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Abstract The paper is concerned with eigen buckling

analysis of curvilinear shells with and without cutouts

by an effective meshfree method. In particular, shallow

shell, cylinder and perforated cylinder buckling prob-

lems are considered. A Galerkin meshfree reproducing

kernel (RK) approach is then developed. The present

meshfree curvilinear shell model is based on Reissner-

Mindlin plate formulation, which allows the transverse

shear deformation of the curved shells. There are five

degrees of freedom per node (i.e., three displacements

and two rotations). In this setting, the meshfree inter-
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polation functions are derived from the RK. A singular

kernel is introduced to impose the essential boundary

conditions because of the RK shape functions, which do

not automatically possess the Kronecker delta property.

The stiffness matrix is derived using the stabilized con-

forming nodal integration technique. A convected coor-

dinate system is introduced into the formulation to deal

with the curvilinear surface. More importantly, the RKs

taken here are used not only for the interpolation of

the curved geometry, but also for the approximation of

field variables. Several numerical examples with shallow

shells and full cylinder models are considered, and the

critical buckling loads and their buckling mode shapes

are calculated by the meshfree eigenvalue analysis and

examined. To show the accuracy and performance of

the developed meshfree method, the computed critical

buckling loads and mode shapes are compared with ref-

erence solutions based on boundary domain element,

finite element and analytical methods.

Keywords Meshfree Method · Reproducing Kernel ·
Cylindrical Shell · Buckling · Convected Coordinate

System

1 Introduction

Tubular members are main components in offshore, civil

and aerospace structures because of their high strength-

to-weight ratio and high resistance to hydrostatic pres-

sure. Engineers and researchers are concerned with the

structural stability of thin-walled tubular sections. The

load bearing capacity of these structures is strongly re-

lated to their buckling capacity. Therefore, the buckling

strength of tubular structures must be assessed from

the viewpoint of structural safety. The finite element
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method (FEM) is a technique commonly used to sim-

ulate the buckling collapse of tubular members [1]–[8]
and other structural components in offshore structures,

such as plates, stiffened plate structures and hull girders

[9]–[15]. However, difficulties may arise in the modeling

of curved surfaces because the curved surface is gen-

erally modeled by an assembly of flat plate elements.

In addition, there may be shear locking phenomenon

owing to the linear nature of the finite elements (FEs),

such that the structural model may seem stiffer than

the actual structure. There have been several develop-

ments of FE formulations and discretizations including

higher-order FEs to overcome such shear locking prob-

lems, see Refs.[16] and [17].

In the last two decades, new methodologies for an-

alyzing boundary value problems have been introduced

including meshfree methods [18]–[23], isogeometric anal-

ysis [24]–[28] and wavelet Galerkin methods [29]–[33].

Continuous stress and strain fields can be obtained by

adopting smooth functions to approximate the field vari-

ables, which is advantageous in solving solid and struc-

tural problems. In the case of meshfree Galerkin meth-

ods, Krysl and Belytschko [34], [35] analyzed thin plate

and shell problems employing the element-free Galerkin

method (EFGM) and adopting a quadratic or higher-

order polynomial basis to meet consistency requirements.

The membrane locking of shells was addressed by en-

larging the influence domain of the meshfree interpo-

lation functions. The first attempt to employ three-

dimensional (3D) reproducing kernel particle method

(RKPM) to solve structural problems was Li et al. [36].

In this article, large deformation of thin shell struc-

tures was handled by 3D reproducing kernel (RK) func-

tions with an explicit solution scheme. Noguchi et al.

[37] analyzed shell and 3D spatial structures employing

the EFGM and a convected coordinate system. Addi-

tionally, Kanok-Nukulchai et al. [38] implemented the

concept of matching fields in the EFGM to eliminate

shear locking problems for shear-deformable beams and

plates. Zhang et al. [39] examined shell structures with

slope discontinuities employing a moving least-squares

approximation with discontinuous derivative basis func-

tions. Tanaka et al. [40]–[42] treated discontinuous dis-

placements along a crack segment with the diffraction

method and a visibility criterion [43], [44] on the basis

of the RKPM [19]–[23].

Unlike the meshfree analysis of flat plates and shells,

the analysis of cylindrical shells employing meshfree

methods is relatively rare. Yiotis and Katsikadelis [45]

examined linear buckling behaviors of cylindrical shell

panels employing a meshless analog equation method,

which is based on the principle of an analog equation.

In addition, Wang et al. [46] proposed a circumferen-

tially enhanced meshfree method based on the Hermite

RK approximation [47]–[51] for the buckling analysis
of Kirchhoff–Love cylindrical shells. In the meshfree

formulation, a mapping technique between Cartesian

and cylindrical coordinate systems was used. Periodi-

cal mode shapes of the cylinders were captured. Failure

analysis of cylindrical shells has also been addressed in

the literature; i.e., Qian et al. [52] simulated collapse

modes of cylindrical shells under internal pressure and

thermal loads employing a meshfree Galerkin approach.

Meanwhile, Zhao et al. [53], [54] reported the free vibra-

tion analysis of cylindrical shells using meshfree meth-

ods. The authors of the present study previously carried

out geometrical nonlinear analyses for plate and stiff-

ened plate structures [55]–[57]. In the literatures, post-

buckling structural responses were examined by elastic

large deflection analysis and were compared with the

FEM results for flat plate case [55], flat plate with initial

imperfection [56] and folded plate structures [57]. And,

it was confirmed that the presented meshfree method

have good accuracy for predicting post-buckling behav-

iors.

Buckling/ultimate capacity of structures is mostly

determined by elastic and elasto-plastic large deflec-

tion analyses, respectively. However, prediction of the-

oretical buckling loads and modes has also crucial im-

portance. In that respect, the main purpose of this

study is to conduct eigen buckling analysis of cylin-

drical shells under longitudinal compression using the

meshfree RK approximation. A convected coordinate

system is introduced to treat general curved surfaces

and can be used in structural modeling with arbitrary

geometries; e.g., perforated cylinders and curved stiff-

ened plates. The RKs are employed to interpolate the

curved geometry and approximate field variables on

curved shells. The membrane deformation is assumed

to have a plane stress condition, while the Mindlin–

Reissner plate formulation is adopted for out-of-plane

deformation. When evaluating the stiffness matrix, sta-

bilized conforming nodal integration (SCNI) [58], [59]

is employed. Because not only curved surface geometry

but also the field variable can be approximated using

the meshfree functions, the present approach utilized

for analyzing structural buckling problems including

arbitral curved surface geometry. Additionally, mesh-

free eigen buckling analysis adopting higher-order in-

terpolation functions with advanced numerical integra-

tion technique; e.g., SCNI is mostly superior to linear

FEs to overcome shear locking problem. The meshfree

Galerkin discretization of the curved shells considers

five degrees of freedom (DOF) per node. As for im-

position of the essential boundary conditions (BCs),

several discretization techniques have been proposed



An effective meshfree RK method for buckling analysis of cylindrical shells with and without cutouts 3

and implemented; i.e., Lagrange multiplier method [34],

[35], penalty method [37] and multiple point constraint
(MPC) method [55]–[57]. However, a previous study

conducted by the present authors showed that adopting

the MPC technique in the meshfree Galerkin method

produces small stress oscillations along the boundaries

[55]. A robust essential BC enforcement technique is

required in the linear buckling analysis to evaluate the

buckling loads and modes with high accuracy for the

cylindrical shell models. Therefore, a singular kernel

(SK) [60] is introduced to impose the so-called Kro-

necker delta property in the set of the meshfree inter-

polants. Buckling characteristic of shallow and cylin-

drical shells strongly depends on discretization and el-

ement formulation. Therefore, only critical loads and

their mode shapes are studied.

The rest of the paper is organized as follows. A

shear-deformable curved shell formulation using a con-

vected coordinate system is presented in Section 2. The
meshfree discretization, numerical integration for the

stiffness matrix and imposition of essential BCs are de-

tailed in Section 3. Section 4 presents numerical ex-

amples of shallow shells, full cylinder models and per-

forated cylinder buckling problems, and compares the

results obtained with reference solutions. Main conclu-

sions are drawn in Section 5.

2 Meshfree curved shell formulation

2.1 Kinematic of shells

The mapping techniques between Cartesian and con-
vected coordinate systems for curvilinear shells and 3D

spatial structures were examined in detail by Noguchi et

al. [37] and the present authors [56], [57] for geometri-

cal nonlinear formulation based on the total Lagrangian

method. In a similar manner, a mapping algorithm is

introduced in the present paper to transform the curved
shell geometry to the equivalent two-dimensional space

and vice-versa for the analysis of buckling modes and

loads of the curved shell structures.

A schematic illustration of the mapping technique

for Cartesian and convected coordinate systems is shown

in Fig.1(a). X=(X1, X2, X3) is a position vector in the

Cartesian coordinate system, while r=(r1, r2, r3) is that

in the convected one. The physical values in the two co-

ordinate systems have one-to-one correspondence. The

field variables in each coordinate system can be trans-

formed through the convected coordinate system. A

curved shell geometry is illustrated in Fig.1(b). The

r1–r2 is a mid-thickness plane of the curved shell. The

curved shell has a uniform thickness th throughout the

analysis domain. ei (i=1,2,3) is an orthogonal unit vec-

tor in the Cartesian coordinate system that corresponds
to the Xi-axis. Vi is an orthogonal unit vector on the

mid-thickness plane. The unit vectors V1, V2 and V3

have the relation,

V2 =
V3 × e1
|V3 × e1|

, (1)

V1 = V2 × V3. (2)

A thick shell is assumed in the present curved shell for-

mulation. Mindlin–Reissner plate theory is adopted to

allow transverse shear deformation of the curved shell.

A homogeneous isotropic elastic material is assumed.
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Fig. 1 A schematic illustration of convected coordinate sys-
tem: a mapping system for a curvilinear geometry, b a curved
shell geometry and its meshfree discretization

When considering the curved shell problems as in-

dicated in Fig.1(b), a position vector X on the curved

shell is defined by

X = Xmid +
r3

2
thV3, (3)

where Xmid is a position vector on the mid-thickness

plane of the curved shell in the Cartesian coordinate

system, while V3 is a directional unit vector (director)

normal to the mid-thickness plane. Similarly, the trans-

lation of an arbitrary point on the curved shell can be

evaluated in terms of a displacement vector u as:

u = umid +
r3

2
th(−θ1V2 + θ2V1), (4)

where θ1 and θ2 are rotation components in terms of the

tangential unit vectors V1 and V2 on the mid-thickness
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plane, respectively. The term −θ1V2 + θ2V1 in Eq.(4)

corresponds to rotation of the director V3.

2.2 Mathematical representations of the curved shell

geometry and the deformation

A five-DOF flat shell formulation based on RKs and

SCNI was developed by Wang and Sun [61] and the

present authors [55]. Shear-deformable flat shell model-

ing based on RKs and SCNI can overcome the shear

locking problem by imposing the so-called Kirchhoff

mode reproducing condition [62], [63]. The curved shell

formulation and the discretization are performed as in

the previous works.

In the meshfree Galerkin discretization of curved

shells, the RKs are used not only for the curved ge-

ometry interpolation, but also for the field variables

approximation. The basic concept is the same as that

of the isoparametric FEM. The completeness condition

can thus be satisfied in the meshfree analysis. Nodes

are distributed on the mid-thickness plane as shown in

Fig.1(b) and the orthogonal unit vector Vi is defined at

each node; i.e., ViI for the I-th node. A position vector

Xmid(r
1, r2) on the mid-thickness plane (r1–r2 plane)

of the curved shell is interpolated using the RKs as:

Xmid(r
1, r2) =

NP∑
I=1

ψI(r
1, r2)XmidI , (5)

where ψI(r
1, r2) and XmidI are the RK and position

vector of the I-th node on the mid-thickness plane, re-

spectively. NP is the total number of scattered nodes

used for the interpolation of the mid-thickness plane

of the curved shell. The positon vector of an arbitrary
point on the curved shell X(r)(=X(r1, r2, r3)) is then

written as

X(r) =

NP∑
I=1

ψI(r
1, r2)

(
XmidI +

r3

2
thV3I

)
, (6)

where V3I is a director of the I-th node. The RK on the

mid-thickness plane ψI(r
1, r2)(=ψI) can be written as:

ψI = hT (r1I−r1, r2I−r2)b(r1, r2)ϕI(r1I−r1, r2I−r2), (7)

where h(r1I − r1, r2I − r2) and b(r1, r2) are the basis

vector and coefficient vector, respectively. A complete

quadratic basis is chosen as the basis vector; i.e.,

h(r1I − r1, r2I − r2) = { 1 r1 r2 (r1)2 r1r2 (r2)2 }. (8)

Additionally, the coefficient vector b(r1, r2) is deter-

mined so as to satisfy the reproducing condition:

NP∑
I=1

ψI(r
1
I )
i(r2I )

j = (r1)i(r2)j , (0 ≤ i+ j ≤ 2). (9)

In Eq.(7), ϕI(r
1
I −r1, r2I −r2)(=ϕI) is an original kernel

for constructing the RKs. A cubic spline function is

chosen:

ϕI =
10

7πh2


1− 3

2s
2
I +

3
4s

3
I (0 ≤ sI ≤ 1)

1
4 (2− sI)

3 (1 ≤ sI ≤ 2)

0 (2 ≤ sI)

, (10)

where h is a parameter that defines the function sup-

port, and sI=
√
(r1I − r1)2 + (r2I − r2)2/h is the nor-

malized distance from the center of the kernel.

The displacement vector u={u1 u2 u3}T of an arbi-

trary point on the curved shell is approximated using

the RKs as:

u =


umid1 − th

2 r
3θ1V21 +

th
2 r

3θ2V11
umid2 − th

2 r
3θ1V22 +

th
2 r

3θ2V12
umid3 − th

2 r
3θ1V23 +

th
2 r

3θ2V13


=

NP∑
I=1

ΨIUI , (11)

where umidi (i=1,2,3) is the component of Xi-axis on

the mid-thickness plane. Vik (k=1,2,3) is a dot prod-

uct of the vector Vi and the unit vector ek. ΨI is the

displacement matrix in terms of RKs for the I-th node

and is written as:

ΨI =

NP∑
I=1

ψI 0 0 − th
2 r

3ψIV21
th
2 r

3ψIV11
0 ψI 0 − th

2 r
3ψIV22

th
2 r

3ψIV12
0 0 ψI − th

2 r
3ψIV23

th
2 r

3ψIV13

 , (12)

and UI is coefficient vector of the I-th node, and is

given by

UI =
{
umid1I umid2I umid3I θ1I θ2I

}T
, (13)

where umidiI (i=1,2,3) is the coefficient of Xi-axis dis-

placement for I-th node on the mid-thickness plane. θ1I
and θ2I are respectively the rotation components of the

I-th node in terms of the vectors V1 and V2, which are

used for the approximation of the deformation on the

curved shell.

To map between Cartesian and convected coordi-

nate systems, covariant and contravariant base vectors

are introduced. The covariant base vector Gi (i=1,2,3)

can be evaluated using the partial derivative of the po-

sition vector X on the mid-thickness plane:

Gi =
∂X

∂ri
. (14)

According to Eq.(6), the derivatives can be rewritten

for the ri-axis as:

∂X

∂ri
=

NP∑
I=1

∂ψI(r
1, r2)

∂ri

(
XmidI +

r3

2
thV3I

)
, (i = 1, 2),

∂X

∂r3
=

NP∑
I=1

ψI(r
1, r2)

1

2
thV3I . (15)
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Generally, basis vectors in the Cartesian coordinate sys-

tem are orthogonal; i.e., ei ·ej=δij . The covariant base
vectors have the properties

Gi ·Gj ̸= δij . (16)

Therefore, the contravariant base vector Gi is defined

to satisfy the Kronecker delta property:

Gi ·Gj = δji . (17)

The contravariant base vectors can be derived from the

covariant base vectors according to Eq.(17):

Gi =
Gj ×Gk

Gi · (Gj ×Gk)
, (18)

where (i, j, k)=(1,2,3),(2,3,1),(3,1,2) in Eq.(18).

3 Meshfree discretization for linear buckling

problems

The weak form of linear buckling problems can be eval-

uated by applying the principle of virtual work in lin-

earized form:∫
V

σ : δεLdV + λ

∫
V

σ′
0 : δεNLdV = 0, (19)

where εL and εNL are the linear and nonlinear strain

tensors, respectively. σ and σ′
0 are the Cauchy stress

tensor and pre-buckling stress tensor, respectively. δ

represents the variational operator. V is the volume of
the curved shell. λ is the buckling coefficient.

The total strain ε can be decomposed into linear

and nonlinear terms εLij and εNLij :

ε =
1

2

{(
Gi ·

∂u

∂rj
+Gj ·

∂u

∂ri

)

+

(
∂u

∂ri
· ∂u
∂rj

)}
Gi ⊗Gj

= (εLij + εNLij)G
i ⊗Gj

= εL + εNL. (20)

The linear strain components εLij can be derived as:

εLij =


εL11
εL22
2εL12
2εL23
2εL31

 =


G1 · ∂u∂r1
G2 · ∂u∂r2

G1 · ∂u∂r2 +G2 · ∂u∂r1
G2 · ∂u∂r3 +G3 · ∂u∂r2
G3 · ∂u∂r1 +G1 · ∂u∂r3

 , (21)

where ∂u/∂ri (i=1,2,3) is the derivative of the dis-

placement vector u on the curved shell. The derivative
∂u/∂ri is written in matrix form as

∂u

∂ri
=

NP∑
I=1

 ∂ψI

∂ri 0 0 −Ai21 Ai11
0 ∂ψI

∂ri 0 −Ai22 Ai12
0 0 ∂ψI

∂ri −Ai23 Ai13

UI

=

NP∑
I=1

ΨI,iUI , (i = 1, 2), (22)

∂u

∂r3
=

NP∑
I=1

0 0 0 − th
2 ψIV21

th
2 ψIV11

0 0 0 − th
2 ψIV22

th
2 ψIV12

0 0 0 − th
2 ψIV23

th
2 ψIV13

UI

=

NP∑
I=1

ΨI,3UI , (23)

where ΨI,i is the derivative of the displacement matrix

ΨI in Eq.(12) for the ri-axis. Aijk is a dot product of a

vector Aij and the unit vector ek. The vector Aij can
be represented as:

Aij =
th
2
r3

(
∂ψI
∂ri

Vj + ψI
∂Vj
∂ri

)
. (24)

Summarizing the above representation of the linear

strain components εLij , the displacement-linear strain

relationship is derived considering the linear strain ten-

sor εLij in Eq.(21) and the derivatives of the displace-

ment vector in Eqs.(22) and (23). It finally yields as:

εLij =

NP∑
I=1


GT

1 ΨI,1
GT

2 ΨI,2
GT

1 ΨI,2 +GT
2 ΨI,1

GT
2 ΨI,3 +GT

3 ΨI,2
GT

3 ΨI,1 +GT
1 ΨI,3

UI

=

NP∑
I=1

BLIUI , (25)

where BLI is the displacement–linear strain matrix.

The detail of the displacement-nonlinear strain ma-

trix BNLI is presented here. For convenience of repre-

sentation, the vector dT in terms of the nonlinear strain

is defined as:

dT =

{(
∂u

∂r1

)T (
∂u

∂r2

)T (
∂u

∂r3

)T}
. (26)

Substituting Eq.(11) into Eq.(26) yields

d =

NP∑
I=1

ΨI,1
ΨI,2
ΨI,3

UI =

NP∑
I=1

BNLIUI . (27)

The stress–linear strain relationship is

σ = C : εL. (28)
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By employing the orthogonal unit vector Vi, the stress–

strain matrix C can be decomposed, as:

C = CijklVi ⊗ Vj ⊗ Vk ⊗ Vl. (29)

The linear elastic matrixC can be defined in the curved

shell, as:

C =


C1111 C1122 C1112 C1123 C1131

C2211 C2222 C2212 C2223 C2231

C1211 C1222 C1212 C1223 C1231

C2311 C2322 C2312 C2323 C2331

C3111 C3122 C3112 C3123 C3131



=
E

1− ν2


1 ν

1 0
1−ν
2

sym. κ 1−ν
2

κ 1−ν
2

 , (30)

where κ is the shear correction factor and κ=π2/12 is
taken in this work. E and ν are the Young’s modulus

and the Poisson’s ratio, respectively. While the elastic

matrix C can be represented on the curved shell based

on the covariant vector Gi, as:

C = CijklGi ⊗Gj ⊗Gk ⊗Gl. (31)

The contravariant components of the stress-strain rela-

tionship Cijkl is evaluated based on Eq.(30), as:

Cijkl = Cmnop(Vm ·Gi)(Vn ·Gj)(Vo ·Gk)(Vp ·Gl),

(32)

σij = CijklεLkl. (33)

Substituting Eqs.(25) and (27) into Eq.(19) consid-

ering the stress–strain relationship of Eq.(28), a discrete

equation of the eigenvalue problem is then obtained as:

(KL + λKNL)U = 0, (34)

where KL and KNL are stiffness matrices for linear and

nonlinear terms, respectively and they are expressed as

KL =

∫∫∫
BT

LCBLdV, (35)

KNL =

∫∫∫
BT

NLσ
′
0BNLdV, (36)

where BL and BNL are displacement-strain matrices

in the meshfree model. The volume dV can be written

employing a scalar triple product of the covariant base

vector Gi and a line element dri as:

dV = [G1G2G3]dr
1dr2dr3. (37)

The pre-buckling stress tensor σ′
0 is represented as

σ′
0 =

σ′11
0 I σ′12

0 I σ′13
0 I

σ′21
0 I σ′22

0 I σ′23
0 I

σ′31
0 I σ′32

0 I σ′33
0 I

 , (38)

where I is a 3×3 unit tensor. σ′33
0 is set to be zero

according to the plane stress assumption.

A nodal integration technique is introduced to accu-

rately evaluate the stiffness matrix as defined in Eqs.(35)

and (36) for the linear buckling analysis. The SCNI pro-

posed by Chen et al. [58], [59] is adopted. In the mesh-

free discretization, a flat shell meshfree model is first ar-

ranged and a curved surface model is then generated us-

ing the convected coordinate system. The field variables

are also transformed using the convected coordinate

system. The detail of the SCNI for a flat shell meshfree

model has been given in the literature [55]. Newton-

Cotes numerical integration technique with five points

is adopted in thickness direction. As for the compari-

son with SCNI, Gauss integration (GI) rule is adopted

for derivation of the stiffness matrix. A Voronoi cell is

divided a number of triangular domain and 13-point

Gauss quadrature rule is adopted to evaluate Eqs.(35)

and (36). The details are written in Refs.[40], [64]. The

results are provided for some numerical examples.

Imposing the essential BCs in the meshfree analy-

sis with RKs requires a special treatment because of a

lack of the Kronecker delta property of the meshfree

interpolants. A SK [60] is employed to introduce singu-

larities on the nodes along the essential BCs to recover

the nodal values. A standard RK is substituted with

an SK along the edges where the essential BCs are im-

posed. By employing the SK, the essential BCs can be

imposed to the limit of machine precision in the mesh-

free analysis.

4 Numerical examples

Buckling loads and modes for shallow shell and full

cylinder models with and without cutouts are calcu-

lated to verify the accuracy and effectiveness of the

present meshfree Galerkin formulation and discretiza-

tion.

4.1 Meshfree modeling for curved shell geometries

The meshfree modeling of the curved structures based

on the convected coordinate system is described here.

For the modeling of curved shell structures, a special

mapping is employed using the convected coordinate

system. First, a flat shell meshfree model is created.
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A mapping function is thus employed with the RKs to

transform the flat shell geometry to the curved shell ge-
ometry. The curved geometry is then interpolated using

the RKs. Approximation of the field variables, deriva-

tion of the stiffness matrix and numerical integration of

the stiffness matrix are carried out using the flat shell

model and convected coordinate system.

Meshfree modeling of different curved geometries

is shown in Figs.2(a)–(f). For the shallow shell prob-

lem, a flat shell meshfree model is arranged using the

scattered nodes and Voronoi cell diagram as shown in

Fig.2(a). A mapping function of the shallow shell ge-

ometry is defined using the convected coordinate sys-

tem, and the node positions and physical values are

transformed into the shallow shell meshfree model as

represented in Fig.2(b). Modeling of the full cylinder is

represented in Figs.2(c) and (d). The flat shell model

of Fig.2(c) can be transformed into the full cylinder

model using the mapping function. After transforming
the node positions onto the curved surface, the over-

lapped nodes located on both sides of the flat shell

model are tied to satisfy continuity of the field vari-

ables in the cylinder model. All DOFs of the overlapped

nodes are tied to meet the continuity of both geome-

try and deformations. The full cylinder meshfree model

is then obtained according to the meshfree modeling

as shown in Fig.2(d). The meshfree model of the per-

forated full cylinder model can be developed in addi-

tion to that of the full cylinder model. The models are

depicted in Figs.2(e) and (f). The flat shell model in-

cluding a circular cutout in Fig.2(e) can be transformed

easily into the perforated cylinder geometry in Fig.2(f).

The essential and traction BCs are imposed according

to the curved shell geometries considering the convected

coordinate system. This mapping technique is efficient

in modeling an arbitral curved geometry including, for

example, a cutout or through crack.

The accuracy of the meshfree models is examined

in the next section. The meshfree results are compared

with those of the FEM and reference solutions. In the

FEM computations, the commercial FEM solver AN-

SYS [65] with four-noded shell elements (SHELL181),

which are appropriate for analyzing thin to moderately

thick shells, is chosen. In the FEM analysis conver-

gence calculation is performed until fully converged so-

lutions are obtained. Then, fully converged results are

presented.

4.2 Buckling analysis of shallow shells

Linear buckling analyses of shallow shells are consid-

ered under simply supported and clamped conditions.

The present shallow shell geometries have small curva-

ture and convenient in the assessment of accuracy of
the developed method. These shallow shells have been

previously studied and can be found, for instance, in

Refs.[66] and [67]. The non-dimensional critical buck-

ling parameters presented in Ref.[68] are taken as

LK =
12Pcb

2(1− ν2)

Eπ2t2h
, (39)

and

Z =
b2
√
1− ν2

rdth
, (40)

where LK is the non-dimensional buckling coefficient

divided by Young’s modulus, E, while Z is the curva-

ture parameter for the shallow shells. Pc is the critical

stress, rd is the radius of the shallow shells and b is the

width of the curved side of a shell.

An illustration of the shallow shell model is schemat-

ically indicated in Fig.3. Where a is the height of the

shallow shell and b is the width of the curved side of

shallow shell. The plate thickness is th/b=0.015 and the

Poisson’s ratio is ν=0.3. The point O is the center of

the cylinder diameter. (r,θ,z) denotes a point in the

cylindrical coordinate system. To avoid rigid body mo-

tion, the displacements uz at points A and B and uθ
at point C are suppressed. Two different BCs, namely

the simply supported and clamped conditions, are im-

posed. For the simply supported condition, out-of-plane

displacements (along the r-axis) on the mid-thickness

plane are constrained while in-plane displacements are

set to be free. Rotations about the longitudinal (z-axis)

and circumferential (θ-axis) are constrained in addition

to the constraints of the simply supported condition to

impose the clamped conditions for the longitudinal and

curved edges, respectively. Uniform pressure is applied

to the top and bottom of the shallow shell.

A convergence study is performed for the problems

having simply supported and clamped BCs. Curved

shell models with rd/b=5.0 and 17.5 and the flat shell

model are considered. The convergence results of crit-

ical buckling coefficients LK are given in Tables 1 and

2 for simply supported and clamped BCs, respectively.

The error is defined as

Error =
Ref.−MFree

Ref.
× 100 (%). (41)

In Eq.(41), MFree and Ref. are the results obtained

by the meshfree method and the reference solutions,

respectively. The solutions of Baiz and Aliabadi [66]

analyzed by the boundary domain element method are

chosen as reference solutions. Shell aspect ratio is taken

as a/b=2.0. Nodal densities ranging from b/20 to b/50
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(a) (c) (e)

(b) (d) (f)

TyingTying
(Overlapped nodes) (Overlapped nodes)

Fig. 2 Meshfree modeling based on a convected coordinate system: a a flat shell model for the shallow shell model, b a
meshfree shallow shell model, c a flat shell model for the full cylinder model, d a full cylinder meshfree model, e a flat shell
model for the perforated cylinder model, f a perforated full cylinder model

3X
2X

X1

a

b

r
O

θ
r

z

th

uz=0

u =0
θ

d

A

B

C

Uniform pressure

Mid-thickness plane

Fig. 3 Schematic representation of a shallow shell: geometry
notation and its BCs

are studied. Although the reference solutions are not

derived from analytical methods, converged meshfree

results are obtained with good agreement with reference

solutions.

Table 1 Convergence study for shallow shell problems under
simply supported condition (a/b=2.0)

Error %
Distance rd/b=5.0 rd/b=17.5 Flat
b/20 0.155 0.460 0.508
b/30 0.153 0.291 0.318
b/40 0.095 0.161 0.179
b/50 0.045 0.073 0.086

Table 2 Convergence study for shallow shell problems under
clamped condition (a/b=2.0)

Error %
Distance rd/b=5.0 rd/b=17.5 Flat
b/20 0.817 0.828 0.835
b/30 0.580 0.581 0.588
b/40 0.488 0.488 0.496
b/50 0.530 0.444 0.451

The buckling coefficients LK of the shallow shells

are further investigated to examine the effectiveness of

the proposed method. The radius of curvature rd/b is

varied from 5.0 to infinity (i.e., a flat shell) in case of

a/b=2. The calculated results of the non-dimensional

critical buckling parameters are compared with the FEM

results and the reference solutions in Ref.[66]. The node

density of b/40 is chosen in all cases. The calculated re-

sults for simply supported and clamped BCs are given

in Tables 3 and 4, respectively. As expected the mesh-

free results are in good agreement with the FEM and

reference solutions.

Table 3 Buckling coefficients LK for shallow shells under
simply supported condition (a/b=2.0)

rd/b Z MFree FEM Ref.[66]
5.0 12.719 5.647 5.644 5.642
7.5 8.479 4.741 4.735 4.734
11.5 5.530 4.298 4.296 4.291
17.5 3.634 4.107 4.107 4.100
27.5 2.313 4.019 4.021 4.012
63.0 1.009 3.971 3.973 3.964
inf. Flat 3.959 3.962 3.952
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MFree FEM

(a)

(b)

(c)

X1

2 3X X

Fig. 4 Comparison of critical buckling modes of the simply supported shallow shells (rd/b=5.0): a a/b=2.0, b a/b=3.0, c
a/b=4.0

Table 4 Buckling coefficients LK for shallow shells under
clamped condition (a/b=2.0)

rd/b Z MFree FEM Ref.[66]
5.0 12.719 10.351 10.337 10.402
7.5 8.479 8.942 8.953 8.985
11.5 5.530 8.294 8.311 8.334
17.5 3.634 8.021 8.042 8.060
27.5 2.313 7.897 7.920 7.936
63.0 1.009 7.829 7.853 7.868
inf. Flat 7.813 7.836 7.852

The critical buckling loads and their modes of shells

having different aspect ratios a/b are investigated for

one curvature case (rd/b=5.0). The critical buckling co-

efficients LK for the shallow shell with rd/b=5.0 are

presented in Table 5 for simply supported and clamped

BCs. Critical mode shapes of shells having different as-

pect ratios a/b are visualized in Figs.4 and 5 for simply

supported and clamped BCs, respectively. We obtained

symmetric mode shapes with respect to X1- and X3-

axes by FEM and meshfree methods, the slight differ-

ence is only visualdue to the curved surfaces, which are

a little difficult to visualize by same view angle. It is

thus confirmed that the proposed meshfree approach

employing the RK, SCNI and coordinate system is ef-

fective in treating the shallow shell problems.

4.3 Buckling analysis of full cylinder models

Buckling loads and modes of full cylinder models are

studied to demonstrate the capability of the proposed

Table 5 Buckling coefficients LK for different aspect ratios
a/b (rd/b=5.0)

Simply supported Clamped
a/b MFree FEM MFree FEM
2.0 5.647 5.644 10.351 10.337
3.0 5.779 5.742 10.014 10.005
4.0 5.676 5.639 9.920 9.914

technique. The problems have highly curved surfaces

compared with the previous shallow shell problems. The

analysis model is shown in Fig.6. The height and radius

of the cylinder are denoted as L and rd, respectively,

while th denotes the shell thickness of the cylinder. All

models are assumed to be simply supported along the

compressed edges; this is realized by constraining trans-

lations in radial and circumferential directions in cylin-

drical coordinates. Compression is then applied to both

sides. Axial displacements are assumed to be uniform

along the compressed edges; this is realized by tying

the displacement components of all nodes on the com-

pressed edges in the longitudinal direction. To prevent

rigid body motion of the models, points A and B are

constrained in longitudinal direction as shown in Fig.6.

A parametric study is performed to check the perfor-

mance of the proposed technique for different lengths

and perimeters of full cylinder models. The shell thick-

ness and material properties are assumed to be the

same for all models; the shell thickness th=10 mm, the

Young’s modulus E=210 GPa and the Poisson’s ratio

ν=0.3.
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MFree FEM

(a)

(b)

(c)

X1

2 3X X

Fig. 5 Comparison critical buckling modes of the clamped shallow shells (rd/b=5.0): a a/b=2.0, b a/b=3.0, c a/b=4.0
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Fig. 6 Schematic representation of a full cylinder: geometry
notation and its BCs

The length and perimeter are then varied. In detail,

the length is set to be constant as L=1,000 mm and the

perimeter is varied as b=2,500 mm and 3,000 mm. The

perimeter is then assumed to be constant as b=3,000

mm and the length is varied as L=500 mm and 1,500

mm. The computed results are compared with FEM

results and an analytical formula given by Ref.[69]. All

the provided results are evaluated for a very fine case

in which the node separations are b/150 for b=3,000

mm, and b/135 for b=2,500 mm. The critical buckling

stresses of all cases are given in Table 6. In the given

table the results are compared for SCNI and GI. The

results are good agreement each other.

In Table 6, analytical results are calculated consider-

ing the buckling half waves in longitudinal and circum-

ferential directions obtained by meshfree method and

FEM. Buckling modes obtained by meshfree method

and FEM are compared for constant length and con-

stant perimeter cases in Figs.7 and 8, respectively.

MFree FEM

(a)

(b)

Fig. 7 Comparison of the buckling modes for L=1,000 mm:
a b=2,500 mm, b b=3,000 mm

The difference between the results of the meshfree

method and the analytical formula can be attributed to

difference between the assumed and calculated buck-

ling modes. In the analytical formulation in Ref.[69],
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Table 6 Buckling stress for the parametric models

kN/mm2

L mm b mm MFree (SCNI) MFree (GI) FEM Analytical [69]
1,000 2,500 3.064 3.066 3.116 3.142
1,000 3,000 2.567 2.568 2.610 2.621
500 3,000 2.570 2.570 2.602 2.642
1,500 3,000 2.556 2.558 2.592 2.621

MFree FEM

(a)

(b)

Fig. 8 Comparison of the buckling modes for b=3,000 mm:
a L=500 mm, b L=1,500 mm

trigonometric functions that have uniform amplitude

are adopted to represent the buckling deformations along

both longitudinal and circumferential directions. How-

ever, it is seen from mode shapes by both meshfree and

FEM results that the magnitudes of buckling half waves

are not uniform in the longitudinal direction. Buckling

half waves of smaller amplitude store less strain energy

and may produce lower buckling stress compared with

the analytical solutions. Meanwhile, a slight difference

is observed between buckling stresses by the meshfree

method and FEM. It is supposed that the difference

can be attributed to the element formulation and dis-

cretization.

4.4 Buckling analysis of cylinders with circular cutouts

As the third numerical example, the dimensions are

selected as L=1,000 mm and b=3,000 mm. The shell

thickness, the Young’s modulus and the Poisson’s ra-

tio are assumed to be the same as previous numeri-

cal examples i.e., th=10 mm, E=210 GPa and ν=0.3,

respectively. Hereafter, cylinders with circular cutouts

are referred to as perforated cylinders for the sake of

simplicity. Meshfree modeling of perforated cylinders is

almost same as the modeling of full cylinders. The only

difference in the models is a circular hole located at

the central point of the flat plate. The same mapping

and tying operations are then performed to create per-

forated cylinders. In addition, the same BCs used in

the previous subsection are adopted for the perforated

cylinders. Circular cutouts with three different radii lo-

cated at the longitudinal midpoint of cylindrical shells

are considered.

Computations are made using the meshfree method

and FEM, and the results are then compared with the

design formula for the lower bound of the buckling stress

of perforated cylinders given in Ref.[70]. The lower bound

of the buckling stress of perforated cylinders is obtained

employing a reduction factor for the buckling stress of

the intact cylindrical shells. The buckling stress of in-

tact cylindrical shells σcr can be calculated according

to classical theory as

σcr = 0.605
Eth
rd

. (42)

The reduction factor αc for the lower bound buckling

stress is given by

αc =
0.83√

1 + 2.12(rc/
√
rdth)1.4

, (43)

where rc is the radius of the circular cutout. The lower
bound of the critical buckling stress σc

cr of perforated

cylinders is finally obtained as

σc
cr = σcrαc. (44)

In the meshfree computations, the node separation is

assumed as b/150. Both results of the meshfree method

and FEM are compared with those of the design for-

mula, and they are shown in Fig.9, in which Formula

denotes the results of the lower bound of the buck-

ling stress formula given in Ref.[70]. Good agreement

is achieved between the results of the FEM and mesh-

free method. Additionally, both results are higher than

values obtained with the lower bound design formula.

From Fig.9, it is known that the critical buckling strength

decreases when the cutout gets larger.

The critical mode shapes for perforated cylinders

with different cutout sizes are represented in Fig.10,

and good agreement is achieved between critical mode

shapes obtained by meshfree method and FEM.
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Fig. 9 Performance of the proposed technique for perforated
cylinders

In the present paper, eigen value analyses including

non-steep gradients deformation were treated. When

analyzing buckling problems including sharp buckling

modes, sub-domain stabilized conforming integration

(SSCI) [47] and enrichment basis [41], [71] can be uti-

lized.

5 Conclusions

Buckling problems for cylindrical shells were solved em-

ploying the RK meshfree method. Detailed explana-

tion is given on the meshfree curved shell discretiza-

tion, and numerical experiments of buckling for shallow

and cylindrical shells with different geometries are pro-

vided. In particular, shallow shells, full cylinder mod-

els and perforated cylinder shells with circular cutouts

have been studied. The calculated results of the critical

buckling and mode shapes are compared with reference

solutions derived from boundary domain element, FE

and analytical methods. Good agreements are obtained.

The meshfree formulation based on the SCNI is ef-

ficient to prevent the occurrence of the shear locking.

Essential BCs are directly imposed by employing SKs.

A convected coordinate system is efficient in modeling

deep or shallow shells with and without cutouts. There

was good agreement between the buckling loads of the

shallow shells with the results of FEM and reference

solutions.

Additionally, good agreement in terms of the buck-

ling mode shapes was also obtained. In the full cylinder

case, there was good agreement in the mode shapes

and stresses obtained using the FEM and analytical

formula. The difference between results obtained with

the proposed method and analytical formula may be at-

tributed to the assumed and calculated buckling modes.

In the analytical formulation, the amplitude of buck-

MFree

(a)

FEM

(b)

(c)

Fig. 10 Critical buckling modes for the perforated cylinder
models: a rc/rd=0.2, b rc/rd=0.3, c rc/rd=0.4

ling half waves is assumed to be the uniform owing to

the use of trigonometric functions with single deflec-

tion component to represent buckling deformations in

axial direction. However, the results of the FEM and

meshfree method show that amplitudes of buckling half

waves are not uniform along the longitudinal axis of a

cylinder. The difference between the buckling strengths

obtained by FEM and meshfree method for full cylinder

case is attributed to element formulation and discretiza-

tion, which considerably affect the buckling strength

and modes. The developed meshfree method also of-

fers good results of buckling strength and mode shapes

of the perforated cylinders as compared with the FEM

solutions.
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