An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts
Computational Mechanics 59 巻
919-932 頁
2017-02-11 発行
アクセス数 : 16 件
ダウンロード数 : 9 件
今月のアクセス数 : 15 件
今月のダウンロード数 : 8 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00056176
ファイル情報(添付) | |
タイトル ( eng ) |
An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts
|
作成者 |
Sadamoto Shota
Özdemir Mehmet
Tanaka Satoyuki
Taniguchi Kunihiko
Yu Tiantang
Bui Tinh Quoc
|
収録物名 |
Computational Mechanics
|
巻 | 59 |
開始ページ | 919 |
終了ページ | 932 |
抄録 |
The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.
|
著者キーワード |
Meshfree method
Reproducing kernel
Cylindrical shell
Buckling
Convected coordinate system
|
内容記述 |
The second author was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under 2214-A International Doctoral Research Fellowship Programme (1059B141500898).
|
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
Springer Nature
|
発行日 | 2017-02-11 |
権利情報 |
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00466-017-1384-5
This is not the published version. Please cite only the published version.
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
|
出版タイプ | Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの) |
アクセス権 | オープンアクセス |
収録物識別子 |
[DOI] https://doi.org/10.1007/s00466-017-1384-5
~の異版である
|
助成機関名 |
日本学術振興会
Japan Society for the Promotion of Science
|
助成機関識別子 |
[Crossref Funder] https://doi.org/10.13039/501100001691
|
研究課題名 |
多軸応力影響と繰り返し載荷影響を考慮した船体桁の縦曲げ最終強度評価に関する研究
Ultimate longitudinal bending strength of ship hull girder considering multi-axial stress and repeated loading effects
|
研究課題番号 |
15H02328
|
助成機関名 |
日本学術振興会
Japan Society for the Promotion of Science
|
助成機関識別子 |
[Crossref Funder] https://doi.org/10.13039/501100001691
|
研究課題名 |
船体構造と騒音伝達経路の関係の解明と騒音レベルを低減する構造の創生に関する研究
Study on relationship between ship structure and noise transmission route and research on creation of structure to reduce noise level
|
研究課題番号 |
16H04603
|
助成機関名 |
日本学術振興会
Japan Society for the Promotion of Science
|
助成機関識別子 |
[Crossref Funder] https://doi.org/10.13039/501100001691
|
研究課題名 |
き裂を有するパネルの圧壊挙動メカニズムの解明
Collapse Behavior of Rectangular Panel with Crack Damage.
|
研究課題番号 |
15K06632
|