Complex joint probabilities as expressions of reversible transformations in quantum mechanics

New Journal of Physics 14 巻 043031- 頁 2012 発行
アクセス数 : 601
ダウンロード数 : 197

今月のアクセス数 : 3
今月のダウンロード数 : 3
ファイル情報(添付)
NewJPhys_14_43031.pdf 585 KB 種類 : 全文
タイトル ( eng )
Complex joint probabilities as expressions of reversible transformations in quantum mechanics
作成者
収録物名
New Journal of Physics
14
開始ページ 043031
抄録
The density operator of a quantum state can be represented as a complex joint probability of any two observables whose eigenstates have non-zero mutual overlap. Transformations to a new basis set are then expressed in terms of complex conditional probabilities that describe the fundamental relation between precise statements about the three different observables. Since such transformations merely change the representation of the quantum state, these conditional probabilities provide a state-independent definition of the reversible and therefore effectively deterministic relations between the outcomes of different quantum measurements, including measurements of the same property performed at different times. In this paper, it is shown how classical reality emerges as an approximation to the fundamental laws of quantum determinism expressed by complex conditional probabilities. The quantum mechanical origin of phase spaces and trajectories is identified and implications for the interpretation of quantum measurements are considered. It is argued that the transformation laws of quantum determinism provide a fundamental description of the measurement dependence of empirical reality.
著者キーワード
Weak Measurements
Entangled States
NDC分類
物理学 [ 420 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
Iop Publishing Led
発行日 2012
権利情報
(c) 2013 IOP Publishing
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1367-2630
[DOI] 10.1088/1367-2630/14/4/043031
[DOI] http://dx.doi.org/10.1088/1367-2630/14/4/043031