Self-similar Solutions to a Parabolic System Modelling Chemotaxis
Journal of Differential Equations Volume 184 Issue 2
Page 386-421
published_at 2002-09-20
アクセス数 : 908 件
ダウンロード数 : 228 件
今月のアクセス数 : 0 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00021529
File | |
Title ( eng ) |
Self-similar Solutions to a Parabolic System Modelling Chemotaxis
|
Creator |
Naito Yūki
|
Source Title |
Journal of Differential Equations
|
Volume | 184 |
Issue | 2 |
Start Page | 386 |
End Page | 421 |
Abstract |
We study the forward self-similar solutions to a parabolic system modeling chemotaxis ut=∇·(∇u-u∇v), rvt=∇v+u in the whole space R2, where τ is a positive constant. Using the Liouville-type result and the method of moving planes, it is proved that self-similar solutions (u,v) must be radially symmetric about the origin. Then the structure of the set of self-similar solutions is investigated. As a consequence, it is shown that there exists a threshold in ∫R2u for the existence of self-similar solutions. In particular, for 0<r≤1/2, there exists a self-similar solution (u,v) if and only if ∫R2u<8.
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Elsevier Science
|
Date of Issued | 2002-09-20 |
Rights |
Copyright (c) 2002 Elsevier Science (USA).
|
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[ISSN] 0022-0396
[DOI] 10.1006/jdeq.2001.4146
[NCID] AA00696680
[DOI] http://dx.doi.org/10.1006/jdeq.2001.4146
|