
広島大学学術情報リポジトリ
Hiroshima University Institutional Repository

Title
Efficient convolution pooling on the GPU

Author(s)
Suita, Shunsuke; Nishimura, Takahiro; Tokura, Hiroki;
Nakano, Koji; Itou, Yasuaki; Kasagi, Akihiko; Tabaru,
Tsuguchika

Citation
Journal of Parallel and Distributed Computing , 138 : 222 -
229

Issue Date
2020-04

DOI
10.1016/j.jpdc.2019.12.006

Self DOI

URL
https://ir.lib.hiroshima-u.ac.jp/00050422

Right
© 2019. This manuscript version is made available under
the CC-BY-NC-ND 4.0 license http://creativecommons.org/
licenses/by-nc-nd/4.0/
This is not the published version. Please cite only the
published version. この論文は出版社版ではありません。引用の
際には出版社版をご確認、ご利用ください。

Relation

http://dx.doi.org/10.1016/j.jpdc.2019.12.006
https://ir.lib.hiroshima-u.ac.jp/00050422


Efficient Convolution Pooling on the GPU

Shunsuke Suitaa, Takahiro Nishimuraa, Hiroki Tokuraa, Koji Nakanoa,∗,
Yasuaki Itoa, Akihiko Kasagib, Tsuguchika Tabarub

aDepartment of Information Engineering, Hiroshima University, Japan
bFujitsu Laboratories, Japan

Abstract

The main contribution of this paper is to show efficient implementations of
the convolution-pooling in the GPU, in which the pooling follows the multiple
convolution. Since the multiple convolution and the pooling operations are
performed alternately in earlier stages of many Convolutional Neural Net-
works (CNNs), it is very important to accelerate the convolution-pooling.
Our new GPU implementation uses two techniques, (1) convolution inter-
change with direct sum, and (2) conversion to matrix multiplication. By
these techniques, the computational and memory access cost are reduced.
Further the convolution interchange is converted to matrix multiplication,
which can be computed by cuBLAS very efficiently. Experimental results
using Tesla V100 GPU show that our new GPU implementation compati-
ble with cuDNN for the convolution-pooling is expected 2.90 times and 1.43
times faster for fp32 and fp16 than the multiple convolution and then the
pooling by cuDNN, respectively. the most popular library of primitives to
implement the CNNs in the GPU.

1. Introduction

The GPU (Graphics Processing Unit) is a specialized circuit designed to
accelerate computation for building and manipulating images [1, 2, 3]. Latest
GPUs are designed for general purpose computing and can perform compu-
tation in applications traditionally handled by the CPU. Hence, GPUs have
recently attracted the attention of many application developers. NVIDIA
provides a parallel computing architecture called CUDA (Compute Unified

∗Corresponding author: nakano@cs.hiroshima-u.ac.jp (K. Nakano)

Preprint submitted to Journal of Parallel and Distributed Computing December 27, 2019



Device Architecture) [4], the computing engine for NVIDIA GPUs. CUDA
gives developers access to the virtual instruction set and memory of the paral-
lel computational elements in NVIDIA GPUs. Application programs running
on GPUs can be developed using CUDA C programming language. Further,
NVIDIA provides several libraries of primitives to accelerate application pro-
grams. For example, cuBLAS [5] , a linear algebra library including matrix
computations, is optimized for each of GPU architecture generations, such
as Kepler, Maxwell, Pascal, Volta, and Turing. So, we can attain the best
performance for operations of linear algebra using cuBLAS, and it makes no
sense to develop them using CUDA C language by ourselves in most cases.

GPUs have been used for accelerating machine learning by Deep Neural
Networks (DNNs). In particular, Convolutional Neural Networks (CNNs), a
kind of DNNs for images can be accelerated by GPUs very efficiently [3, 6].
NVIDIA provides cuDNN [7, 8], a GPU-accelerated library of primitives for
DNNs such as the convolution and the pooling. Developers can use cuDNN
APIs to implement DNN operations in GPUs. Further, popular machine
learning frameworks such as TensorFlow, CNTK, PyTorch, and Caffe2 call
cuDNN APIs to accelerate operations of DNN using GPUs. Hence, it is
very important to improve library calls of cuDNN. The main purpose of this
paper is to provide an efficient cuDNN-compatible GPU implementation for
the convolution-pooling, in which the pooling follows the convolution as il-
lustrated in Fig. 1. Since the convolution and the pooling are performed
alternately in earlier stages of a Convolutional Neural Network (CNN), a
kind of DNN for images, training and inference of CNNs can be accelerated
by our cuDNN-compatible API. If developers write a CNN program for the
convolution-pooling using cuDNNs, cuDNN APIs for the multiple convolu-
tion and that for the pooling are called in turn. The main contribution of this
paper is to present more efficient GPU implementation for the convolution-
pooling compatible with cuDNN, Thus, our GPU implementations enables
developers to accelerate the computation of the CNN if two adjacent layers
performs the convolution and then the pooling .

Our new GPU implementation for the convolution-pooling uses two tech-
niques, (1) convolution interchange with direct sum, and (2) conversion to
matrix multiplication. In (1), the direct sum operation is performed be-
fore the convolution to obtain the same results. The computational and
memory access cost are reduced by this technique. To further accelerate the
convolution-pooling, the computation in (1) is converted to equivalent matrix
multiplication, which can be computed by cuBLAS very efficiently. In this

2



X

W0

Ap(X ∗W3)

Ap(X ∗W2)

Ap(X ∗W1)

Ap(X ∗W0)

X2

X1

X0

X ∗W3

X ∗W2

X ∗W1

multiple
convolution

average
pooling

K

X ∗ K

X ∗W0

W1

W2

W3

Figure 1: The convolution-pooling for I = 3 input channels and R = 4 output channels

paper, we show theoretical analysis of the computational cost, which is the
total number of operations, of the convolution-pooling. From the theoretical
analysis, our convolution-pooling algorithm reduces the computational cost
of the convolution-pooling. Thus, our acceleration technique is applicable
for any architecture if regular memory access performed by it does not have
large memory access penalty.

There are a lot of approaches to accelerate the operations in the DNN [9,
10, 11, 12]. In [13], the convolution interchange technique to accelerate the
convolution-pooling has been presented. They use the Summed Area Table
(SAT) of the input channels to reduce the computational cost, which is in-
verse proportional to the pooling size. However, in most DNNs, the pooling
of size only 2×2 is used. We have used the direct sum computation, which is
more efficient than the SAT when the pool size is small. In addition, we have
used the matrix multiplication conversion for the convolution interchange
technique for further acceleration. We have used two techniques above and
evaluate the performance on Tesla V100 GPU.

Our experimental results for the convolution-pooling for 3 × 3 kernels
and 2 × 2 pooling for 32, 64, 128, 256, and 512 input/output channels with
batch size 64 show that our convolution-pooling is expected 2.90 times and
1.43 times faster for fp32 (32-bit single precision floating point numbers)
and fp16 (16-bit single precision floating point numbers) than the multiple
convolution and then the pooling by cuDNN, respectively. Note that the
convolution pooling for fp16 uses Tensorcore of the GPU, which can compute

3



the multiplication-addition of 4 × 4 matrices in one clock cycle [14]. Thus,
the convolution-pooling can be accelerated using the two techniques.

This paper is organized as follows. In Section 2, we define the convolution-
pooling formally and several acceleration techniques. We then go on to show
how we use matrix multiplication to perform the multiple convolution in
Section 3. Section 4 shows the details of GPU implementations for computing
the convolution-pooling Finally, we show experimental results using Tesla
V100 GPU in Section 5. Section 6 concludes our work.

2. Convolution-pooling in the CNN

The main purpose of this section is to explain the details of convolution-
pooling, in which pooling operation follows convolution operation and show
the computational cost, which is the number of arithmetic operations such as
addition and multiplication. Hence, it is almost equal to the running time of
a sequential algorithm. In particular, we will discuss a convolution-pooling
layer, in which a pooling layer follows a convolution layer.

2.1. Convolution-pooling and straightforward implementation

Let X and W be matrices of size n × n and k × k, respectively. The
convolution of X and W denoted by X ∗W is a (n − k + 1) × (n − k + 1)
matrix defined by the following formula:

(X ∗W )[i, j] =
k−1∑
i′=0

k−1∑
j′=0

X[i+ i′, j + j′]W [i′, j′] (0 ≤ i, j ≤ n− k)(1)

Sometimes zero padding operation, which expands the size of X or W by
padding zero elements, is performed before the convolution to obtain an
n×n resulting matrix. Usually, in the area of image processing and machine
learning, n ≫ k holds and matrices X and W are called a channel and a
kernel, respectively. For a set X = {X0, X1, . . . , XI−1} of I channels and a
set W = {W0,W1, . . . ,WI−1} of I kernels, we write X ∗ W to denote the
element-wise sum of the pairwise convolutions, that is,

(X ∗W)[i, j] =
I−1∑
l=0

(Xl ∗Wl)[i, j] (0 ≤ i, j ≤ n− k) (2)

Clearly, the computational cost of the multiple convolution is O(n2k2I). Sup-
pose that a set X of I channels and R sets K = {W0,W1, . . . ,WR−1} of I

4



kernels each are given. The multiple convolution is a task to compute R
products

X ∗ K = {X ∗W0,X ∗W1, . . . ,X ∗WR−1}.

Clearly, the total computational cost of X ∗ K is O(n2k2IR). The reader
should refer to Fig. 1 illustrating multiple convolution for I = 3 input chan-
nels and R = 4 output channels. Note that an input matrix and an output
matrix are called an input channel and an output channel in the CNN.

The (average) pooling of a matrix is a down-sampling by dividing an
input matrix into blocks, and computing the average of each block. More
specifically, for an n×n matrix X, the resulting matrix Ap(X) of the average
pooling is an n

p
× n

p
matrix such that

Ap(X)[i, j] =

pi+p−1∑
i′=pi

pj+p−1∑
j′=pj

X[i′, j′]/p2 (0 ≤ i, j ≤ n
p
− 1) (3)

where p×p is the pooling size. Since the sum of p2 input elements is computed
for each element of the resulting n

p
× n

p
matrix, the computational cost is

p2 × (n
p
)2 = O(n2).

In the CNN, it is often the case that the pooling follows the multiple
convolution as illustrated in Fig. 1. We call these computations combined
the convolution-pooling, which is a task to output

Ap(X ∗ K) = {Ap(X ∗W0), Ap(X ∗W1), . . . , Ap(X ∗WR−1)}

Clearly, the total computational cost to obtain theseRmatrices is (O(n2k2I)+
O(n2)) ·R = O(n2k2IR), and we have,

Lemma 1. The convolution-pooling can be done in O(n2k2IR) computa-
tional cost.

We will show that the computational cost can be reduced to O(n
2k2IR
p2

) later.

2.2. Fused kernel implementation of convolution-pooling layer

The convolution operation is associative, that is, (X ∗Y )∗Z = X ∗(Y ∗Z)
holds for any matrices X, Y , and Z. We will show that, using this associative
law, the convolution-pooling can be implemented by the convolution with the
down-sampling.

5



Let Sp be a down-sampling operation to pick one element in each p × p
block of a matrix X. More specifically, Sp(X) of size n

p
× n

p
is defined as

follows:

Sp(X)[i, j] = X[pi, pj] (0 ≤ i, j ≤ n
p
− 1).

Let αp be a kernel of size p× p with every element taking value 1
p2
. Clearly,

the convolution X ∗ αp corresponds to the average filter for X. Hence, the
resulting matrix Ap(X) of the average pooling for X can be computed by
evaluating Sp(X ∗αp), that is, Ap(X) = Sp(X ∗αp) always holds. Thus, each
resulting matrix of convolution-pooling can be obtained by the following
formula:

Ap(X ∗Wr) = Sp(
I−1∑
l=0

(Xl ∗ (Wr,l ∗ αp))) (0 ≤ r ≤ R− 1), (4)

where Wr,l denotes the l-th kernel in Wr. We can think that each fused
kernel Wr,l ∗αp is a fixed matrix of size (k+ p− 1)× (k+ p− 1). After that,
Xl∗(Wr,l∗αp) is computed. However, it is not necessary to compute all matrix
elements of Xl∗(Wr,l∗αp), because the down-sampling Sp is performed; Only
one element in every p× p block is necessary. Thus, we have,

Lemma 2. The convolution-pooling by fused kernels can be done in O(n
2(k+p)2IR

p2
)

computational cost.

The computational cost is not better than that of the straightforward im-
plementation shown for Lemma 1. However, since convolution operation is
performed only once, fused kernel implementation can be faster from the
practical point of view.

2.3. Convolution interchange for the convolution-pooling

This section shows the convolution interchange technique to implement
the convolution-pooling, and it runs in only O(n

2k2IR
p2

) computational cost
by computing the summed area table as illustrated in Fig. 2. We then go
on to show that our direct sum technique for the convolution interchange for
further acceleration.

Since convolution operation is associative and commutative, we can rewrite
formula (4) as follows:

Ap(X ∗Wr) = Sp(
I−1∑
l=0

((Xl ∗ αp) ∗Wr,l) (0 ≤ r ≤ R− 1). (5)

6



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

2

3

4

5

6

input channel column-wise prefix-sums row-wise prefix-sums

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

Figure 2: The summed area table (SAT) computed by column-wise prefix-sums and then
by row-wise prefix-sums

Clearly, each Xl ∗ αp can be computed in O(n2p2) computational cost. If we
use the summed area table (SAT) as presented in [13], the computational cost
can be reduced to O(n2). For an n× n matrix X, the SAT S(X) is defined
as follows:

S(X)[i, j] =
i∑

i′=0

j∑
j′=0

X[i′, j′] (6)

1 It is known that S(X) can be obtained by computing the column-wise
prefix-sums of X and then computing the row-wise prefix-sums [15, 16].
Hence, S(X) can be computed in O(n2) computational cost. The sum of
any rectangular block can be computed by four elements of S(X). For ex-
ample, the sum of any p × p block of X can be computed by four elements
of S(X) as follows:

i+p−1∑
i′=i

j+p−1∑
j′=i

X[i′, j′] = S(X)[i+ p− 1, j + p− 1] + S(X)[i− 1, j − 1]

−S(X)[i− 1][j + p− 1]− S(X)[i+ p− 1][j − 1](7)

For example, in Fig. 2, the sum of elements in the 2 × 2 square can be
computed by four elements with circles such that 20+6−10−12 = 4. Thus,
each element of Xl ∗ αp can be computed by O(1) computational cost by
computing the sum of each p × p region and dividing it by p2, and so the
total computational cost to obtain allXl∗αp for all l (0 ≤ l ≤ I−1) is O(n2I).

After that, each element of Sp(
∑I−1

l=0 ((Xl ∗ αp) ∗Wl)) is computed in O(k2I)

computational cost. Since we have n2

p2
elements, Sp(

∑I−1
l=0 ((Xl ∗ αp) ∗ Wl))

7



can be computed in n2

p2
· O(k2I) = O(n

2k2I
p2

) computational cost. Since the
convolution-pooling is performed for R sets of I kernels each, we have,

Theorem 2.1. The convolution-pooling by the convolution interchange can
be completed in O(n

2k2IR
p2

+ n2I) computational cost.

Clearly, if k
√
R ≥ p, then the computational cost is O(n

2k2IR
p2

). Actually, p is
smaller than both k and R in practical implementations of CNNs. Further,
in the CNN, most pooling operation is performed with parameter p = 2. If
this is the case, it makes no sense to compute the SAT to obtain Xl ∗ αp.
By computing the sum of each neighboring pair in row direction, and then
by computing the sum of each neighboring pair in row direction, we can
obtain the sum of every 2 × 2 block as illustrated in Fig. 3. By dividing
each sum by 4, we can obtain Xl ∗ α2 in O(n2I). For later reference, we
call this computation direct sum. After computing the direct sum of each
input channel, we can compute Sp(

∑I−1
l=0 ((Xl ∗ α2) ∗ Wr,l) to complete the

convolution-pooling in the same way.

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

2

2

2

2

2

1

2

2

2

2

2

1

2

2

2

2

2

1

2

2

2

2

2

1

2

2

2

2

2

1

2

2

2

2

2

1

4 4 4 4 4 2

4 4 4 4 4 2

4 4 4 4 4 2

4 4 4 4 4 2

4 4 4 4 4 2

2 2 2 2 2 1

input channel neighboring sum
in column direction

neighboring sum
in row direction

Figure 3: The direct-sum computation to obtain Xl ∗ α2

3. Matrix multiplication conversion for convolution-pooling

This section explains the matrix multiplication conversion technique known
as im2col, which is implemented in Python, MATLAB, cuDNN, etc. It con-
verts input channels combined are converted in a single matrix and kernel
set combined is also converted in a single matrix so that the product of them
equals to the result of the multiple convolution. We apply this technique to
the convolution-pooling, and use cuBLAS to multiply two matrices.

8



We first show that the multiple convolution represented as formula (2)
can be computed by a matrix multiplication. First, I input channels X =
{X0, X1, . . ., XI−1} and R kernel setsK = {W0,W1, . . .,WR−1} are converted
into two matrices D(X ) and V (K) of size (n− k + 1)2 × k2I and k2I ×R as
illustrated in Fig. 4. The matrixD(X ) has k2I columns such that consecutive
k2 columns are copied from an input channel. Each row in consecutive k2

columns corresponds to a k × k block. For example, dashed blocks of X0

and X1 are arranged in the top row of D(X ). Hence, D(X ) has (n− k+ 1)2

rows. Each column of the matrix V (K) corresponds to a kernel set and the
value of I kernels in a kernel set are copied in the corresponding column as
illustrated in Fig. 4. From the figure, the reader should have no difficulty
to confirm that the product of D(X ) and V (K) is equal to the values of
R output channels X ∗ Wi for all i (0 ≤ i ≤ R − 1). Thus, the multiple
convolution can be obtained by the product of D(X ) and V (K),

The computational cost for generating D(X ) is O((n− k + 1)2 × k2I) ≤
O(n2k2I). Also, that for V (K) is O(k2IR). Their product can be computed
in O((n − k + 1)2 · k2I · R) ≤ O(n2k2IR). Hence, the total computing cost
is O(n2k2IR).

We will show that the same technique can be used for the convolution
interchange, which computes Sp(

∑I−1
l=0 ((Xl∗αp)∗Wl). Suppose that X ∗αp =

{X0 ∗αp, X1 ∗αp, . . . , XI−1 ∗αp} and R kernel sets K = {W0,W1, . . . ,WR−1}
are given. Clearly, by the product of two matrices D(Xl ∗ αp) and V (K),

we can obtain
∑I−1

l=0 ((Xl ∗ αp) ∗ Wr,l). Since we need the down-sample

Sp(
∑I−1

l=0 ((Xl ∗ αp) ∗Wr,l), which is obtained by selecting one element from

every p× p block of
∑I−1

l=0 ((Xl ∗αp) ∗Wr,l), we can remove unnecessary rows

from D(Xl ∗αp) to obtain Sp(
∑I−1

l=0 ((Xl ∗αp) ∗Wr,l). Let Dp(Xl ∗αp) denote
the matrix obtained by this down-sampling such that one out of every p2

rows in D(Xl ∗ αp) is picked appropriately. The product of Dp(Xl ∗ αp) and

V (K) can be computed in O(n
2k2IR
p2

) and so the total computational cost is

O(n
2k2IR
p2

+ n2I).
Also, the same technique can be used for fused kernels. Let W ′

i =
{W0 ∗ αp,W1 ∗ αp, . . . ,WI−1 ∗ αp} be a set of I fused kernels, and K′ =
{W ′

0,W ′
1, . . . ,W ′

R−1} be R sets of I fused kernels. The convolution-pooling
by fused kernels can be computed by the product of Dp(X ) and V (K′). The

total computational cost is O(n
2(k+p)2IR

p2
).

9



0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

a b c

d e f

g h i

0 1 2 6 7 8 12 13 14 0 1 2 6 7 8 12 13 14

1 2 3 7 8 9 13 14 15 1 2 3 7 8 9 13 14 15

2 3 4 8 9 10 14 15 16 2 3 4 8 9 10 14 15 16

3 4 5 9 10 11 15 16 17 3 4 5 9 10 11 15 16 17

18 19 206 7 8 12 13 14 18 19 206 7 8 12 13 14

a b c

d e f

g h i

X0 X1

j k l

m n o

p q r

W0 W0 W0

j k l

m n o

p q r

s t u

v w x

y z A

s t u

v w x

y z A

a

b

c

i

j

k

l

r

s

t

u

A

a

b

c

i

j

k

l

r

s

t

u

A

19 20 217 8 9 13 14 15 19 20 217 8 9 13 14 15

21 22 239 10 11 15 16 17

20 21 228 9 10 14 15 16 20 21 228 9 10 14 15 16

21 22 239 10 11 15 16 17

18 19 20 24 25 2612 13 14 18 19 20 24 25 2612 13 14

D(X ) V (K)

Figure 4: The multiple convolution by matrix multiplication for I = 2 input channels
X = {X0, X1} with R = 3 kernel sets K = {W0,W1,W2}.

4. GPU implementations

We have implemented five methods, cuDNN(naive), cuDNN(fused), cuBLAS(fused),
cuDNN(direct), and cuBLAS(direct) to compute the convolution-pooling as
follows.

cuDNN(naive) The multiple convolution X ∗K is computed by the cuDNN
and then the pooling Ap(X ∗ K) is computed by cuDNN.

cuDNN(fused) All fused kernels Wr,l ∗ αp are computed in advance. The

multiple convolution Sp(
∑I−1

l=0 (Xl ∗ (Wr,l ∗ αp)) is computed for each
r-th kernel set by cuDNN.

10



cuBLAS(fused) A matrix V (K′) is generated from the resulting values of
Wr,l ∗ αp in advance. A matrix Dp(X ) is generated by our CUDA C
program and the product Dp(X ) · V (K′) is computed by cuBLAS.

cuDNN(direct) Each Xl ∗ αp is computed by the direct sum using our

CUDA C program and then the multiple convolution Sp(
∑I−1

l=0 ((Xl ∗
αp) ∗Wr,l) is computed by cuDNN.

cuBLAS(direct) Each Xl ∗ αp is computed by the direct sum and then
Dp(Xl ∗ αp) and V (K) are generated by our CUDA C program. The
product of Dp(Xl ∗ αp) and V (K) are computed by cuBLAS.

If developers implement the convolution-pooling using cuDNN as it is, they
will use cuDNN(naive) implementation. Further, if they use DNN frame
works such as Chainer, PyTorch, and TensorFlow, the convolution-pooling is
executed on the GPU as cuDNN(naive). Thus, the performance of cuDNN(naive)
approximates that using DNN frameworks. If developers know the fused ker-
nel technique, they may use cuDNN(fused) to implement the convolution-
pooling. Both cuDNN(direct) and cuBLAS(direct) use the convolution in-
terchange and the direct sum. Their difference is to use cuDNN or cuBLAS
to compute the convolution.

Also, please note that the convolution performed for multiple channel sets
called batch at the same time in most DNNs. More specifically, let B denote
the size of batch, i.e. the number of channel sets. The multiple convolution
of a batch of size B performs the convolution for B channel sets of I channels
each with respect to a single kernel set of I kernels. We should evaluate the
performance of the running time of the convolution for a batch.

We will explain the details of the five implementations.

4.1. cuDNN(naive)

The convolution of cuDNN can have several options of convolution algo-
rithms. We call parameters of the multiple convolution such as data type
(double, float, half), the size n × n and the number I of channels, the size
k×k and the number I of kernels, and the batch size B, the configuration of
the multiple convolution. We use the function call cudnnGetConvolutionFor-
wardAlgorithm(), which returns the best algorithm for the configuration of
the multiple convolution. After that, we first execute cudnnGetConvolution-
ForwardWorkspaceSize() with the selected best algorithm and the configu-
ration which allocates memory space in the global memory for multiple con-

11



volution computation by cuDNN. We call cudnnConvolutionForward() with
the best selected algorithm and the configuration to perform the multiple
convolution. Finally, we call cudnnPoolingForward() with the configuration
to perform the pooling. The running time of cuDNN(naive) are evaluated
by the sum of the running time of cudnnConvolutionForward() and cud-
nnPoolingForward(). That for cudnnGetConvolutionForwardAlgorithm() is
excluded, because it is executed only once.

4.2. cuDNN(fused)
We first compute the fused kernel Wr,l ∗αp for a kernel set by our CUDA

C program in an obvious way. Similarly, cudnnGetConvolutionForwardAl-
gorithm() is called to obtain the best algorithm for the configuration. We
then executes cudnnGetConvolutionForwardWorkspaceSize() to allocate the
global work memory space, and cudnnConvolutionForward() with stride p
to compute the multiple convolution. Since the computation of fused kernel
Wr,l ∗αp is executed once for the same kernel set, and cudnnGetConvolution-
ForwardWorkspaceSize() is called only once, the running time of cudnnCon-
volutionForward() is used for evaluating the performance of cuDNN(fused).

4.3. cuBLAS(fused)
We first compute the fused filter and convert it to the corresponding

matrix V (K′). We then covert input channels of each channel set to the
corresponding matrix Dp(X ) by our CUDA C program. Since we have B
channel sets, the corresponding B matrices are concatenated into one large
matrix. Finally, we execute cublasSgemmStridedBatched() to complete the
convolution-pooling. Since the V (K′) is computed only once, the running
time of the computation of the corresponding matrix Dp(X ) and cublasS-
gemmStridedBatched() are evaluated.

4.4. cuDNN(direct)
Each Xl ∗ αp is computed by the direct sum using our CUDA C pro-

gram. Similarly to cuDNN(naive), the best algorithm is obtained by calling
cudnnGetConvolutionForwardAlgorithm() for the configuration of the multi-
ple convolution. We then executes cudnnGetConvolutionForwardWorkspace-
Size() to allocate the global work memory space, and cudnnConvolutionFor-
ward() with stride p to compute the multiple convolution. Since cudnnGet-
ConvolutionForwardWorkspaceSize() is executed only once, the running time
of the computation of Xl ∗ αp by our CUDA C program and cudnnConvolu-
tionForward() are used to evaluate the performance.

12



4.5. cuBLAS(direct)

We first convert kernels to the corresponding matrix V (K) by our CUDA
C program. We then compute each Xl∗αp by the direct sum and convert it to
the corresponding matrix Dp(Xl ∗αp) by our CUDA C program. We execute
cublasSgemmStridedBatched() to compute the product of Dp(Xl ∗ αp) and
V (K). Since V (K) for a kernel set K is computed only once, the running
time of the computation of Dp(Xl ∗ αp) and cublasSgemmStridedBatched()
are evaluated.

4.6. Tensorcore

Volta architecture of NVIDIA GPUs has Tensorcores, which can compute
the multiply-add of 4 × 4 matrices of fp16s (16-bit half precision floating
numbers) as illustrated in Fig. 5. NVIDIA Tesla V100 has 640 Tensorcores,
each of which can compute the multiply-add in every clock cycle. We have
also developed the five implementations of the convolution-pooling for fp16
using Tensorcores. To use Tensorcore for the five implementations, we have
used fp16 option for cuDNN and cuBLAS.

A0,0A0,1A0,2A0,3

A1,0A1,1A1,2A1,3

A2,0A2,1A2,2A2,3

A3,0A3,1A3,2A3,3

B0,0B0,1B0,2B0,3

B1,0B1,1B1,2B1,3

B2,0B2,1B2,2B2,3

B3,0B3,1B3,2B3,3

C0,0C0,1C0,2C0,3

C1,0C1,1C1,2C1,3

C2,0C2,1C2,2C2,3

C3,0C3,1C3,2C3,3

+×=

D0,0D0,1D0,2D0,3

D1,0D1,1D1,2D1,3

D2,0D2,1D2,2D2,3

D3,0D3,1D3,2D3,3

Figure 5: Illustrating the computation performed by a Tensorcore

5. Experimental results

Table 1 shows the running time of the convolution-pooling by cuDNN(naive),
cuDNN(fused), cuBLAS(fused), cuDNN(direct), and cuBLAS(direct) for in-
put channel size from 8 × 8 to 64 × 64 and for the number of input/output
channels from 32/32 to 512/512. The data type is fp32 (32-bit single preci-
sion floating point number). We have used NVIDIA Tesla V100 with cuDNN
v7.1.4 and cuBLAS v9.0. Since kernels of size 3× 3 and the pooling for 2× 2
are used in the DNNs, we use these parameters for the experiments. The
running time is evaluated for 64 sets of the multiple convolution, thus, it cor-
responds to batch size 64 in the DNN. The running time in the table is the

13



average of 100 iterations. In the table, the best running time of the five imple-
mentations for each parameter set is highlighted. It also shows the speedups
of the best result of cuDNN(direct) and cuBLAS(direct) over cuDNN(naive),
and that of over the best result of cuDNN(fused) and cuBLAS(fused). From
the table, we can see that either cuDNN(direct) or cuBLAS(direct) is al-
ways faster than cuDNN(naive) for every case. Also, they are faster than
cuDNN(fused) and cuBLAS(fused) in most cases. They are slower for few
cases but the difference is quite small. The speedup for cuDNN(naive) is
from 1.34 to 9.49 and the average speedup is 2.90. The maximum speedup
of 9.49 is achieved for128 input/output channels of size 64 × 64, because
cuDNN(naive) does not select an appropriate algorithm and takes a lot of
time for the multiple convolution.

Table 2 shows the running time for the same convolution-pooling using
fp16. We have used Tensorcore of these five implementations whenever pos-
sible. The speedup for cuDNN(naive) is from 0.406 to 3.90 and the average
speedup of them is 1.43. Also, we can see that cuDNN can run fastest
for channels with small size. This is because cuDNN uses Winograd algo-
rithm [17, 18], which performs the multiple-convolution very efficiently for
channels with small size.

Unfortunately, the best algorithm of the five differs depending on config-
urations. Usually, DNNs have many layers with different configurations. We
may choose the best one for each layer to minimize the total computing time.

6. Conclusion

We have presented new GPU implementations for the convolution-pooling
based on convolution interchange with direct sum. Experimental results
using Telsa V100 GPU show that our new GPU implementation compatible
with cuDNN for the convolution-pooling is expected 2.90 times and 1.43
times faster for fp32 and fp16 than the multiple convolution and then the
pooling by cuDNN, respectively.

References

[1] W. W. Hwu, GPU Computing Gems Emerald Edition, Morgan Kauf-
mann, 2011.

14



[2] K. Ogawa, Y. Ito, K. Nakano, Efficient Canny edge detection using a
GPU, in: Proc. of International Conference on Networking and Com-
puting, IEEE CS Press, 2010, pp. 279–280.

[3] N. Matsumura, H. Tokura, Y. Kuroda, Y. Ito, K. Nakano, Tile art image
generation using conditional generative adversarial networks, in: Proc.
of International Symposium on Computing and Networking Workshops,
2018, pp. 209–215.

[4] NVIDIA Corporation, NVIDIA CUDA C programming guide version
4.0 (2011).

[5] NVIDIA Corporation, CUBLAS LIBRARY user guide,
https://docs.nvidia.com/cuda/cublas/index.html (Feb. 2019).

[6] K. Chellapilla, S. Puri, P. Simard, High performance convolutional neu-
ral networks for document processing, in: Proc. of International Work-
shop on Frontiers in Handwriting Recognition, 2006.

[7] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, E. Shelhamer, cuDNN: Efficient primitives for deep learning, CoRR
abs/1410.0759 (Aug. 2014).

[8] NVIDIA Corporation, CUDNN developer guide,
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-
guide/index.html (Feb. 2019).

[9] Y. Cheng, D. Wang, P. Zhou, T. Zhang, A survey of model compression
and acceleration for deep neural networks, CoRR abs/1710.09282 (Oct.
2017).

[10] C. Li, Y. Yang, M. Feng, S. Chakradhar, H. Zhou, Optimizing memory
efficiency for deep convolutional neural networks on GPUs, in: Proc.
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2016.

[11] V. Sze, Y.-H. Chen, T.-J. Yang, J. S. Emer, Efficient processing of
deep neural networks: A tutorial and survey, Proceedings of the IEEE
105 (12) (2017) 2295 – 2329.

15



[12] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, B. Yu, Recent advances in
convolutional neural network acceleration, Neurocomputing 323 (2019)
37–51.

[13] A. Kasagi, T. Tabaru, H. Tamura, Fast algorithm using summed area
tables with unified layer performing convolution and average pooling,
in: Proc. of International Workshop on Machine Learning for Signal
Processing, 2017.

[14] NVIDIA Corporation, NVIDIA TESLA V100 GPU architecture,
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf (Aug. 2017).

[15] Y. Emoto, S. Funasaka, H. Tokura, T. Honda, K. Nakano, Y. Ito, An
optimal parallel algorithm for computing the summed area table on the
GPU, in: Proc. of International Parallel and Distributed Processing
Symposium Workshops, 2018, pp. 763–772.

[16] A. Kasagi, K. Nakano, Y. Ito, Parallel algorithms for the summed area
table on the asynchronous hierarchical memory machine, with GPU im-
plementations, in: Proc. of International Conference on Parallel Pro-
cessing (ICPP), 2014, pp. 251–250.

[17] S. Winograd, Arithmetic Complexity of Computations, SIAM, 1980.

[18] A. Lavin, S. Gray, Fast algorithms for convolutional neural networks, in:
Proc. of IEEE Conference on Computer Vision and Pattern Recognition,
2016.

16



Table 1: The running time (ms) of the convolution-pooling for fp32: 3 × 3 kernels and
2× 2 pooling for I input channels and R output channels for batch size 64

input channel size: 8× 8
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.104 0.137 0.206 0.651 1.87
cuDNN(fused) 0.105 0.153 0.259 0.425 0.961
cuBLAS(fused) 0.103 0.141 0.281 0.929 3.17
cuDNN(direct) 0.107 0.133 0.340 0.341 0.701
cuBLAS(direct) 0.0473 0.0739 0.154 0.479 1.92
Speed-up:naive 2.20 1.85 1.34 1.91 2.67
Speed-up:fused 2.18 1.91 1.68 1.25 1.37

input channel size: 16× 16
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.186 0.262 0.663 1.87 6.51
cuDNN(fused) 0.102 0.155 0.299 0.824 3.18
cuBLAS(fused) 0.110 0.174 0.335 0.922 3.34
cuDNN(direct) 0.112 0.146 0.342 0.616 1.92
cuBLAS(direct) 0.0488 0.101 0.192 0.577 1.89
Speed-up:naive 3.81 2.59 3.45 3.24 3.44
Speed-up:fused 2.09 1.53 1.56 1.43 1.68

input channel size: 32× 32
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.247 0.42 2.03 5.98 20.9
cuDNN(fused) 0.156 0.254 0.836 2.82 10.7
cuBLAS(fused) 0.294 0.538 1.05 3.3 12.5
cuDNN(direct) 0.163 0.255 0.626 1.85 7.25
cuBLAS(direct) 0.164 0.315 0.610 1.85 7.02
Speed-up:naive 1.52 1.65 3.33 3.23 2.98
Speed-up:fused 0.957 0.996 1.37 1.52 1.52

input channel size: 64× 64
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.936 1.85 20.6 13.9 47
cuDNN(fused) 0.327 1.19 4.03 13.5 49.3
cuBLAS(fused) 0.989 1.96 4.06 12.8 44.3
cuDNN(direct) 0.355 0.685 2.17 7.03 24.2
cuBLAS(direct) 0.548 1.12 2.28 7.01 25.0
Speed-up:naive 2.64 2.70 9.49 1.98 1.94
Speed-up:fused 0.921 1.74 1.86 1.83 1.83

17



Table 2: The running time (ms) of the convolution-pooling for fp16 using Tensorcore: 3×3
kernels and 2× 2 pooling for I input channels and R output channels for batch size 64

input channel size: 8× 8
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.0705 0.0636 0.0750 0.106 0.227
cuDNN(fused) 0.108 0.0974 0.126 0.221 0.509
cuBLAS(fused) 0.0680 0.0979 0.144 0.458 1.65
cuDNN(direct) 0.0773 0.0984 0.204 0.351 0.618
cuBLAS(direct) 0.0341 0.0487 0.0811 0.261 0.940
Speed-up:naive 2.07 1.31 0.925 0.406 0.368
Speed-up:fused 2.00 2.00 1.55 0.845 0.824

input channel size: 16× 16
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.133 0.0967 0.129 0.237 0.542
cuDNN(fused) 0.110 0.190 0.164 0.280 0.576
cuBLAS(fused) 0.0716 0.114 0.187 0.541 1.83
cuDNN(direct) 0.0830 0.145 0.225 0.567 1.91
cuBLAS(direct) 0.0341 0.0579 0.110 0.321 1.05
Speed-up:naive 3.90 1.67 1.18 0.740 0.516
Speed-up:fused 2.10 1.97 1.50 0.872 0.548

input channel size: 32× 32
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.184 0.261 0.362 0.737 1.83
cuDNN(fused) 0.0894 0.122 0.222 0.643 2.03
cuBLAS(fused) 0.146 0.255 0.472 0.973 2.77
cuDNN(direct) 0.128 0.245 0.616 1.88 6.94
cuBLAS(direct) 0.0846 0.159 0.297 0.610 1.61
Speed-up:naive 2.17 1.64 1.22 1.21 1.14
Speed-up:fused 1.06 0.770 0.747 1.05 1.26

input channel size: 64× 64
channels I/R 32/32 64/64 128/128 256/256 512/512
cuDNN(naive) 0.341 0.606 1.48 4.40 15.3
cuDNN(fused) 0.213 0.374 1.05 2.11 7.16
cuBLAS(fused) 0.446 0.857 1.73 3.84 10.5
cuDNN(direct) 0.311 0.676 2.14 6.68 24.4
cuBLAS(direct) 0.282 0.543 1.08 2.34 6.16
Speed-up:naive 1.21 1.11 1.37 1.88 2.48
Speed-up:fused 0.757 0.689 0.971 0.903 1.16

18


