Predictive factors for the progression of primary small-bowel follicular lymphoma and disease surveillance evaluation using capsule endoscopy images based on AI system 1)Predictive factors for the progression of primary localized stage small-bowel follicular lymphoma 2)Disease surveillance evaluation of primary small-bowel follicular lymphoma using capsule endoscopy images based on a deep convolutional neural network

アクセス数 : 27
ダウンロード数 : 48

今月のアクセス数 : 4
今月のダウンロード数 : 7
File
k9545_1.pdf 247 KB 種類 : abstract
File
k9545_2.pdf 152 KB 種類 : abstract
File
k9545_4_1.pdf 94.7 KB 種類 : summary
File
k9545_4_2.pdf 150 KB 種類 : summary
Title ( eng )
Predictive factors for the progression of primary small-bowel follicular lymphoma and disease surveillance evaluation using capsule endoscopy images based on AI system 1)Predictive factors for the progression of primary localized stage small-bowel follicular lymphoma 2)Disease surveillance evaluation of primary small-bowel follicular lymphoma using capsule endoscopy images based on a deep convolutional neural network
Title ( jpn )
原発性小腸濾胞性リンパ腫の進行予測因子とAIシステムに基づくカプセル内視鏡画像を用いた病勢評価 1)原発性限局期小腸濾胞性リンパ腫の進行予測因子 2)深層畳み込みニューラルネットワークに基づくカプセル内視鏡画像を用いた原発性小腸濾胞性リンパ腫の病勢評価
Creator
Sumioka Akihiko
Descriptions
内容の要約
Language
eng
Resource Type doctoral thesis
Access Rights open access
Dissertation Number 甲第9545号
Degree Name
Date of Granted 2024-03-23
Degree Grantors
広島大学
Hiroshima University