Renormalization group flow of SU(3) lattice gauge theory : Numerical studies in a two coupling space

Nuclear Physics B 577 巻 1-2 号 263-278 頁 2000-06-19 発行
アクセス数 : 1100
ダウンロード数 : 243

今月のアクセス数 : 8
今月のダウンロード数 : 5
ファイル情報(添付)
NuclearPhysicsB_577_263.pdf 773 KB 種類 : 全文
タイトル ( eng )
Renormalization group flow of SU(3) lattice gauge theory : Numerical studies in a two coupling space
作成者
QCD-TARO Collaboration
Ph. de Forcrand
M. García Pérez
Hashimoto Takaaki
Hioki Shinji
Matsufuru Hideo
Miyamura Osamu
Stamatescu Ion-Olimpiu
Takaishi Tetsuya
収録物名
Nuclear Physics B
577
1-2
開始ページ 263
終了ページ 278
抄録
We investigate the renormalization group flow of SU(3) lattice gauge theory in two coupling space with β11 of plaquette and β12 of rectangular actions. Extensive numerical calculations of the RG flow are made in the fourth quadrant of the coupling space, i.e., β11 > 0 and β12 < 0. Swendsen's factor 2 blocking and Schwinger-Dyson method are used to find an effective action for the blocked gauge field. Resultant renormalization group flow runs quickly towards an attractive stream which has approximate line shape. This is a numerical evidence of the renormalized trajectory which locates close to the two coupling space. A model flow equation which incorporates a marginal coupling (asymptotic scaling term), an irrelevant coupling and a nonperturbative attraction toward strong coupling limit reproduces qualitatively the observed feature. We further examine scaling property of an action which is closer to the attractive stream than the currently used improved actions. It is found that the action shows excellent restoration of rotational symmetry even for coarse lattices with o ~ 0.4 fm.
著者キーワード
SU(3) lattice gauge theory
Renormalization group flow
Improved action
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier
発行日 2000-06-19
権利情報
Copyright (c) 2000 Elsevier Science B.V.
出版タイプ Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0550-3213
[DOI] 10.1016/S0550-3213(00)00145-0
[NCID] AA00760043
[DOI] http://dx.doi.org/10.1016/S0550-3213(00)00145-0