Jo

We note that $'(s) = <£(\/s)/2 > 0. Then, for the case 0 < r < 1, we have

       $"+ 1$'+ jLe-WV /"'e^/4$'(i)^ < o,

                4   2s    A)

thatis,

(6.5)    (eTS'A&)' + ±-

s& /QS eTt^'(t)dt < 0.

For the case r > 1 we have

       $» + 1$' + i.e-"/4$' /* ef/4$'(t)dt < 0,

                 4   2s    ^o

thatis,

(6.6)    (e*/V)' + i-e^WV j" e*/4^(t)dt < 0.

                          22
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First we consider the case 0 < r < 1. Define Z as

Z{s) = [SeTt^'(t)dt.
Jo

From (6.5) we have

(6.7) sZ" + \e-TS^Z'Z < 0.

By integrating the above on [0, s] we obtain

S Z' - Z+ -e-TS^Z2+ Z- fe-^Z^mt < 0.
4 16Jo

Then we have sZ' - Z + e"TS/4Z2/4 < 0. Dividing the inequality by Z2 it follows that
(s/Z)' > e""/4/4. Therefore we obtain

TS
(6-8) Z{s) <

1 _ g-rs/4*

Prom (6.4) we have -stf" = e-"/4Z(s)/4 > 0. Then

0<-s*"(s)<4(eW4_l} <1 fors>0.

This implies sSk"(s) ->•E0 as s -> oo. By integrating the above on [0,s] we obtain the

assertion.
Next we consider the case r > 1. Define Z as

Z(s) = fe*/V(t)cft.
./o

Then from (6.6) we have (6.7). By the similar argument above we obtain (6.8). We see

that

e
-TS/4 [' eTt/4tf,t\dt =s [' e-T(-*)/*&(t)dt < fS e^s-t)l^'{t)dt = e-slAZ{s).

Jo Jo Jo

Then from (6.4) and (6.8) we have

0 < -at"(«) < \e-s'TZ{s) < TS
AUs/A _ *,(1-t)s/4\ -

TS

f ~\°) - 4^,/4_e(l-T)s/4) - 4(eS/4_!)•E

Therefore s^"(s) -> 0 as s->å  oo. By integrating the above we obtain the assertion. å¡

Proof of Proposition 6.1. First we consider the case 0 < r < 1. Prom the second equation
of (6.1) we have $(s) = -4s\I/"(s) +r (^f(s) - s^'(s)). Prom Lemma 6.3 we obtain

lim$(s)= limr(^(s)-stf'(s))<T-r f°° * ,ds.
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By the change of variable z = rs/4 it follows that

lim$(s) <4 / 00 z , 2

dz=-n/.3S,~^'-"j0 ez-1'

Since ||^||li(r2\ = 27rlims_^oo $(s) from Lemma 6.1, we obtain the assertion.

Next we consider the case r > 1. By the similar argument we obtain
r2

' " O å  . , t I " f , f

» w~47o es/4-1 io ez-l 3lim
S-HXl

which implies the assertion.
Finally we consider the case 0 < r < 1/2. The change of variables

t=(logs)/2, k{t)=$(s), £(t)=2s$'{s), m(t)=*(s), n(t)=2a*'(s)

transforms (6.1) into
k=I, m=n,

O2O

i- 2-*+á"-t-tJ*'

n=In+eM --+rm-k
\2 )

where ' = d/dt. Hence we have

jf ((Jfe-2)2+21) = 2i(rrn- y - y) =4s$'(s) (t(*(S) -**'(*)) - 0 < 0

by Lemma 6.3. Then (k(t) - 2)2 +2£{t) is decreasing for t > -oo. We note that
lim^-oo k(t) = $(0) = 0 and limt->_oo*(*) = lim^02s$'(s) = lim,_x>*#(%/*) = 0. Then

wehave
[k{t)-2)2+2£(t) <4 fort> -oo.

Since £(t) = 2s$'(s) = s</>(V5) > 0 and limt_+00((/c(t) - 2)2 + 2i(t)) < 4, we obtain

lim^ook(t) < 4. Thus lim^oo *(s) < 4, which implies ||^||Li(R2) < 8?r. å¡

7. Proof of Theorem 2

By Theorem 3 it is shown that (</>,ip) £ S if and only ifi/j = tp(r), r = |y|, solves (4.1)*

for some a > 0 and ^ is given by (1.7). By Proposition 4.1 the set C defined by (4.2) is

written by one parameter families (cr(s), ip(r; s)) on s à¬ E. Let

(7.1) <j>(r- s) = o{s)e-r2l^á"\

Then <S is written by one parameter families (<£(r, s),ip(r, s)) on s G R. Prom (i) and (ii) of

Proposition 4.1 and (7.1) we have s H- (</>(•E; s),ip(-; $)) G C2[0, oo) x C2[0, oo) is continuous

and (<j)(-;s),ijj(-;s)) -> (0,0) in C2[0,oo) x C2[0,oo) as s -> -oo. Wesee that
/•EOO

(7.2) A(s) = 27r / r(j)(r\s)dr.
JO
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Then X(s) is continuous and satisfies A(s) -> 0 as s -> -oo. Hence, (i) and (ii) holds. By

Proposition 6.1 we obtain (iv).

Wehave ||^(-,s)||l°°[o,oo) = ^(O?s) -> oo as s -» oo from (iii) of Proposition 4.1. Let {s^}

be a sequence satisfying Sk -» oo as k -> oo. We note that {A^} is bounded by Proposition
6.1. By applying Proposition 5.1, there exists a subsequence (still denoted by {sk}) such

that A(sfe) -> 8tt and (j)k{\x\,Sk)dx -*•E8n50{dx) as k -> oo. Therefore, (iii) holds. This

completes the proof of Theorem 2. d

Appendix A. Existence of solutions to (1.8) with (1.9)

The following theorem refines the previous results [20, Theorem 1], [21, Theorems 1 and
2], and [22, Theorem 1.1].

Theorem A.I. For any r > 0 there exists a* > 0 such that

(i) ifa > a*, then (1.8) with (1.9) has no solution;

(ii) ifa = a*, then (1.8) with (1.9) has at least one solution]
(iii) if0 < a < a*, then (1.8) with (1.9) has at least two distinct solutions -tp^, ipa

satisfying lim^^o^^) = 0 and limo-_).o '0£r(O) = oo.

Proof. By Theorem 1 the problem (1.8) with (1.9) is reduced to the problem (4.1)CT. By
Proposition 4.1 the set C defined by (4.2) is written by one parameter families (a(s), ip(r; s))

on s 61. Prom (7.1) and (7.2) we find that

a(s) = X{8) I (2nJo°°re-r2^^dr) = X(s) //r2 e^^^dy

From (5.13) in Lemma 5.4 we have

f e-|y|2/4e*(|y|:«)dy -)- oo as s -^ oo.
/]n>2

Then a{s) ->å 0 as s -> oo. Therefore, from (ii) of Proposition 4.1, a(s) satisfies

lim a(s) =0.

Let a* = supsgRcr(s). Then there exists s* 6 E such that a* = cr(s*).

By Proposition 4.1 it is shown that (4.1)^ has a solution if and only if a - a(s) for some

s E E. Therefore, (4.1)a has no solution, if a > a*, and (4.1)^ has at least one solution, if

a = a*. Ifa 6 (0,a*), by themeanvaluetheorem, there exists si, s% 6 E, s\ < s* < s<i

such that a - a(si) = a(s2). Then (4.1)ff has at least two solutions VV(«i) and /0o-(*2)- We

note that lim^_oo ^«r(«)(0) = 0 and lim,-** VV(s)(0) = oo by (ii) and (iii) of Proposition 4.1.

Since lims_4.±00a(s) = 0, we can choose solutions $ and ^ satisfying limo-_>0^o.(0) = 0

and linv+o^ff(0) = oo. This completes the proof of Theorem A.I. n
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Appendix B. Proof of Theorem 4

Define hk e C2{n) n C(U) by

Ahk=0 inH and hk=uk ondCl.

We may assume that {0} à¬ Q. with no loss of generality.

Lemma B.I. Let r > 0 satisfying~Br C f2. Then ||V/iAj||r,«>(Br) = 0(1) as k ->•Eoo.

Proo/. By the maximum principle, we have max^hk - rnin-^hk < max^nhk - min^n ^fc-

Then from (1.15) we obtain
maxhk -minhk < G%

n n
with a positive constant C2. Let hk{x) = hk{x) - min^ /i^. Then hk satisfies

A/ife=0 inJ2, 0<hk<C2.

Since dhk/dxi, i = 1, 2, is harmonic, by the mean value theorem and Gauss-Green Theorem,

weobtain
dhkifc 1 r dhk, 1 f r

~=-?/ -^~dx=-2/ hkrndsZi 7rrzJbt oxi itr2JaBTdxi

for i = 1,2, where n = (ni,n2) is the outer normal unit vector on dBr. Then it follows

that
dhk <-i-/ \hk\ds< 2CX

t=1,2.
dxi

Since.\Vhk\ = \Vhk\, we conclude that ||V/ifc||L=o(jBr) = 0(1) as k -* oo. å¡

Let tOfc(x) = wjfe(a;).- /ifc(a;) in Q. Then

-Awfc=Wk{x)eWk inH, wfc=0 on5Q,

where Wk{x) = eft*(ai)Vfc(a;). Let G(a;, y) be the Green's function of -A in Q with respect

to the zero boundary conditions:

-AxG(xty)=6y, ieft, G(x,y)=O, x£dCL.

Then we have

(B.I) Vwk(x) = / VxG(x,y)Wk{y)eWk^dy, x efi.

Put zk{x) = Wfc(x)e^(a:).
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LemmaB.2. Fort/> 6 Cq(CI) we have

(B.2) - f{&i))zkdx= f (V(logWk) •EVV>)zkdx+- ff p{x,y)zk(x)zk(y)dxdy,

where p(x,y) = VxG(x,y) •EVV>(z) + VyG(x,y) •EVip{y).

Proof. We see that

Vzk = (VWfc)etofc + Wkew*Vwk = zkV(\ogWk) + zkVwk.

Then, for ip à¬ C%(0), we obtain

(B.3) - /(Aip)zkdx= / (V(logWfc)•EVV>)^feda;+ / (S/wk-V^)^<te.

Prom (B.I) and Fubini's Theorem, we find that

(B.4) / [Vwk{x) -Vip{x))zk{x)dx= II {VxG{x,y) •EVip{x))zk{x)zk{y)dxdy.

By changing the role ofx and y in (B.4) we obtain

/ (ViWfc(y) •EVi>{y))zk(y)dy = ff (VyG(x,y) •EV^(y)) zk(x)zk(y)dxdy.
Jo, JJnxii

Hence, we obtain

/ {Vwk å Vijj)zkdx = - ff p(x,y)zk{x)zk{y)dxdy.
Jo. /i JJCixn

From (B.3) we obtain (B.2). n

Without loss of generality, we may assume that the blowup set B contains {0}, and that

there exists a R > 0 satisfying {x : 0 < \x\ < R} nB = 0. Therefore, {uk} satisfies

(B.5) maxufc-*oo and _maxuk->-co as k-)å oo
BR BR\BT

for all r e (0,R). Moreover,

(B.6) VkeUkdx ->>a50{dx)

on Br in the sense of measure for some a > An.

LemmaB.3. There exist constants r0 à¬ (0,R) and o > 0 such that Vk(x) > a for

xEBro.

Proof. First we show liminffc_»oo Vk(0) > 0. Assume to the contrary that

liminfVfc(0) = 0.
fc-+oo
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Prom (1.12) and (1.14), by taking a subsequence in {Vk} (still denoted by {Vk}), there

exists Vo e C(Q) such that Vk ->å Vo in C(B^) and V0(0) = 0.

Let xk E BR, uk{xk) = maxxà¬-gRuk(x). It follows from (B.5) that

(B.7) xk -> 0 and uk(xk).-*å oo.

Let 5k = e"**^*)/2. It follows from (B.7) that 5k -> 0. For |a;| < R/{25k)t we consider the

sequence of functions Wfc(a;) = uk(5kx + xk) + 2\og6k. Then ^ satisfies

-Avk(x) = Vk{5kx+ar^e"*^ for x G 5B/(Mfc)-

Moreover, we have Ufc(0) = 0, vk(x) < 0 in BR/(2sk), and

/ ev"Wdx<I eUk^dx<C

for some positive constant C.

For each r > 0 the sequence {vk} is well defined in Br for A; large enough. It follows from
Theorem A that only alternative (i) may occur, hence {vk} is bounded in L^C(BT) and, by
standard elliptic estimates, also in C^{Br), 0 < a < 1. Therefore, a subsequence in {vk}

converges in Cioc(Br). We may do the same arguments for a sequence rk -> oo, and pass
to a diagonal subsequence (which we will still denote as {vk}) converging in Cj^R2) to v
which satisfies -Av = V0(0)ev in R2. Moreover, v(0) = 0, v < 0 in R2, and

( B.8) J * evdx < C.

Since Vo(0) = 0, v is harmonic in R2. Then v is a constant. This contradicts (B.8). Thus

we conclude that liminfk-+<x> Vk(0) > 0.

From (1.14) there exists constants r0 G (0,R) and a > 0 satisfying Vk(x) > a for x G Bro.

D

Proof of Theorem 4, We will show that a = 8tt in (B.6). Take <f> G C$(BR) so that

0 < <j> < 1 and <p = 1 fora; à¬ £,.o, wherero is aconstantin LemmaB.3. Let ip(x) == |rr|2<^>(rr).

Then we have V G C$(BR). Moreover, it follows that Aip(x) = 4 and V^(aj) = 2a; for

xeBra.
We recall that Wk{x) = ehk^Vk{x). Then we have

From Lemmas B.I and B.3 and (1.12) we obtain |VlogWfe(a;)| < C for x G Bro with some

constant C. Then we have

(B.9) |VV>(a:) •E V(logW*(x))| < 2C|x| for x G Bro.
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We see that G{x,y) = -(1/2tt)log |x -y\ +K(x,y), where K(x,y) is a smooth function

on Q, x Q,. Then p(x,y) defined in Lemma B.2 satisfies

(B.10) p{xiV) =-+2x-VxK{x,y)+2y-VyK{x,y) for x à¬Bro.

We see that zk(x) = Wk(x)ew^ = Vfc(a;)e^(a:). From (B.6) we have zk(x)dx -> a«J0(da;)

on B^ in the sense of measure. Furthermore, we have

zk{x)zk{y)dxdy -> a25x=0(dx) ® Sy=0{dy) = a2<5(a;iy)=(o,o) (cixdy)

on BB in the sense of measure. Letting /s -> oo in (B.2), from (B.9) and (B.10), we have
-Aira - -a2/(27r). From a > 4tt, we obtain a = 8tt. This completes the proofofTheorem
4. °
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