Machine tool calibration: Measurement, modeling, and compensation of machine tool errors
International Journal of Machine Tools and Manufacture 187 巻
104017- 頁
2023-03-29 発行
アクセス数 : 117 件
ダウンロード数 : 0 件
今月のアクセス数 : 1 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00054007
ファイル情報(添付) |
利用開始日
2025-03-29
29.6 MB
種類 :
全文
エンバーゴ :
2025-03-29
|
タイトル ( eng ) |
Machine tool calibration: Measurement, modeling, and compensation of machine tool errors
|
作成者 |
Gao Wei
Donmez M. Alkan
Kono Daisuke
Mayer J.R.R.
Chen Yuan-Liu
Szipka Károly
Archenti Andreas
Linares Jean-Marc
Suzuki Norikazu
|
収録物名 |
International Journal of Machine Tools and Manufacture
|
巻 | 187 |
開始ページ | 104017 |
収録物識別子 |
EISSN 0890-6955
NCID AA11531434
|
抄録 |
Advanced technologies for the calibration of machine tools are presented. Kinematic errors independently of their causes are classified into errors within one-axis as intra-axis errors, errors between axes as inter-axis errors, and as volumetric errors. As the major technological elements of machine tool calibration, the measurement methods, modeling theories, and compensation strategies of the machine tool errors are addressed. The criteria for selecting a combination of the technological elements for machine tool calibration from the point of view of accuracy, complexity, and cost are provided. Recent applications of artificial intelligence and machine learning in machine tool calibration are introduced. Remarks are also made on future trends in machine tool calibration.
|
著者キーワード |
Machine tool
Calibration
Measurement
Uncertainty
Self-calibration
Machine learning
|
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
Elsevier
|
発行日 | 2023-03-29 |
権利情報 |
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
|
出版タイプ | Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの) |
アクセス権 | エンバーゴ期間中 |
収録物識別子 |
[DOI] https://doi.org/10.1016/j.ijmachtools.2023.104017
|
備考 | The full-text file will be made open to the public on 29 Mar 2025 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. |