Efficient convolution pooling on the GPU

Journal of Parallel and Distributed Computing 138 巻 222-229 頁 2020-04 発行
アクセス数 : 322
ダウンロード数 : 84

今月のアクセス数 : 3
今月のダウンロード数 : 5
ファイル情報(添付)
JPDC_138_222.pdf 126 KB 種類 : 全文 エンバーゴ : 2022-05-01
タイトル ( eng )
Efficient convolution pooling on the GPU
作成者
Suita Shunsuke
Nishimura Takahiro
Tokura Hiroki
Kasagi Akihiko
Tabaru Tsuguchika
収録物名
Journal of Parallel and Distributed Computing
138
開始ページ 222
終了ページ 229
抄録
The main contribution of this paper is to show efficient implementations of the convolution-pooling in the GPU, in which the pooling follows the multiple convolution. Since the multiple convolution and the pooling operations are performed alternately in earlier stages of many Convolutional Neural Networks (CNNs), it is very important to accelerate the convolution-pooling. Our new GPU implementation uses two techniques, (1) convolution interchange with direct sum, and (2) conversion to matrix multiplication. By these techniques, the computational and memory access cost are reduced. Further the convolution interchange is converted to matrix multiplication, which can be computed by cuBLAS very efficiently. Experimental results using Tesla V100 GPU show that our new GPU implementation compatible with cuDNN for the convolution-pooling is expected 2.90 times and 1.43 times faster for fp32 and fp16 than the multiple convolution and then the pooling by cuDNN, respectively. the most popular library of primitives to implement the CNNs in the GPU.
著者キーワード
Deep learning
Neural Networks
Convolution
Average pooling
GPU
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier
発行日 2020-04
権利情報
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
出版タイプ Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0743-7315
[DOI] 10.1016/j.jpdc.2019.12.006
[DOI] https://doi.org/10.1016/j.jpdc.2019.12.006
備考 Post-print version/PDF may be used in an institutional repository after an embargo period of 24 months.