Finite rotation meshfree formulation for geometrically nonlinear analysis of flat, curved and folded shells

International Journal of Non-Linear Mechanics 119 巻 103300- 頁 2019-10-10 発行
アクセス数 : 17
ダウンロード数 : 8

今月のアクセス数 : 16
今月のダウンロード数 : 6
ファイル情報(添付)
IJNLM_119_103300.pdf 2.83 MB 種類 : 全文
タイトル ( eng )
Finite rotation meshfree formulation for geometrically nonlinear analysis of flat, curved and folded shells
作成者
Sadamoto Shota
Özdemir Mehmet
Bui Tinh-Quoc
収録物名
International Journal of Non-Linear Mechanics
119
開始ページ 103300
抄録
Geometrically nonlinear analysis of flat, curved and folded shells under finite rotations is performed by enhanced six degrees of freedom (6-DOFs) meshfree formulation. Curvilinear surfaces are dealt with the concept of convected coordinates. Equilibrium equations are derived by total Lagrangian formulation with Green–Lagrange strain and Second Piola–Kirchhoff stress. Both shell geometry and its deformation are approximated by Reproducing Kernels (RKs). Transverse shear strains are considered by Mindlin–Reissner theory. Numerical integration of the stiffness matrix is estimated by using the Stabilized Conforming Nodal Integration (SCNI) method. To show accuracy and effectiveness of the proposed formulation and discretization, benchmark problems from the literatures are considered. Apart from reference solutions available in the literature, additional reference results based on finite element method (FEM) conducted by the present authors are also presented.
著者キーワード
Meshfree methods
Reproducing kernel
Geometrically nonlinear analysis
Finite rotation
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier
発行日 2019-10-10
権利情報
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
This is not the published version. Please cite only the published version.
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
出版タイプ Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの)
アクセス権 オープンアクセス
収録物識別子
[DOI] https://doi.org/10.1016/j.ijnonlinmec.2019.103300 ~の異版である