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Abstract

Geometrically nonlinear analysis of flat, curved and folded shells under finite
rotations is performed by enhanced six degrees of freedom (6-DOFs) mesh-
free formulation. Curvilinear surfaces are dealt with the concept of convected
coordinates. Equilibrium equations are derived by total Lagrangian formu-
lation with Green-Lagrange strain and Second Piola-Kirchhoff stress. Both
shell geometry and its deformation are approximated by Reproducing Kernels
(RKs). Transverse shear strains are considered by Mindlin-Reissner theory.
Numerical integration of the stiffness matrix is estimated by using the Sta-
bilized Conforming Nodal Integration (SCNI) method. To show accuracy
and effectiveness of the proposed formulation and discretization, benchmark
problems from the literatures are considered. Apart from reference solutions
available in the literature, additional reference results based on finite element
method (FEM) conducted by the present authors are also presented.
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1. Introduction

Nonlinear shell formulation is quite complex and requires special effort.
Assumptions on the magnitude of deformations/rotations determine the lim-
its of the theory in practice. Limited computer sources in the earlier times
has restricted the computational works on the nonlinear shells, which in turn
most of the works were conducted in analytical manner. Ref. [1] is one of
the earlier analytical works on the nonlinear theory of thin shells assuming
small mid-surface strains and moderate magnitude of rotations. Libai and
Simmonds [2] applied large strain/rotations and material nonlinearities for
the analysis of rings and shells. Stumpf [3] studied nonlinear buckling and
post-buckling behavior of thin-shells assuming moderate rotations. Dvorkin
and Bathe [4] developed four-node nonlinear shell element based on contin-
uum mechanics, which may be assumed as one of pioneering works of the
computational nonlinear shells. Then, the performance of that element type
was examined by Stander et al. [5] by comparing with other assumed strain
elements. Finite rotation thin-shell elements for the nonlinear analysis of
doubly curved shells were developed by Başar and Ding [6]. Başar and his
colleagues [7] then developed four-node and nine-node finite rotation shell
elements by mixed formulation in which both displacements and force vari-
ables are interpolated. Previous finite rotation concepts were extended for
composite shells refining shear deformation model by Başar et al. [8,9]. Re-
cently, robust higher-order nonlinear shell formulations were proposed and
various shell structures were analyzed [10-14].

In the aforementioned literature, the large deformation problems have
been examined mainly by FEM. Beside this, Liu et al. [15] proposed Re-
producing Kernel Particle Method (RKPM), and its applications for large
deformations were formulated and demonstrated in Refs. [16,17]. Li et al.
[18] proposed 3D RKPM formulation for the large deformation analysis of
thin shell structures. Liew and his colleagues proposed RKPM formulation
for the large deformation analysis of beams [19], then the RKPM concept
was applied to nonlinear analysis of un-stiffened corrugated plates assuming
small strains and first order shear deformation theory [20]. Zhao et al. [21]
performed geometrically nonlinear analysis using the element-free kp-Ritz
method for the cylindrical shells. SCNI [22,23] and Sub-domain Stabilized
Conforming Integration (SSCI) [24-28] have been proposed for numerical in-
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tegration techniques of the stiffness matrix. Wang and Sun [29,30] carried out
geometrically nonlinear analyses of shear deformable beam and plates em-
ploying RKPM and SCNI. Peng et al. [31] proposed RKPM formulation for
the geometrically nonlinear analysis on the basis of thick shell formulation.

Our research group performed geometrically nonlinear analysis employ-
ing meshfree methods [32-36]. Elastic large deflection analysis of plates with
initial imperfections was carried out by the present authors employing con-
vected coordinates [34,35]. Furthermore, geometrically nonlinear analysis of
folded plate structures by 6-DOFs Galerkin meshfree formulation was con-
ducted by Sadamoto et al. [36]. In the previous works of the authors, i.e.,
[34-36], the rotation increments were assumed to be infinitesimal, and the
finite rotation concept was not taken into account. In the present study, we
extend previous geometrically nonlinear analysis concept for analyzing finite
rotation problems.

The present work deals with the geometrically nonlinear analysis of flat,
curved and folded shells assuming finite rotation increments in the convected
coordinate system. Approximation of physical values and discretized ge-
ometry is conducted by means of RK functions, which are continuous in
the support domain of the nodes. Plane stress condition is assumed for in-
plane deformation while the Mindlin-Reissner shell formulation is adopted
for transverse shear deformation. When evaluating the stiffness matrices,
SCNI technique is employed for single geometries while both SCNI and SSCI
are implemented for the numerical integration of plate assemblies along the
connection of two plates. Essential boundary conditions (BCs) cannot be
directly imposed due to lack of Kronecker Delta property in the meshfree in-
terpolants. A boundary singular kernel (SK) [37] is thus employed to impose
the so-called Kronecker Delta property in the set of the meshfree interpolants.

In the proposed method, continuous functions can be employed in the ap-
proximation for both in-plane and out-of-plane deformations; the discretiza-
tion is relatively simple. The numerical discretization can be carried out in a
straightforward manner. Treatment of shear locking problem, e.g., reduced
integration technique, is not needed. So far, meshfree shell formulations
have been developed [31,38]; as far as the author’s knowledge, the formula-
tion including finite rotation problems are rather rare and the influence of
finite rotation formulation was not specifically addressed, e.g., see [31]. In
the present work, the finite rotation problems are specifically selected and
studied. A detailed comparison for with and without finite rotation cases is
performed in terms of the convergence and the solution accuracy.
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The rest of the paper is organized as follows. A shear-deformable shell
formulation using a convected coordinate system as well as meshfree approx-
imations are presented in Section 2. Finite rotation problem is addressed in
Section 3. In Section 4, formulation for geometrically nonlinear analysis is
described. Section 5 covers the numerical examples to demonstrate the ca-
pability of the present formulation for finite rotation problems utilizing flat,
curved and folded structures. Main conclusions are drawn in Section 6.

2. Shell kinematics and meshfree approximations

2.1. Shell kinematics

A shell model as illustrated in Fig. 1 with the reference coordinates is
considered. In the given figure, X=(X1, X2, X3) is a position vector in the
Cartesian coordinate system, while r=(r1, r2, r3) stands for a position vector
in the convected coordinates. The unit base vectors are expressed as ei
(i = 1, 2, 3) along the Xi axes, respectively. The coordinate transformation
between Cartesian and convected coordinate system is carried out by a special
technique, which is similar to that of Noguchi et al. [39] in order to effectively
deal with the curvilinear surfaces. By this technique, any arbitrary shape
of shell surface can be transformed and represented in the corresponding
convected coordinates, and vice-versa.

Reference coordinates

Nodes 
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e 
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e 3
X

1
X

2

X
3
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3

2

b
1

b
2

Figure 1: A schematic illustration of a shell model with reference coordinates.

The shell is assumed to have a uniform thickness th throughout the anal-
ysis domain. Moderately thin and thick shell assumptions are made in the
present formulation based on Mindlin-Reissner theory. The material is as-
sumed to be homogeneous isotropic and elastic.
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Initial position, X, and the position at time t, tx, of a point on a shell
surface can be given by

X = Xmid +
r3
2
th

0V3, (1)

tx = txmid +
r3
2
th
tV3. (2)

Here, Xmid and txmid are the coordinates of the mid-thickness plane of the
shell in the Cartesian coordinate system. The directors at the initial and
current configuration are denoted as 0V3 and

tV3, respectively. Denoting the
time increment ∆t = t′ − t, the displacement increment of a point, u for the
given time increment ∆t is expressed as:

u = t′x− tx = t′umid − tumid +
r3
2
th(

t′V3 − tV3). (3)

The displacement can also be written in terms of orthogonal unit vectors tV1

and tV2 on the mid-thickness plane and rotation components β1 and β2 as:

u = umid +
r3
2
th(−β1tV2 + β2

tV1). (4)

The displacement vector in Eq. (4) can be written explicitly as:

u =


u1
u2
u3

 =


umid1 −

r3
2
thβ1

tV 2(1) +
r3
2
thβ2

tV 1(1)

umid2 −
r3
2
thβ1

tV 2(2) +
r3
2
thβ2

tV 1(2)

umid3 −
r3
2
thβ1

tV 2(3) +
r3
2
thβ2

tV 1(3)

 . (5)

In Eq. (5), Vi(j) terms represent the dot products of the unit vectors Vi and
ej.

2.2. Approximation of curved shells and its deformations by RKs

Shear deformable shell modeling based on RKs and SCNI can prevent
shear locking phenomenon by imposing Kirchhoff mode reproducing condi-
tion [40,41] and it was analyzed in Ref. [34] for flat shells and employed for
fracture mechanics analysis [42,43]. The meshfree interpolant is utilized for
the curved shell. They are distributed on the convected coordinate system
as shown in Fig. 1 and it can be written for the I-th node as:

ψI(r1, r2) = hT (r1I − r1, r2I − r2)b(r1, r2)ϕI(r1I − r1, r2I − r2). (6)
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b(r1, r2) is a coefficient vector. A complete quadratic basis h(r1I − r1, r2I −
r2)(= {1 r1 r2 r21 r1r2 r22}) is employed. A cubic spline function is taken
as an original kernel function ϕI(r1I − r1, r2I − r2), as:

ϕI =
10

7πh2I


1− 3

2
s2I +

3
4
s3I (0 ≤ sI ≤ 1)

1
4
(2− sI)

3 (1 ≤ sI ≤ 2)
0 (2 ≤ sI)

. (7)

sI(=
√

(r1I − r1)2 + (r2I − r2)2/hI) is the normalized distance from center of
the kernel and hI is a parameter to define the function support. The function
support of the RKs set as 2.4 to 2.7 of a characteristic length between the
I-th node and neighboring nodes.

In the meshfree Galerkin discretization of the curved shells, the RK func-
tions are employed not only for the curved geometry interpolation, but also
for the field variables approximation. The approximation scheme is concep-
tually same with the isoparametric FEM. The completeness condition can
thus be met. Nodes can be randomly distributed on the mid-thickness plane
as shown in Fig. 1 and the orthogonal unit vector Vi is defined at each
node; i.e., ViI for the I-th node. A position vector Xmid(r1, r2) on the mid-
thickness plane (r1-r2 plane) of the curved shell is interpolated using the RKs
as:

Xmid(r1, r2) =
NP∑
I=1

ψI(r1, r2)XmidI , (8)

X(r1, r2) =
NP∑
I=1

ψI(r1, r2)
(
XmidI +

r3
2
th

0V3I

)
, (9)

where ψI(r1, r2) and XmidI are the interpolation function and position vector
of the I-th node on the mid-thickness plane, respectively. NP is the total
number of scattered nodes used for the interpolation of the mid-thickness
plane of the curved shell. As for the details of RKs, see Ref. [44]. As
similar to approximation of the position vector, the displacement vector on
mid-thickness plane can be approximated as:

umid(r) =
NP∑
I=1

ψI(r)umidI , u(r) =
NP∑
I=1

ψI(r)
(
umidI +

r3
2
th

0V3I

)
. (10)
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The displacement increment u is expressed as follows using RK functions:

u =


u1
u2
u3

 =
NP∑
I=1

 ψI 0 0 − th
2
r3ψI

tV 2(1)
th
2
r3ψI

tV 1(1)

0 ψI 0 − th
2
r3ψI

tV 2(2)
th
2
r3ψI

tV 1(2)

0 0 ψI − th
2
r3ψI

tV 2(3)
th
2
r3ψI

tV 1(3)




u1I
u2I
u3I
β1I
β2I


=

NP∑
I=1

ΨIUI . (11)

Here, uiI (i=1,2,3) are displacement increments in the mid-thickness plane,
while β1I and β2I are the rotation components for the I-th node with respect
to r1 and r2-axes, respectively.

In case of geometrically nonlinear problems, the local orthogonal basis
vectors have to be updated for each incremental step. Then, the orthogonal
basis vectors can be approximated by RK functions as:

tVi(r1, r2) =
NP∑
I=1

ψI(r1, r2)
tV iI , (i = 1, 2, 3). (12)

The covariant base vectors Gi have to be introduced to map between the
Cartesian and the convected coordinates. This can be achieved through the
following relations:

Gi =
∂X

∂ri
=

NP∑
I=1

∂ψI(r1, r2)

∂ri

(
XI +

r3
2
th

0V3I

)
, (i = 1, 2), (13)

G3 =
∂X

∂r3
=

NP∑
I=1

ψI(r1, r2)
1

2
th

0V3I . (14)

The covariant base vector, tgi, at time t is expressed in terms of covariant
base vector at initial configuration and displacement vector as:

tgi =
∂x

∂ri
=
∂(X + tu)

∂ri
= Gi +

∂tu

∂ri
. (15)

2.3. Rotation components and rotation angles

In order to derive 6-DOFs formulation, the relationship between the rota-
tion angles and rotation components is introduced here, see Fig. 2(a). First,
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it is assumed that the rotation is small for each increment. In the given fig-
ure, the drilling rotation component, β3 and the drilling rotation angle, θ3 are
defined. Implementation of a drilling rotation component has already been
presented in our previous studies [45-47]. Then, the displacement approxi-
mations are modified considering these relations. The rotation of director, ω
is schematically illustrated in Fig. 2(b).

V3
V1

V2 b1

b
2

Mid-thickness

plane

q=

V

t
t’

w= qt
t’

iqt
t’ ei

t’

V
t

3

3

V
t
3(a) (b)

q1e 1

q2
e 2

e 3

q3
X1

X2

X3

b
3

Figure 2: Rotation of directors: (a) rotation components βi and angles θi, (b) orthogonal
transformation of shell director, V3.

The rotation vector of directors, ω is expressed considering rotation an-
gles, rotation components and unit vectors as:

ω = βiVi = θjej. (16)

The rotation components then can be written as:

βi = Vi · ejθj = Vi(j)θj. (17)

The relationship is written in explicit form as follows:
β1
β2
β3

 =

 V1(1) V1(2) V1(3)

V2(1) V2(2) V2(3)

V3(1) V3(2) V3(3)


θ1
θ2
θ3

 . (18)

Then, the kinematic relations for small rotations can be rewritten considering
Eq. (18) as:

us =umid +
r3
2
th(−(θ · tV1)

tV2 + (θ · tV2)
tV1), (19)

8



where Vi={Vi(1) Vi(2) Vi(3)} and θ={θ1 θ2 θ3}T . us is a displacement vector
for small rotation. The derivatives of the displacement vector are given as:

∂us

∂ri
=
∂umid

∂ri
+
r3
2
th

(
− ∂

∂ri
(θ · tV1)

tV2 − (θ · tV1)
∂tV2

∂ri

+
∂

∂ri
(θ · tV2)

tV1 + (θ · tV2)
∂tV1

∂ri

)
(i = 1, 2), (20)

∂us

∂r3
=
1

2
th(−(θ · tV1)

tV2 +
(
θ · tV2)

tV1

)
. (21)

Then, the displacement vector and derivatives can be approximated by RKs
in convected coordinates as:

us =
NP∑
I=1

 ψI 0 0 r3A
′
1(1) r3A

′
2(1) r3A

′
3(1)

0 ψI 0 r3A
′
1(2) r3A

′
2(2) r3A

′
3(2)

0 0 ψI r3A
′
1(3) r3A

′
2(3) r3A

′
3(3)




u1I
u2I
u3I
θ1I
θ2I
θ3I


=

NP∑
I=1

ΨIWI , (22)

∂us

∂ri
=

NP∑
I=1


∂ψI

∂ri
0 0 r3A

′′
i1(1) r3A

′′
i2(1) r3A

′′
i3(1)

0 ∂ψI

∂ri
0 r3A

′′
i1(2) r3A

′′
i2(2) r3A

′′
i3(2)

0 0 ∂ψI

∂ri
r3A

′′
i1(3) r3A

′′
i2(3) r3A

′′
i3(3)

WI

=
NP∑
I=1

ΨI,iWI , (i = 1, 2), (23)

∂us

∂r3
=

NP∑
I=1

 0 0 0 A′
1(1) A′

2(1) A′
3(1)

0 0 0 A′
1(2) A′

2(2) A′
3(2)

0 0 0 A′
1(3) A′

2(3) A′
3(3)

WI

=
NP∑
I=1

ΨI,3WI , (24)
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where θiI (i=1, 2, 3) are rotation angles of I-th node. A′
i and A′′

ij are
expressed as:

A′
i =

th
2
ψI
(
tV2(i)

tV1 − tV1(i)
tV2

)
, (25)

and

A′′
ij =

th
2

[
ψI

(
tV2(j)

∂tV1

∂ri
+
∂tV2(j)

∂ri
tV1 − tV1(j)

∂tV2

∂ri
−
∂tV1(j)

∂ri
tV2

)

+
∂ψI
∂ri

(tV2(j)
tV1 − tV1(j)

tV2)

]
. (26)

A penalty formulation proposed by Kanok-Nukulchai [48] is employed to
introduce drilling rotation component based on convected coordinate system
into a virtual work equation. A mid-thickness is assumed β1-β2 plane as
shown in Fig. (2) and a penalty energy QT is defined as:

QT = κT

∫
V

C1212

[
β3|G1 ×G2| −

1

2

(
G2 ·

∂u

∂r1
−G1 ·

∂u

∂r2

)]2
dV. (27)

κT is a coefficient of the penalty energy and utilized as κT=0.1. C1212 is
a shear term in the elastic constitutive tensor. β3 is the virtual in-plane
rotation. The virtual distortion εβ3 and the corresponding virtual stress Rβ3

caused by β3 is respectively given as:

εβ3 =

[
β3|G1 ×G2| −

1

2

(
G2 ·

∂u

∂r1
−G1 ·

∂u

∂r2

)]
G1 ⊗G2, (28)

Rβ3 = 2κT C
1212εβ3G

1 ⊗G2. (29)

3. Introduction of finite rotation

So far, the formulation is derived assuming the rotation increment is in-
finitesimal. As long as the rotation increment and the total rotation are
small and they are precisely updated, the given formulation is basically ac-
curate. On the other hand, even if the load/rotation increment is small, this
formulation has a limitation on the total magnitude of the rotations [49].
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In general, there are two ways, Euler angle and rotation of axial vector,
to introduce finite rotation into FEM formulation [50]. Surana [49] and
Stander et al. [5] implemented Euler angle for degenerated shell elements.
In the application of Euler angles as the primary kinematic variables, some
problems occur when the rotation angle gets larger than 90◦. This problem
was discussed by Parisch [51] based on the references therein.

Argyris [52] has proposed finite rotation formulation by introducing axial
vector to the nonlinear formulation by means of rotation of director. In
the formulation, update of the rotation angle is carried out by multiplying
rotation tensor with the director of the shell. Noguchi and Hisada [50,53,54]
implemented finite rotation tensor into FEM assuming the axial vector is
constant during each load increment. They employed Taylor series expansion
and the first two terms are utilized. Using this formulation, the singularity
of the stiffness matrix caused by the finite rotation terms can be avoided.
Our finite rotation formulation is based on the approach given by Noguchi
and Hisada [50,53,54] whose procedure is described below.

Finite rotation tensor t′
t R is defined to account for the finite rotation

increment. As for the rotation up to time t′ of the director tV3 of the shell, it is
assumed that the rotation axis does not change during rotation. Orthogonal
transformation of the director is schematically illustrated in Fig. 2(b). t

′
t θ is

the axis of rotation, and ω is the finite rotation angle. At this time:

t′

t θ = t′

t θiei, (30)

ω = |t′t θ|. (31)

The antisymmetric matrix t′
t Φ is defined using the components of the axial

vector t′
t θ.

t′

t Φ =

 0 −t′
t θ3

t′
t θ2

t′
t θ3 0 −t′

t θ1
−t′
t θ2

t′
t θ1 0

 . (32)

Dividing Eqs. (30) and (32) by ∆t, spin tensor and its axial vector can be
obtained as follow in case of small rotation problem.

t′

t Φ
tV3 =

t′

t θ × tV3 =
tV̇3, (33)

where ( ˙ ) represents an increment quantity. From the expression in Eq.
(33), I+1/nt

′
t Φ makes a small rotation tensor between ∆t/n with ω/n. The
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finite rotation can therefore be considered as a set of infinitesimal rotation.
From this fact, the finite rotation tensor t′

t R can be defined as follows:

t′

t R = lim
n→inf

(
I +

1

n
t′

t Φ

)n
= I + t′

t Φ+
1

2!

(
t′

t Φ
)2

+
1

3!

(
t′

t Φ
)3

+ · · · . (34)

In the derivation of the tangential stiffness, it is sufficient to consider only
the first and second terms of the right-hand side in Eq. (34). Then, the finite
rotation tensor can be practically expressed as:

t′

t R = I + t′

t Φ+
1

2

(
t′

t Φ
)2
. (35)

On the other hand, the exact rotation tensor t′
t R is obtained from the geo-

metric relationship according to Argyris [52]. It is written as:

t′

t R = I +
sinω

ω
t′

t Φ+
1

2

(
sin(ω/2)

ω/2

)2 (
t′

t Φ
)2
. (36)

Considering the finite rotational increment, the displacement increment is
expressed as:

u = umid +
r3
2
th(

t′

t R− I) tV3

= umid +
r3
2
th

t′

t θ × tV3 +
r3
2
th

t′

t θ × (t
′

t θ × tV3)

=
(
umid +

r3
2
th (−β1tV2 + β2

tV1)
)
+
(
−r3

4
th (β2

1 + β2
2)
tV3

)
= us + uex. (37)

Here us denotes the displacement increment in case of small rotation shown so
far, and uex is additional term associated with the finite rotation increment.

The partial derivatives of the displacement increment with respect to
convected coordinates can be expressed as:

∂u

∂ri
=
∂us

∂ri
− r3

2
th

(
β1
∂β1
∂ri

+ β2
∂β2
∂ri

)
tV3 −

r3
4
th(β

2
1 + β2

2)
∂tV3

∂ri

=
∂us

∂ri
+
∂uex

∂ri
, (i = 1, 2), (38)

∂u

∂r3
=
∂us

∂r3
− 1

4
th (β2

1 + β2
2)
tV3 =

∂us

∂r3
+
∂uex

∂r3
. (39)
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The material derivatives of the strain increments and the variation can
be written as:

t0ĖLij =
1

2

(
tgi ·

∂u̇s

∂rj
+ tgj ·

∂u̇s

∂ri

)
, (40)

δt0ELij =
1

2

(
tgi ·

∂δus

∂rj
+ tgj ·

∂δus

∂ri

)
, (41)

(δt0ENLij )̇ =
1

2

(
∂u̇s

∂ri
· ∂δus

∂rj
+
∂δus

∂ri
· ∂u̇s

∂rj

)
+

1

2

(
tgi ·

∂(δuex)̇

∂rj
+ tgj ·

∂(δuex)̇

∂ri

)
. (42)

They are utilized in the virtual work equation. It is only necessary to
add the second term of the Eq. (42) to the geometric stiffness matrix. In
computing the convergence of the residual force, the director is updated using
the exact finite rotation tensor, which is shown in Eq. (36), to obtain the
strain increments.

4. Geometrically nonlinear analysis

4.1. Total Lagrangian method

Total Lagrangian formulation with Green-Lagrange strain and Second
Piola-Kirchhoff stress is adopted for representing large deflections and ro-
tations. The virtual work equation for the unknown state of deformation
t′=t+∆t can be expressed in terms of Green-Lagrange strain tensor tt0E and
Second Piola-Kirchhoff stress tensor t

t0
S as:∫

V

t′

0S : δ t′

0EdV = t′δR. (43)

The suffixes on the lower left side of the stress and strain tensors denote the
reference configuration. In Eq. (43), t0=0 that is the initial configuration.
On the other hand, t

′
δR is the virtual work term associated with external

forces. V stands for the volume of the initial configuration. Green-Lagrange
strain tensor can be decomposed by the covariant base vectors for the current
t and unknown configuration t′ as follows.

t
0E =

1

2

(
tgi · tgj −Gi ·Gj

)
Gi ⊗Gj, (44)

t′

0E =
1

2

(
t′gi · t

′
gj −Gi ·Gj

)
Gi ⊗Gj. (45)
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Then, Green-Lagrange strain increment can be expressed by

0E = t′

0E − t
0E = 0EijG

i ⊗Gj

=
1

2

(
t′gi · t

′
gj − tgi · tgj

)
Gi ⊗Gj. (46)

As for the Second Piola-Kirchhoff stress tensor for the unknown configura-
tion, decomposition is carried out as:

t′

0S = t
0S + 0S =

(
t
0S

ij
+ 0S

ij
)
Gi ⊗Gj. (47)

Finally, the virtual work equation in Eq. (43) is decomposed as follow.∫
V

0S
ij
(
δ0ELij + δ0ENLij

)
dV +

∫
V

t
0S

ij
δ0ENLijdV

= t′δR−
∫
V

t
0S

ij
δ0ELijdV. (48)

Left hand side of Eq. (48) is nonlinear in terms of the displacement increment
u. Thus, linearization has to be performed. Applying the linearization, stress
velocity and strain rate concepts come out, and the relationship between the
stress velocity and strain rate can be given by

t
0Ṡ = 0C̄ : t0Ė, (49)

where the dot over the stress and strain increments denote the linearized
terms divided by the ∆t→ 0. 0C̄ is the constituent tensor.

An elastic material is assumed. The constitutive equation is given em-
ploying Vi, as:

¯
0C = 0C̄ijklVi ⊗ Vj ⊗ Vk ⊗ Vl. (50)

The matrix 0C̄ijkl is written as:

0C̄ =


0C̄1111 0C̄1122 0C̄1112 0C̄1123 0C̄1131

0C̄2211 0C̄2222 0C̄2212 0C̄2223 0C̄2231

0C̄1211 0C̄1222 0C̄1212 0C̄1223 0C̄1231

0C̄2311 0C̄2322 0C̄2312 0C̄2323 0C̄2331

0C̄3111 0C̄3122 0C̄3112 0C̄3123 0C̄3131



=
E

1− ν2


1 ν

1 0
1−ν
2

sym. κ1−ν
2

κ1−ν
2

 , (51)

14



where E, ν and κ are Young’s modulus, Poisson’s ratio and shear modu-
lus, respectively. It can be expressed as a contradiction component using
covariant base vectors Gi as:

0C̄ = 0C̄
ijklGi ⊗Gj ⊗Gk ⊗Gl. (52)

They have following relation as:

0C̄
ijkl = 0C̄mnop(Vm ·Gi)(Vn ·Gj)(Vo ·Gk)(Vp ·Gl). (53)

And the relationship between associated stress and strain tensors is:

t
0Ṡ

ij = 0C̄
ijkl t

0ĖLkl. (54)

As for drilling rotation component, a virtual energy δQT due to virtual
strain δεβ3 is proposed in Eq. (55). Employing incremental decomposition
and linearization, virtual energy can be expressed as:(

1

2

∫
V

t0Ṙβ3δ0εβ3dV

)
∆t = −1

2

∫
V

0Rβ3δ0εβ3dV. (55)

Finally, the virtual work equation can be written as:(∫
V

0C̄
ijkl

0Ėklδ0ELijdV +

∫
V

t
0S

ij
(δ0ENLij )̇dV +

∫
V

κT 0C
1212

0ε̇β3δ0εβ3dV

)
∆t

= t′δR−
∫
V

t
0S

ij
δ0ELijdV − 1

2

∫
V

t
0Rβ3

δ0εβ3dV.

(56)

4.2. Discretization

Discretization of the virtual work equation is presented. 0Ėij in first term
of left hand side of Eq. (56) can be represented in vector form as:

0
ˆ̇E =


0Ė11

0Ė22

20Ė12

20Ė23

20Ė31

 =


tg1 · ∂u̇∂r1
tg2 · ∂u̇∂r2

tg1 · ∂u̇∂r2 +
tg2 · ∂u̇∂r1

tg2 · ∂u̇∂r3 +
tg3 · ∂u̇∂r2

tg3 · ∂u̇∂r1 +
tg1 · ∂u̇∂r3

 . (57)
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The partial derivatives of u̇ on the convected coordinate system ∂u̇/∂ri are
discretized by RKs as given in Eqs. (23) and (24). It is given in matrix form
as:

0
ˆ̇E =

NP∑
I=1


tg
T
1ΨI,1

tg
T
2ΨI,2

tg
T
1ΨI,2 +

tg
T
2ΨI,1

tg
T
2ΨI,3 +

tg
T
3ΨI,2

tg
T
3ΨI,1 +

tg
T
1ΨI,3

 ẆI

=
NP∑
I=1

t
0BLIẆI , (58)

where t
0BLI is a matrix of displacement-strain relationship. In the similar

manner, δ0ELij in Eq. (56) is written in vector form as:

δ0ÊL =
NP∑
I=1

t
0BLIδWI , (59)

where δWI is a variation of WI . Therefore, first term of Eq. (56) is dis-
cretized as:(∫

V
0C̄

ijkl
0Ėklδ0ELijdV

)
∆t =δW T

∫
V

t
0B

T

L0C̄
t
0BLdV W ,

=δW T t
0KLW . (60)

where W T={W1, · · · ,WNP}T and t
0BL=[t0BL1, · · · , t

0BLNP].
t
0KL is a

initial displacement matrix. The volume of the shell is defined by vector triple
product as: dV=[0g1

0g2
0g3]dr

1dr2dr3. The matrix of elastic constitutive
model is given in Eq. (51).

Additionally, second term of left hand side in Eq. (56) is discretized. The
term includes variation of displacement increment and material derivative.
Here, we define a vector ḋ as:

ḋT =
{ (

∂u̇
∂r1

)T (
∂u̇
∂r2

)T (
∂u̇
∂r3

)T }
. (61)

The increment of partial derivatives ∂u̇/∂ri are derived by Eqs. (23) and
(24) taking the finite rotation term in Eqs. (38) and (39) into account. The
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following relation can be obtained as:

ḋ =
NP∑
I=1

 ΨI,1

ΨI,2

ΨI,3

 ẆI =
NP∑
I=1

t
0BNLIẆI . (62)

In a similar manner, the variation component can also be discretized. Finally,
the second term of left hand side of Eq. (56) is written as:(∫

V

t
0S

ij
(δ0ENLij )̇ dV

)
∆t =δW T

∫
V

t
0B

T

NL
t
0S̄

t
0BNLdV W ,

=δW T{t0KNLs +
t
0KNLex}W , (63)

where t
0BNL=[t0BNL1, · · · , t0BNLNP].

t
0KNLs is an initial stiffness matrix and

t
0KNLex is additional term in terms of finite rotation components. t

0S̄ is a
matrix in terms of Second Piola-Kirchhoff stress. It is presented in matrix
form as:

t
0S̄ =

 t
0S

11I t
0S

12I t
0S

13I
t
0S

21I t
0S

22I t
0S

23I
t
0S

31I t
0S

32I 0

 , (64)

where I is 3×3 unit matrix.
Second term of right hand side in Eq. (56) is discretized by employing

displacement-strain matrix t
0BL in Eq. (60). It is derived as:∫

V

t
0S

ij
δ0ELijdV =δW T

∫
V

t
0B

T

L
t
0ŜdV

=δW T t
0Q, (65)

where t
0Q is an internal force vector. t

0Ŝ is a vector defined as:

t
0Ŝ

T =
{

t
0S

11 t
0S

22 t
0S

12 t
0S

23 t
0S

31
}
. (66)

Based on above discretization, following linear equation is evaluated.(
t
0KL +

t
0KNL

)
W = t′F − t

0Q. (67)

t′F is a vector in terms of external force t′δR. t
0KNL= (t0KNLs +

t
0KNLex) is

initial stiffness matrix including finite rotation term. The equation is then
solved by Newton-Raphson method.
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4.3. Nodal integration

In order to conduct numerical integration of the matrices in Eq. (67),
SCNI [22,23] is employed. A flat shell model is arranged and nodes are
distributed on the flat shell model. Voronoi cells are generated to define the
volume and for the nodal integration. And then, a curved shell geometry
is constructed through the convected coordinate system. For simplicity, the
components umid1, umid2, umid3, θ1, θ2 and θ3 are rewritten as ui (i=1, · · · ,
6).

Figure 3: Nodal integration with SCNI.

The domain form of the partial derivatives uj,k(r) is transformed to the
line integration with Gauss’ divergence theorem. The physical quantities are
smoothed within the entire cell. When adopting SCNI for K-th node rK in
Fig. 3(b), it is written as:

ũhj,k(rK) =
1

AK

∫
ΩK

uhj,k(r) dΩ

=
1

AK

∫
ΓK

uhj (r)nk dΓ =
NP∑
I=1

bIk(rK)ujI ,

bIk(rK) =
1

AK

∫
ΓK

ψI(r)nk dΓ, j = {1, · · · , 6}, k = {1, 2}, (68)

where (˜) stands for smoothed values. ΩK and ΓK are domain and boundary
of Voronoi cell forK-th node. AK is area of ΩK . nk is normal to the boundary
ΓK .

SSCI [24-28] is only applied for connection of folded structure in the
numerical examples to accurately integrate the tangent stiffness matrix.
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5. Numerical examples and discussion

The accuracy and effectiveness of the present meshfree formulation with
finite rotation are examined by conducting large displacement/rotation anal-
ysis of shell structures assuming elastic material properties. The influence of
finite rotation formulation is investigated in terms of the solution accuracy
as well as the convergence. The convergence term for each load increment is
evaluated and compared with the assumed order of convergence, 10−5. The
convergence term is the ratio of residual forces norm to the external forces
norm.

Numerical examples are selected among the well-known benchmark prob-
lems of the geometrically nonlinear analysis as well as the finite rotation
problems available in the literature. As a first example, we consider one
of most popular benchmark problems, pinched cylinder under a point load.
Then, a simple geometry that is a clamped rectangular plate problem with
a tip moment is considered. As the third numerical example, a complex ge-
ometry that is a trapezoidal plate problem under an end moment is studied.
Finally, roll up of L-shaped plate problem is analyzed under tip moment.
In both problems, shells are subjected to large displacement/rotations and
membrane locking must be addressed. Meshfree results are compared with
the reference papers as well as FEM based results obtained by the present
authors.

For the FEM computations, ANSYS [56] software is employed adopting
Shell181 shell elements. Shell181 element formulation is based on bi-linear
shape functions and Mindlin-Reissner shear deformation theory [56]. This
element is suitable for simulating large displacement/rotation problems.

5.1. Pinched cylinder under point load

The pinched cylinder problem is not a specific finite rotation problem but
it is a well-known numerical example for geometrically nonlinear analysis.
This problem was numerically examined by many papers e.g., [57-59] and
references therein. Owing to its curvilinear surface, this numerical example
should be a good verification of the present method for the geometrically
nonlinear analysis using the convected coordinates. The pinched cylinder
problem is depicted in Fig. 4.

The dimensions and material properties are same as Ref. [57]. The
cylinder length, radius and thickness are L=3.048, R=1.016 and th=0.03,
respectively. The material properties are E=2.0685× 107 and ν=0.3.
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Figure 4: Modeling of the pinched cylinder: (a) representative model with symmetric BCs,
(b) meshfree modeling using mapping technique.

The maximum load, Pmax is 2,000. Moreover, not only graphical but also
numerical tabulated results are provided in Ref. [58]. Half cylinder FEM
model as similar to [58] with 32×32 elements is adopted. For the meshfree
computations, a quarter model with 435 nodes and symmetric BCs as given
in Fig. 4 is developed. It must be noted that when the quarter model is
considered, the applied maximum load is taken as half of Pmax.

The meshfree results obtained by the present formulation are compared
with the FEM based results obtained by the authors and tabulated results
given by Ref. [58] in Fig. 5. In the figure, the vertical displacement of load
application point is plotted with respect to the load increment. The results
obtained by the proposed method are represented by “MFree”. It is evident
that a very good agreement is achieved between the results.

The vertical displacement of the load application point at the end of
loading computed by the present finite rotation formulation is 1.712, while
the FEM result computed by the authors and reference result given by Ref.
[58] are 1.719 and 1.715, respectively. The relative error for the vertical
displacement based on Ref. [58] then becomes 0.175 %.

Even though, the pinched cylinder is not a specific finite rotation problem;
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Figure 5: Vertical displacement of the load application point.

we can examine the influence of finite rotation formulation on the results re-
garding the convergence. The vertical displacements of the load application
point with and without finite rotation formulation cases are almost the same,
which is difficult to distinguish in a graph. We therefore check the average
number of convergence iterations for each load increment. Average number
of convergence iterations for each load increment is 2.1 when finite rotation
formulation is considered. On the other hand, the average number of conver-
gence iterations for each load increment becomes 10.0 when the finite rotation
formulation is out of consideration. Such a big difference in the number of
convergence iterations notably influences the computational efficiency. The
deformed shapes evaluated by FEM and present meshfree computations are
illustrated in Fig. 6. The figure indicates the good agreement between the
FEM and meshfree models.

Finite rotation computation is carried out for non-uniform nodal distri-
butions. The meshfree model in Fig. 4(b) is employed and the nodal coor-
dinates are re-arranged by introducing a parameter for irregular distribution
as follow.

xirr = x+ (2.0 rc − 1.0) ·∆s · γirr, (69)

where x and xirr are the position vectors of a node for regular and irregular
arrangement. ∆s is a characteristic length between the target node and
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 FEM MFree

Symmetry

Figure 6: Deformed shapes for pinched cylinder at P/Pmax = 1.

neighboring nodes. rc is a random number, and γirr is an irregularity factor.
γirr=0.2, 0.3 and 0.4 are chosen. The meshfree models are shown in Fig.
7(a)-(c) for γirr=0.2, 0.3 and 0.4, respectively.

(a) (b) (c)

Figure 7: Non-uniform meshfree models: (a) γirr=0.2, (b) γirr=0.3, (c) γirr=0.4.

The meshfree results are shown in Fig. 8. Although the convergence for
each load increment gradually worsens as γirr is increased, the problem can
be analyzed by non-uniform meshfree models with good accuracy.
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Figure 8: Vertical displacement of the load application point for the non-uniform meshfree
models.

5.2. Roll up of a rectangular plate

One of popular benchmark studies for the finite rotation problems, a
cantilever rectangular plate subjected to tip moment is considered. This
problem was addressed in Refs. [31,58] as well as the references therein. A
schematic illustration with main properties is given in Fig. 9. Under the
tip moment, the cantilever plate forms a circular arc shape with the radius,
R=EI/M , where I stands for the second moment of area for vertical bending.
Normalized deflections can be analytically calculated by [58].

U

L
=
M0

M
sin

(
M

M0

)
, (70)

W

L
=
M0

M

(
1− cos

(
M

M0

))
, (71)

where M0=EI/L. The maximum tip moment, Mmax=2πM0, at which the
cantilever plate forms a circle.

The roll up of a rectangular plate is a specific finite rotation problem so
that the finite rotation terms must be taken into account to get the solu-
tion up to maximum moment. In the meshfree computations, there must
be enough number of nodes within the support domain of RK functions.
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Figure 9: Cantilever rectangular plate model: (a) representative model and main proper-
ties, (b) meshfree model with Voronoi cells.

Considering this condition, five nodes are allocated along r2-direction. To
keep the nodal distance same in the whole body, 49 nodes are utilized in
r1-direction. In this case, the nodal distance becomes b/4 within the whole
body and the total number nodes for the meshfree model is 245.

Comparison of present meshfree formulation including finite rotation terms
and analytical results obtained through Eqs. (70) and (71) are given in Fig.
10, which clearly indicates that the proposed method with finite rotation
formulation has capability of dealing with large rotation problems precisely.
Analytical value of the tip rotation is 360◦, while the tip rotation by the
proposed method is 359.7◦; error for the tip rotation then becomes 0.075 %.

The FEM results are compared with present formulation considering with
and without finite rotation cases in Fig. 11. It is evident from the figure that
the proposed method with finite rotation formulation correlates very well
with the FEM results, while neglecting the finite rotation terms leads poor
estimation of the tip displacement. In addition, the meshfree method with-
out finite rotation terms fails to converge before reaching the maximum mo-
ment. Moreover, average number of the convergence iterations for each load
increment becomes 33.6 when the finite rotation formulation is neglected,
while average number of the convergence iterations for each load increment
is obtained as 2.2 in case of the finite rotation terms are considered. These
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Figure 10: Comparison of meshfree results with the analytical solutions by Eqs. (70) and
(71).

values apparently indicate the influence of finite rotation formulation on the
computational efficiency.
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Figure 11: Influence of finite rotation terms on the tip displacements of rectangular plate.

Finally, the deformed shapes are given in Fig. 12 for FEM and mesh-
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free formulation with and without finite rotation terms. Deformed shapes
obtained by FEM and proposed method with finite rotation formulation are
in good agreement, while the meshfree results without finite rotation formu-
lation fails to converge and maximum moment value cannot be reached.

 (a) (b) (c)

Figure 12: Deformed shapes for rectangular plate: (a) FEM, (b) MFree (finite rotation),
(c) MFree (without finite rotation).

X1

X3

Figure 13: Deformed shapes of rectangular cantilever plate for different M/Mmax values.

For the proposed method with the finite rotation formulation, the de-
formed shapes of the rectangular cantilever plate are obtained and illustrated
for differentM/Mmax values with the uniform increments, 0.1 in Fig. 13. Ini-
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tial configuration is illustrated by the blue color while the deformed shape
at the last load step is plotted in red.

5.3. Roll up of a trapezoidal plate

The third numerical example is adopted from Başar and Ding [6]. The
loading and BCs are same as the previous numerical example, tip moment
is applied keeping the other end clamped. The problem is schematically
illustrated in Fig. 14(a). The tip moment is incrementally applied up to
load factor, λ=1.5.

X1

X3

L

X2

X1

b/2

Clamped

(a) (b)

Figure 14: Modeling of cantilever trapezoidal plate: (a) representative model and main
properties, (b) meshfree model with Voronoi cells.

The nodal distance of the trapezoidal model is gradually varied as shown
in Fig. 14(b). This problem is also a specific finite rotation problem and with-
out finite rotation formulation, the maximum load factor cannot be reached.
At first, the results obtained by the proposed method with finite rotation
formulation are compared with the FEM based results as well as reference
results obtained by digitizing the graphical data of Ref. [6].

It is evident from Fig. 15 that the proposed method with finite rotation
formulation agrees well with the reference and FEM results. The tip rotation
given by Ref. [6] is 540◦, while the tip rotation evaluated by the present
method considering finite rotation is 538.7◦ and the error percentage becomes
0.249 %.

When the finite rotation formulation is not taken into account, the max-
imum load factor cannot be reached, the solution fails to converge and stops
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Figure 15: Comparison of meshfree results with those of FEM and Ref. [6].

 (a) (b) (c)

Figure 16: Deformed shapes for trapezoidal plate: (a) FEM, (b) MFree (finite rotation),
(c) MFree (without finite rotation).
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at λ=0.87. At this time, the number of convergence iterations is 88 for this
load increment and average number of the convergence iterations becomes
41.3 for each load increment. On the other hand, average number of the con-
vergence iterations is 3.3 when the finite rotation formulation is utilized. It is
apparent that the finite rotation formulation not only improves the accuracy
of the solutions but also the computational efficiency for the large rotation
problems.
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Figure 17: Influence of finite rotation formulation on the tip displacements of the trape-
zoidal plate.

The results obtained for with and without finite rotation formulation are
compared with those of FEM. The results given in Fig. 17 shed light on
the influence of finite rotation formulation on the accuracy of the numerical
simulations. The displacements are slightly overestimated when the finite
rotation formulation is not considered. This could be because of the work
done by the external loads is mainly compensated by the displacements but
not by the rotations due to the small rotation increment assumption. The
deformed shapes obtained by the proposed method employing finite rotation
formulation for different λ values are given in Fig. 18. The deformed shapes
are illustrated for the uniform λ increments of 0.15. The initial configuration
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is depicted in blue color, while the deformed shape at the last load step is
represented in red color.

X1

X3

Figure 18: Deformed shapes of trapezoidal cantilever plate for different λ values.

5.4. Roll up of an L-shaped plate

The final numerical example is the roll up of an L-shaped plate. This
model was examined by Ref. [60] but only deformed shapes were given,
the numerical results were neither plotted nor tabulated in [60]. The main
dimensions and the material properties are adopted as same as given by [60].
L-shaped plate is schematically illustrated in Fig. 19. The main dimensions
are L=12, B=3 and the thickness is th=0.03. The elastic modulus and the
Poisson’s ratio are respectively adopted as E=3 × 107, ν=0.0. One edge
of the L-shaped plate is assumed to be clamped as shown in Fig. 19, tip
moment is applied to free edge, whose magnitude is defined as m=λmref .
Here, mref=100 is utilized.

The L-shaped plate problem has a strongly nonlinear behavior and rel-
atively fine mesh is necessary to accurately capture the displacements and
rotations. In the meshfree models, nodal division is therefore considered as
B/15. As opposed to previous numerical examples, this model is an assem-
bly of two plates. In this case, a special numerical integration technique,
SSCI [24-27] is implemented along connecting edges for efficient smoothing
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Figure 19: Modeling of L-shaped plate: (a) representative model and main dimensions,
(b) meshfree model with Voronoi cells and SSCI.
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Figure 20: Comparison of tip displacements obtained by present formulation and FEM:
(a) horizontal displacements,−u1, (b) vertical displacements, u3.
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of physical values along the connection. In the SSCI approximation, the in-
tegration domains for SCNI are further divided into triangular sub-domains
as shown in Fig. 19(b).

Assembly process for flat and curved shells has been respectively studied
by the authors in Refs. [45,46]. Same assembly procedure with our previous
studies is employed here.

As pointed out before, the numerical results were not provided by [60], we
then conduct FEM simulations for the comparison. The tip displacements
obtained by FEM and present method are compared in Fig. 20. When the
finite rotation formulation is utilized, the meshfree results perfectly coincide
with those evaluated by FEM. This agreement can also be spotted by the
deformed shapes at the end of loading given in Fig. 21(a) and (b). On the
other hand, for without finite rotation case, the solution fails to convergence
and the simulation stops at λ=0.34. The deformed shape for this λ value
is given in Fig. 21(c). When a detailed look is given to Fig. 20(b), it is
seen that the proposed method without finite rotation formulation fails to
convergence at the first turning point for vertical displacements. Beyond
this point, the behavior of the L-shaped plate becomes more complicated
and it can be pointed that it is difficult to trace such a complicated behavior
without finite rotation formulation.

The tip rotation value at the end of loading obtained by FEM is 509.3◦,
while the rotation becomes 509.1◦ for the meshfree computations. The dif-
ference between the results is 0.046 %. The average number of convergence
iterations for each load increment is 4.3 in case of the finite rotation formula-
tion is introduced. On the other hand, that value becomes 15.7 for without
finite rotation formulation. As it is pointed out above, the solution stops
at λ=0.34. Compared to other numerical examples, the solution stops at
the lowest load level in case of L-shaped problem for without finite rota-
tion formulation, which clearly indicates the strongly nonlinear behavior of
the problem. Moreover, even if the finite rotation formulation is considered,
the average number of convergence iterations for each load increment is 4.3.
This value is larger than those of other problems examined so far, which
are 2.1, 2.2 and 3.3 for pinched cylinder, rectangular plate and trapezoidal
plate cases, respectively. For the last numerical example, the L-shaped plate,
the deformed shapes are portrayed for different λ values with uniform incre-
ments of 0.1 in Fig. 22. The figure indicates that the deformation is highly
nonlinear and the rotation increments are large.
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(a) (b) (c)

Figure 21: Deformed shapes obtained at the last load steps by (a) FEM, (b) MFree (finite
rotation), (c) MFree (without finite rotation).

Figure 22: Deformed shapes of L-shaped plate for different λ values.
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6. Conclusions

In this contribution, we have presented an enhanced meshfree formula-
tion considering finite rotations for geometrically nonlinear analysis of flat,
curved, and folded shells. The results obtained by the proposed method with
and without finite rotation formulation were compared with available refer-
ence results and FEM based solutions obtained by the authors. The results,
when the finite rotation formulation is considered, apparently showed very
good agreement with the reference results. In contrast, the formulation with-
out considering finite rotation is not able to capture the nonlinearity of the
present numerical examples. Furthermore, the computational efficiency was
improved by introducing finite rotation even for the pinched cylinder case,
which is not a specific finite rotation problem. As for the specific finite rota-
tion problems, the finite rotation formulation significantly improved both the
solution accuracy and the computational efficiency. In case of the without
finite rotation solutions, the solutions failed to converge and the solutions
stopped before reaching the maximum load level.
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