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Abstract. The density operator of a quantum state can be represented as a
complex joint probability of any two observables whose eigenstates have non-
zero mutual overlap. Transformations to a new basis set are then expressed
in terms of complex conditional probabilities that describe the fundamental
relation between precise statements about the three different observables. Since
such transformations merely change the representation of the quantum state,
these conditional probabilities provide a state-independent definition of the
reversible and therefore effectively deterministic relations between the outcomes
of different quantum measurements, including measurements of the same
property performed at different times. In this paper, it is shown how classical
reality emerges as an approximation to the fundamental laws of quantum
determinism expressed by complex conditional probabilities. The quantum
mechanical origin of phase spaces and trajectories is identified and implications
for the interpretation of quantum measurements are considered. It is argued
that the transformation laws of quantum determinism provide a fundamental
description of the measurement dependence of empirical reality.
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1. Introduction

Advances in quantum information technology have established the complete reconstruction
of quantum states from experimental data as a standard procedure for the characterization
of quantum devices [1–4]. At the heart of these procedures lies the fact that the quantum
state of a system with a d-dimensional Hilbert space provides a summary of all possible
measurement statistics in terms of d2

− 1 linearly independent elements [5]. It is therefore
possible to describe the quantum state in terms of a probability distribution with d2 possible
outcomes—the equivalent of a joint probability for the eigenstates of two observables of the
system.

In the light of such complete measurement-based descriptions of quantum states, there
has been growing interest in the identification of fundamental measurement strategies that
could serve as a new standard for the evaluation of quantum information encoded in arbitrary
states [6–13]. Although this research has succeeded in revealing more of the richness of Hilbert
space topologies, the formulation of a single standard representation is difficult, since no
efficient characterization of quantum states by a discrete set of measurement operators can
reflect the continuous symmetry of Hilbert space with regard to unitary transformations between
different measurements. It seems that all attempts to identify fundamental measurements must
necessarily introduce a bias that is not found in the original Hilbert space formalism with
its equivalent representation of all projective measurements as orthogonal basis systems of
an isotropic vector space. However, the conventional Hilbert space representation of quantum
statistics in terms of a single orthogonal basis set is even more biased, as it represents only half of
the physics in terms of measurement results, while the other half is encoded in terms of abstract
quantum coherences. Since quantum coherences of one basis show up as probabilities in another
basis, it may be desirable to find a more symmetric description of the density operator that
expresses the coherences of a quantum state in terms of joint probabilities for non-orthogonal
measurement outcomes.

Since the number of elements needed to describe the complete density operator is
exactly equal to the number of eigenstate combinations of two observables, it would seem
natural to represent the quantum state as a joint probability of only two measurements.
Intuitively, any pair of basis sets with non-zero mutual overlap should represent two independent
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pieces of information distinguishing d × d = d2 elements of the statistics. Different choices
of observables would then correspond to different parameterizations of the two-dimensional
phase space topology defined by any pair of observables with mutually overlapping eigenstates.
Interestingly, such a joint probability has already been proposed by Kirkwood very early in the
history of quantum mechanics, as an alternative to the Wigner function in phase space [14, 15].
Essentially, this joint probability is obtained by multiplying the projection operators for the two
measurements and taking the expectation value of the resulting complex-valued operator. It is
therefore the most natural definition of joint probability that the quantum formalism provides
for measurements that cannot actually be carried out jointly.

One of the reasons why Kirkwood’s approach to joint probabilities in quantum mechanics
received disappointingly little attention may be the lack of practical applications for the theory.
After all, the Copenhagen interpretation of quantum mechanics implies that questions about
events that do not happen are inherently meaningless. However, quantum paradoxes clearly
show that quantum mechanics makes non-trivial statements about the statistical relations
between measurements that cannot be carried out at the same time. In fact, the paradoxes
show that quantum mechanics cannot be understood in terms of positive joint probabilities for
measurement outcomes represented by non-commuting measurement operators. In recent years,
it has been shown that the paradoxical aspects of quantum statistics are consistent with negative
conditional probabilities determined in weak measurements [16–21]. The consistency of these
results strongly suggests that the statistics of weak measurements is a fundamental element of
the Hilbert space formalism. In particular, it is possible to develop a consistent explanation for
weak measurement statistics in terms of complex conditional and joint probabilities [22–25].

Interestingly, the joint probabilities derived from weak measurements are identical to the
joint probability originally introduced by Kirkwood on purely mathematical grounds [15]. It
is therefore possible to express any quantum state in terms of the joint probability distribution
obtained from the weak measurement of |a〉〈a|, followed by a final measurement of |b〉〈b|,
where 〈a|b〉 6= 0. Alternatively, weak measurement statistics can also be obtained from the
measurement back-action of projective measurements [26] or from the correlations between
optimal quantum clones of the input state [27]. Complex joint probabilities thus provide a
surprisingly consistent description of the correlations between pairs of measurements that
cannot be carried out jointly.

However, there remains an important question that needs to be addressed: complex
probabilities cannot be interpreted as relative frequencies of microscopic realities. Therefore,
the combination of measurement outcomes to which they are assigned cannot be identified with
classical phase space points. In particular, the measurement outcomes for a third measurement
c cannot be related to well-defined pairs of measurement outcomes (a, b), as the classical phase
space analogy would suggest. Nevertheless, a description of the quantum state in terms of joint
probabilities for b and c is just as complete as a description based on a and b. Therefore, the
transformation between the two representations is reversible and deterministic. In the following,
I will take a closer look at this relation between different joint probabilities. It is shown that
deterministic transformations are described by the complex conditional probabilities p(c|a, b)

that also characterize weak measurement statistics [25]. Reversibility of the transformation
requires that the information about a can be recovered completely from the information about
c after the transformation. For positive probabilities, this condition requires that c be a well-
defined function of a and b. In quantum mechanics, the same mathematical relation is fulfilled
as a result of the orthogonality of the Hilbert space vectors {|a〉}. The structure of the Hilbert
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space can then be understood as a modification of determinism that reconciles continuous
transformations with discrete measurement results at the expense of microscopic realism.

In particular, the classical possibility of expressing the time-dependent properties of a
system as well-defined functions of the properties at only a single time corresponds to the
possibility of expressing quantum states at different times by unitary transformations of the
quantum state at only a single time. Therefore, the expression of unitary transformations
by complex conditional probabilities provides a quantum mechanical analogue of classical
determinism, where phase space points at a single time determine the complete temporal
evolution of the system. To avoid misunderstandings, I would like to emphasize that I am not
considering the possible causalities of hidden variable interpretations of quantum mechanics,
or similar microscopic models that are not directly connected to the classical limit. The present
concept of quantum determinism is motivated solely by the fact that it corresponds so closely
to the notion of determinism in classical phase space that it is possible to represent classical
determinism as an approximate limit of quantum determinism. In this sense, it is possible to
consider the complex conditional probabilities p(c|a, b) as fundamental expressions of quantum
determinism.

The representation of quantum determinism by complex conditional probabilities has
significant implications for the formulation of the classical limit that represents the conventional
notion of determinism in physics. Specifically, the classical determinism of real phase space
points (a, b) only emerges as a macroscopic approximation to the microscopic quantum
description. To illustrate this emergence of the classical realism of (a, b), it is necessary to
introduce the concept of measurement resolution, based on a definition of quantitative distances
between pairs of orthogonal states. With this metric, the complex phases of the conditional
probabilities p(c|a, b) can be identified with phase space distances [25]. Since large phase
space distances correspond to rapid phase oscillations in c, coarse graining rapidly reduces the
precise expression of quantum determinism in terms of complex probabilities to a single-peaked
function centered around a single value of c, as expected from classical determinism. Quantum
determinism can thus explain how the classical notion of a measurement-independent reality
emerges as an approximation to the more accurate description of context-dependent realities in
quantum mechanics.

The rest of this paper is organized as follows. In section 2, the representation of quantum
states as complex joint probabilities of observables with mutually overlapping eigenstates is
introduced and the operator algebra is defined. In section 3, it is shown that transformations
between different measurements are expressed by the complex conditional probabilities
corresponding to the weak values of the projection operators for the new basis. The general
criterion for quantum determinism is derived and the differences between classical determinism
and quantum determinism are discussed. In section 4, it is shown that a classical phase
space topology emerges in higher-dimensional Hilbert spaces. Quantum determinism is still
fundamentally different from classical determinism, but they become indistinguishable when
the resolution of a measurement result is limited by Gaussian noise. Measurement-independent
phase space points therefore emerge as approximate realities in the limit of low measurement
resolution. In section 5, quantum determinism is applied to unitary dynamics and different
representations of causality are considered. It is pointed out that the identification of quantum
dynamics with paths or histories described by a sequence of measurement results may be a
misinterpretation of quantum determinism based on the extrapolation of realist notions beyond
their natural limit of validity. In section 6, it is pointed out that the imaginary part of complex
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joint probability does have a classical limit, represented by the gradients of the classical phase
space distribution. Quantum corrections to classical determinism become relevant when the
imaginary part of the joint probability becomes comparable to the real part. In section 7,
the empirical foundations of quantum determinism are reviewed and consequences for the
interpretation of quantum mechanics are considered. It is emphasized that complex joint
probabilities do not represent relative frequencies of quasi-realities, but should be understood
as the fundamental deterministic relations between measurements that can never be carried out
jointly. Quantum determinism therefore highlights the dependence of empirical reality on the
measurement context.

2. Joint probability representation of quantum states

A complete description of quantum statistics in terms of measurement probabilities is
not a straightforward matter, because the uncertainty principle generally prevents the joint
performance of separate quantum measurements. It is therefore impossible to simultaneously
measure two observables that do not commute and therefore do not have a set of common
eigenstates. In principle, it is possible to carry out a sequence of measurements on the same
system, but then the measurement interaction of the first measurement will change the result of
the second measurement, so that the outcome of the second measurement cannot be identified
with the value of the observable before the first measurement. As a result, it is impossible to
determine the value of the second observable before the first measurement, and it is not even
possible to claim that such a definite value must necessarily exist.

Any attempt to reconstruct joint probabilities from quantum measurements requires
some assumptions about the nature of the measurement uncertainties involved. An interesting
possibility that has recently attracted much attention is the limit of weak measurements [16],
where the measurement interaction of the first measurement is so low that its effect on the second
measurement might be negligible. Specifically, it can be shown that the probability distribution
of a second measurement is not changed by the performance of the weak measurement.
Although this requires that the signal-to-noise ratio of weak measurements be much smaller than
one, the average measurement results are consistent with the expectation values of the measured
observables. It is therefore possible to interpret the average result obtained for a specific final
measurement outcome with the conditional expectation value for that outcome, also known as
the weak value of the observable for post-selected ensembles.

Since weak values can be far outside of the spectrum of possible eigenvalues, the
interpretation of weak measurements is rather controversial. In particular, it is not absolutely
necessary to interpret the outcomes in terms of joint probabilities of the non-commuting
observables measured in the weak measurement and in the final measurement. However,
the theoretical analysis of weak measurements does provide a consistent mathematical
framework that resembles classical joint probabilities in many ways [22–25]. The motivation
for interpreting weak measurements as joint measurements of non-commuting properties is
therefore partly based on the correspondence of a statistical interpretation with the fundamental
structure of the formalism. As the following discussion will show, this correspondence of
classical phase space statistics and Hilbert space formalism may be extremely useful in the
analysis of general quantum processes.

The complex joint probabilities obtained from weak measurements have a particularly
simple mathematical form. In general, they correspond to the expectation value obtained for
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the operator product of the two measurement operators [23]. For two observables with mutually
overlapping sets of eigenstates {|a〉} and {|b〉}, the complex joint probabilities representing the
density operator ρ of an arbitrary quantum state are therefore given by the expectation value of
the ordered product of the projection operators |b〉〈b| and |a〉〈a|,

ρ(a, b) = 〈b|a〉〈a |ρ̂ |b〉. (1)

As pointed out by Johansen [15], this is identical to the joint probability introduced by Kirkwood
in 1933 [14]. Johansen also showed that the complex probabilities provide a complete expansion
of the density operator, with very convenient mathematical properties [15].

An essential advantage of the joint probability representation given in equation (1) is that
it stays very close to the original Hilbert space formalism, where the density matrix is defined
in terms of a single measurement basis. Effectively, the joint probability can be understood as a
partial transformation of the right side of the a-basis density matrix to the b-basis, followed
by an adjustment with a complex overlap factor of 〈b|a〉. This transformation is obviously
reversible for all transformations with non-zero overlap 〈b|a〉. The complex joint probability
of a and b thus provides a complete expression of quantum coherences without the need for
interferences between mutually exclusive alternatives.

Classical joint probabilities refer to joint realities of a and b. In quantum formalism, this
corresponds to a normalized contribution to the density operator with simultaneous probabilities
of one for both |a〉 and |b〉. For the complex joint probabilities of equation (1), this set of basis
operators is given by

3̂(a, b) =
|a〉〈b|

〈b|a〉
. (2)

The operators 3(a, b) are orthogonal with regard to the adjoint product trace, where the norm
of the operators is given by the inverse overlap of |a〉 and |b〉,

Tr
(
3̂(a, b)3̂†(a′, b′)

)
=

1

|〈b|a〉|2
δa,a′δb,b′ . (3)

Using this d2-dimensional orthogonal operator basis, any density operator can be expressed in
terms of the complex joint probabilities of a and b,

ρ̂ =

∑
a,b

|〈b|a〉|
2 Tr

(
ρ̂3̂†(a, b)

)
3̂(a, b)

=

∑
a,b

ρ(a, b) 3̂(a, b). (4)

Equation (4) shows that complex joint probabilities are a complete representation of quantum
statistics, regardless of the measurement context. It is therefore possible to represent all
measurement statistics in terms of the statistics relating to the measurements of a and b. In
particular, the expectation values of all self-adjoint operators M̂ can be defined in terms of a and
b by simply expanding the operators in the adjoint operator basis {3†(a, b)}. The coefficients
of this expansion are given by

Tr
(
3̂(a, b)M̂

)
=

〈b|M̂ |a〉

〈b|a〉
. (5)

Since these are the weak values of the operator M̂ observed for an initial state of |a〉 and a final
state of |b〉, the complex joint probabilities ρ(a, b) appear to describe the density matrix as a
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mixture of transient quantum states {3̂(a, b)} defined by the respective combinations of initial
and final states [23, 28]. Consequently, the expectation value of M̂ corresponds to the average
weak value given by

〈M̂〉 =

∑
a,b

ρ(a, b)
〈b|M̂ |a〉

〈b|a〉
. (6)

In the light of the formal similarity to classical statistics, it may be important to remember that
this expectation value describes the results of a direct measurement of M̂ , and not the results of
weak measurements. The weak value of M̂ is therefore not just an experimental result, but also
a fundamental element of the operator algebra, similar to the values of operators obtained for a
point in phase space in the Wigner transformation of an operator. The complex weak values of
M̂ conditioned by a and b thus provide a complete mathematical expression for the operator M̂ .

The possibility of constructing joint probability representations for nearly arbitrary pairs
of observables raises a few interesting questions about the relation between observables
and the structure of Hilbert space. Specifically, any pair of non-degenerate observables with
mutually overlapping eigenstates can now serve as a ‘parameterization’ of quantum states. If
the results could be interpreted in terms of classical joint probabilities, each pair of values (a, b)

would designate a microstate defining a phase space point. Keeping this analogy in mind, the
transformation between different measurement bases corresponds to a change of coordinates in
the effective phase space. In the following, I will examine the quantum mechanical expressions
that describe such transformations in the extreme quantum limit.

3. Transformations of complex joint probabilities

Complex joint probabilities can be formulated for any pair of observables whose eigenstates
have non-zero mutual overlap. It is therefore possible to transform complex joint probabilities
between different basis sets representing different measurements. If we consider the
transformation from a basis set ({|a〉}, {|b〉}) to a basis set ({|c〉}, {|b〉}), the transformation is
given by

ρ(c, b) =

∑
a

p(c|a, b)ρ(a, b), (7)

where the coefficients of the transformation are given by the weak conditional probabilities
p(c|a, b) with

p(c|a, b) =
〈b|c〉〈c|a〉

〈b|a〉
. (8)

These conditional probabilities are equal to the weak values of the projection operators of |c〉
conditioned by an initial value of a and a final value of b. A statistical interpretation of this
transformation would suggest that the relation between a and c is random, corresponding to
an irreversible scattering of inputs a into different outputs c with a scattering probability of
p(c|a, b). However, the transformation merely describes a change of representation and should
not imply a change in the physical properties of the state. If it is accepted that the measurement
outcomes a, b and c all represent physical properties of the state, the transformation should
therefore describe a deterministic relation between a, b and c.
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A formal definition of determinism can be obtained from the reversibility of the
transformation. If the transformation from a to c is deterministic, the original joint probability
can be recovered by the inverse transformation represented by the conditional probabilities
p(a′

|c, b). Therefore, conditional probabilities can only describe a deterministic transformation
between different representations of the same probability distribution if they satisfy the relation

∑
c

p(a′
|c, b)p(c|a, b) = δa,a′ . (9)

For classical statistics, where probabilities are real and positive, the above relation can only be
satisfied if the conditional probabilities assign a specific value of c to each value of a, so that the
conditional probabilities are one for the correct assignment and zero for all other assignments.
In the quantum limit, the relation is still valid, but instead of taking only values of zero or one,
the complex conditional probabilities reflect the structure of the Hilbert space, as shown by the
contributions from each value of c,

p(a′
|c, b)p(c|a, b) =

〈b|a′
〉

〈b|a〉
〈a′

|c〉〈c|a〉. (10)

Thus, the quantum limit of determinism is obtained from the orthogonality of |a〉 and |a′
〉, even

though there is no conditional assignment of a fixed value of c to each pair of values (a, b). In
fact, quantum determinism as defined by the conditional probabilities in equation (8) not only
fails to assign a specific value of c to each pair (a, b), but actually assigns a non-zero value to
the complex probability of each state |c〉 that is not orthogonal to either |a〉 or |b〉. For basis
sets with non-zero mutual overlap, the relation between c and (a, b) is therefore spread out over
all possible combinations of a, b and c. Determinism in its conventional sense only emerges
because of the complex phases of the conditional probabilities.

Essentially, the identification of reversible unitary transformations with quantum
determinism is motivated by the state-independent relation between different physical properties
represented by operator observables and their eigenstates. It does not depend on the
interpretation of quantum states, and applies equally well to the relations between operator
observables at different times, since the time evolution of operators is just a special case
of a unitary transformation. The difference between this generalized concept of determinism
and the more familiar limit of classical determinism is the possibility of identifying physical
properties directly with well-defined values instead of Hilbert space operators. To recognize
the significance of this difference between classical determinism and quantum determinism, it
is useful to consider the classical interpretation of joint probabilities as relative frequencies of
microstates defined by the phase space point (a, b). In this case, deterministic transformations
can only correspond to an exchange of labels denoting the fundamental representation-
independent reality of the phase space point (a, b) = (c, b). On the other hand, quantum
determinism prevents the identification of such representation-independent realities. The
statistical relations defined by the Hilbert space structure of quantum mechanics imply that
the mathematical points (a, b) are fundamentally different from the mathematical points (c, b).
Quantum determinism is therefore completely detached from classical realism. In the next
section, I will illustrate the transition between quantum determinism and classical determinism
by constructing a phase space over a sufficiently large Hilbert space. It is then possible to see
how the classical notion of a measurement-independent reality can emerge as an approximation
of the more accurate relations of contextual quantum determinism.
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4. Emergence of phase space topologies from quantum determinism

A fundamental contradiction between classical determinism and quantum determinism arises
in discrete systems, where quantum determinism allows continuous transformations, whereas
classical determinism only allows discrete exchanges of points. As a result, it is difficult to
construct a phase space topology for few-level systems. Even in the limit of high-dimensional
Hilbert spaces, it is not immediately clear how to identify quantum states with parameters.
In practical systems, this parameterization usually emerges from the interactions with the
environment, which introduces a sequence of states, so that the distance between two orthogonal
states |a〉 and |a′

〉 can be expressed as a numerical difference of a − a′. Continuous phase
space topologies then emerge when the discrete steps of ±1 in a or b can be considered
microscopically small. For basis sets with non-zero overlap, the conditional probabilities
p(c|a, b) can then be given by continuously varying functions of a, b and c. If the absolute
values of the overlaps between the states vary only slowly, the phase of the complex conditional
probability can be expanded in a Taylor series up to second order around an extremum, resulting
in a complex Gaussian with an imaginary variance of iVq,

p(c|a, b) =
1√

2πVq

exp

(
i
(c − fc(a, b))2

2Vq
− i

π

4

)
. (11)

Since the phase also varies slowly in a and b, fc(a, b) can be approximated by a linear function
of a and b. Comparison with equation (8) shows that the imaginary variance is given by

Vq =
|〈b|a〉|

2

2π |〈b|c〉|2|〈c|a〉|2
. (12)

The gradients of fc(a, b) can be determined by considering the normalizations of p(a|c, b) and
p(b|a, c). The results read

∂

∂a
fc(a, b) =

|〈b|a〉|
2

|〈b|c〉|2
,

∂

∂b
fc(a, b) =

|〈b|a〉|
2

|〈c|a〉|2
.

(13)

The conditional probability p(c|a, b) is therefore completely determined by the Hilbert space
overlaps of the basis states. At the same time, a, b and c correspond to phase space coordinates,
where fc(a, b) defines the corresponding classical coordinate transformation.

Since quantum determinism requires that the absolute values of all conditional probabilities
are non-zero, it is fundamentally different from classical determinism, where conditional
probabilities of zero are assigned to all combinations of a, b and c that do not fulfill the
functional dependence given by c = fc(a, b). Instead, quantum determinism represents the
relation between a, b and c in terms of complex phase oscillations. Specifically, the functional
dependence given by fc(a, b) defines the values of c for which the complex phase of p(c|a, b)

achieves its minimum. Classical realism emerges if this phase minimum can be identified
with the only relevant value of c. In this case, p(c|a, b) can be replaced by a delta function,
δ(c − fc(a, b)). To see how well classical realism can approximate the more precise quantum
results, it is possible to compare the predictions of quantum determinism and classical realism
for coarse-grained probabilities, e.g. by a convolution of the conditional probabilities p(c|a, b)

with a Gaussian of variance σ 2. For the classical probability δ(c − fc(a, b)), the result is a
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Figure 1. Comparison between the complex conditional probabilities of quantum
determinism and the corresponding classical predictions for an imaginary
variance of Vq = 1 in c for different Gaussian resolutions σ . Thick lines show
the real part of the complex probability p(c; σ 2), thick dashed lines show the
corresponding classical probability distribution and thin dashed lines show the
imaginary part of p(c; σ 2). (a) The difference between quantum determinism
and classical predictions at a high resolution of σ = 0.25, (b) the transition to
low resolution at σ = 0.5, (c) the similarity of quantum statistics and classical
statistics at σ = 1 and (d) the small deviations from the classical limit that remain
at σ = 2.

Gaussian with variance σ 2 around (c − fc(a, b)). The precise result obtained from the complex
conditional probability in equation(11) can be written as

p(c; σ 2) =
1√

2πσ 2(1 + iε)
exp

(
(c − fc(a, b))2

2σ 2(1 + ε2)
(1 − iε)

)
, (14)

where ε = Vq/σ
2 describes the relative deviation from the classical probability distribution.

Clearly, quantum determinism converges on classical determinism for small values of ε.
This means that quantum determinism is indistinguishable from classical determinism at
resolutions of c much lower than

√
Vq. Figure 1 illustrates this rapid disappearance of

experimentally observable contradictions between the predictions of classical realism and
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quantum determinism. Since the low-resolution limit characterizes almost all of our actual
experience, our intuitive notion of realism may well be explained as a product of this classical
approximation to quantum determinism.

In addition to the classical functional relations c = fc(a, b) that relate different
parameterizations of phase space to each other, classical phase space also has a well-defined
metric that ensures the conservation of phase space volume under all canonical transformations.
In quantum mechanics, this metric corresponds to the density of states in the phase space
volume defined by changes of a and b. In the discussion above, a and b are integers that
number the discrete basis states of a d-dimensional Hilbert space. For this quantum mechanical
parameterization, the metric of phase space emerging in the classical limit is found by replacing
the sum over all values of a and b with approximate integrals, so that the total number of states
is given by ∫ d

1

∫ d

1
|〈a | b〉|

2 da db =

∫ d

1
db ≈ d. (15)

The metric emerging from a derivation of phase space from a Hilbert space parameterized by
numbering the states therefore has a metric that is given in terms of the density of quantum
states, which is equal to |〈a|b〉|

2 near the phase space point (a, b). A canonical parameterization
of phase space is obtained for

〈a |b〉 =
1

√
d

exp

(
i
2π

d
ab

)
. (16)

In this case, unitary phase shifts in a generate shifts in b, and vice versa. The parameters a and
b can be rescaled in units of position x and momentum p, so that the phase of 〈x |p〉 is given by
xp/h̄. This rescaling shows how the classical action emerges from the quasi-continuous limit of
joint probability representations in sufficiently large Hilbert spaces.

5. Causality as quantum determinism

According to classical causality, a single point in phase space defines the properties of a
closed system at all times. In this sense, the canonical phase space coordinates of position and
momentum can be interpreted as parameterization based on a specific reference time, and the
time evolution of the coordinates represents transformations to different parameterizations of
the same phase space. In general, it is therefore possible to define phase space parameterizations
referring to multiple times and even to weighted averages over time.

In classical determinism, this ambiguity of phase space concepts is not particularly
relevant, since it is always possible to identify the continuous time evolution of observable
properties in terms of well-defined time-dependent functions. However, the situation is quite
different in the limit of quantum determinism. Here, simultaneous statements about the same
property at different times do not usually commute. Therefore, it is not correct to assign reality
to a continuous trajectory describing the dynamics of the system. It may well be the case that
the focus on dynamics and time evolution in traditional physics has unnecessarily complicated
the picture we have of quantum mechanics. Quantum determinism addresses this problem
by describing the time evolution of closed systems as a reparameterization of an unchanged
quantum state ρ̂. Causality in quantum mechanics is then described by the complex conditional
probabilities of quantum determinism for statements associated with different times.
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The conventional representation of deterministic causality in quantum mechanics is given
by the unitary transformation Û (t j − ti) that defines the relation between states at time t j with
states at time ti . If a quantum state ρ̂ is expressed by the complex joint probability ρ(a1, b1) of
the properties a1 and b1 at time t1, the transformation to a2 and b2 at time t2 should proceed in
two steps, since elementary quantum determinism describes the relations between sets of three
observables. For example, determinism defines the value of a2 at time t2 as a function of both
a1 and b1. Therefore, either a1 or b1 can be replaced by a2. For reasons of symmetry, the natural
choice seems to be a transformation to (a1, a2),

ρ(a1, a2) =

∑
b1

p(a2|a1, b1)ρ(a1, b1). (17)

This two-time representation of the quantum state reflects the fact that trajectories can be defined
by the positions at two different times. Since this representation is, in principle, equivalent to
any other, the evolution of ai up to a third time t3 can be evaluated directly from the complex
joint probabilities of a1 and a2,

ρ(a1, a3) =

∑
a2

p(a3|a1, a2)ρ(a1, a2). (18)

Here, the conditional probability p(a3|a1, a2) corresponds to the probability of finding the
system in a3 at time t3, when it was initially in a1 and finally arrived in a2. For the positions
of a free particle, the complex phase of this conditional probability is given by the action of
the trajectory a1 → a3 → a2, so that the classical result for a3 corresponds to the path of least
action [25].

The connections between extended probabilities and path integrals or quantum histories
have already been noted in other works [29, 30]. However, the explanations given there seem
to be at odds with determinism, since the representations appear to assign a non-deterministic
time evolution to a single quantum object. Nevertheless, quantum determinism can reproduce
the same results in terms of a gradual transformation from a2 at t2 to an at tn in a number of steps
evolving from ai at ti to ai+1 at ti+1. The total conditional probability for the transformation is
then given by

p(an|a1, a2) =

∑
{ai }

p(an|a1, an−1) p(an−1|a1, an−2) · · · · · · p(a4|a1, a3) p(a3|a1, a2), (19)

which converges on the path integral for the evolution of a(t) in the limit of continuous times.
Specifically, the phase of each contribution to the sum over the paths {ai} is defined by a sum
corresponding to the total action of that path. Since sums over rapidly oscillating phases cancel
out, the end result can be obtained by summing over only a finite interval around the classical
trajectory given by the path of least action.

Although equation (19) shows that the conditional probabilities of quantum determinism
can be expressed in terms of path integrals, it seems significant that these path integrals do not
describe the evolution of a quantum state. Instead, they describe a sequential transformation of
state-independent conditional probabilities that describe the fundamental deterministic relations
between the non-commuting observables ai . Quantum determinism thus provides an alternative
explanation for the role of path integrals in the description of the dynamics of a system.
Specifically, the transformations in equation (19) are merely a change of representation. It
is therefore difficult to justify the interpretation of an individual path as the history of an
individual system, even though the formal assignment of a complex probability to each path
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is indeed possible [29, 30]. Clearly, each path is merely a sequence of statements, each of
which can be translated to equivalent statements at other times. Since a pair of statements is in
principle sufficient to define the statistics of all other statements, the paths are merely redundant
representations of the fully deterministic evolution of the physical properties that characterize
the system. The misleading impression that a quantum system could ‘choose’ between alternate
paths or histories arises from a misidentification of joint probabilities with joint realities. As we
saw in the previous section, such an identification represents an approximation valid only in the
classical limit of low measurement resolution.

In Hilbert space, the time evolution of quantum states is represented by unitary
transformations Û (t j − ti) generated by the Hamilton operator Ĥ . If only the time evolution
of a single measurement outcome a is of interest, it may therefore be convenient to express
the quantum state as a complex joint probability of |a(t)〉 = Û (t)|a〉 and an eigenstate |n〉

of the Hamiltonian Ĥ with an energy eigenvalue of En. The time evolution can then be
expressed in terms of the complex conditional probability p(a(t)|n, a′). The time dependence of
this conditional probability corresponds to the formulation of the time-dependent Schrödinger
equation in the {|a〉}-basis,

d

dt
(p(a(t)|n, a′) 〈a′

|n〉) = −
i

h̄

∑
a′′

〈a′
|(Ĥ − En)|a

′′
〉 (p(a(t)|n, a′′) 〈a′′

|n〉). (20)

Essentially, the rescaled conditional probabilities p(a(t)|n, a′)〈a′
|n〉 evolve just like the

a′-components of a state vector. In the limit of smoothly varying phases, these dynamics
therefore correspond to the well-known dynamics of dispersion in wave propagation. Quantum
determinism thus reproduces the formal aspects of the wave–particle dualism implied by the
conventional formulation of the Schrödinger equation. However, the reformulation in terms
of conditional probabilities for measurements at different times shows that the object of the
dynamical evolution is not a physical wave, but the statistics of statements about a property of
the quantum system at different times. The deeper meaning of the formal analogy between the
elastic properties of physical waves and the conditional statistics of post-selected measurements
is therefore far from obvious, and related measurement results such as [21] should not be
misinterpreted in terms of a ‘realism’ of the wavefunction.

The analysis of Hamiltonian dynamics also reveals a highly non-classical relation
between transformation dynamics and statistics that can be expressed in the form of complex
probabilities [25]. In its most simple form, this relation is expressed by the definition of
imaginary weak values as logarithmic derivatives of the post-selected probabilities for a weak
unitary transformation generated by the respective observable [31]. The time evolution of
measurement probabilities can therefore be expressed in terms of imaginary weak values of
energy,

d

dt
〈a |ρ̂ |a〉 = −

i

h̄

(
〈a | Ĥ ρ̂ |a〉 − 〈a |ρ̂ Ĥ |a〉

)
=

∑
n

2En

h̄
Im (ρ(En, a)) . (21)

This expression provides a direct interpretation of imaginary probabilities that is consistent
with classical theories of phase space transformations. In the following, I will use this analogy
to provide a classical definition of complex probability that corresponds to the low-resolution
limit of the quantum mechanical values.
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6. Complex probability in the classical limit

As shown in section 4, classical phase space features emerge as soon as the Hilbert space
is sufficiently large to allow a representation of quantum phases and amplitudes as smooth
continuous functions of the variables a and b. For a discussion of classical limits, it is therefore
often sufficient to focus on a continuous variable phase space defined in terms of position x̂ and
momentum p̂. The complex joint probability of a quantum state is then given by

ρ(x, p) = 〈p | x〉〈x | ρ̂ | p〉, (22)

where 〈p | x〉 = exp(−ipx/h̄)/
√

2π h̄. Incidentally, this is precisely the form in which
Kirkwood originally introduced the complex probability distribution in 1933, as an alternative
to the Wigner function [14]. However, it gained much less recognition than the Wigner
function, probably mainly because the complex phases appear to complicate the comparison
with classical statistics. It is therefore a somewhat ironic twist that the Kirkwood distribution
actually describes the measurement statistics observed in weak measurements, to the point
where its discrete versions can resolve quantum paradoxes. The Kirkwood distribution thus
provides the correct continuous variable limit of the more general discrete quantum statistics
that can be observed and verified by weak measurements.

In general, the imaginary part of complex probabilities can be defined operationally
as logarithmic derivatives of measurement probabilities in response to weak transformations
generated by the observable in question [31]. In particular, equation (21) shows how the time
evolution of a measurement distribution depends on the imaginary parts of the joint probability
with the eigenstates of the Hamiltonian. This relation can be applied to position and momentum
by considering the change in a momentum distribution ρ(p) caused by a potential V (x),

d

dt
ρ(p) =

2

h̄

∫
V (x)Im (ρ(x, p)) dx . (23)

In the classical limit, the change of momentum is given by dp/dt = −∂V/∂x , so the relation
between the change of ρ(p) and the real-valued joint probability reads

d

dt
ρ(p) =

∫
∂

∂x
V (x)

∂

∂p
Re (ρ(x, p)) dx . (24)

Integration in parts can be used to identify the imaginary probability in equation (23) with the
real probability in equation (24). The classical limit of imaginary joint probabilities is then
given by

Im (ρ(x, p)) =
h̄

2

∂2

∂x∂p
Re(ρ(x, p)) . (25)

The appearance of h̄ in this classical definition of imaginary probability indicates that, in the
classical limit, the imaginary part will be much smaller than the real part. Correspondingly, a
joint probability can only be considered classical if the action given by the ratio of the joint
probabilities and its second-order derivative in x and p is sufficiently smaller than h̄.

Although the result above has been derived for the Kirkwood distribution in phase
space, its generalization to the classical limit of high-dimensional discrete Hilbert spaces
is straightforward. For slowly varying phases and amplitudes of 〈a|b〉, the corresponding
expression can be obtained by replacing h̄ = 1/(2π |〈p|x〉|

2) with 1/(2π |〈a|b〉|
2). The result
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reads

Im (ρ(a, b)) =
1

4π |〈a | b〉|2

∂2

∂a∂b
Re (ρ(a, b)) . (26)

In general, the classical limit of imaginary probabilities can be represented by the gradients
of the phase space distribution associated with general transformations of the parameters. The
complex probabilities of quantum mechanics therefore represent a unification of statistics with
the dynamics of transformations [31]. The quantum of action defines the point at which the
classical separation between dynamics and (static) information breaks down. At that point, it
is necessary to include the topology of transformations in the definition of joint statistics, a
task that is achieved most naturally by expressing quantum mechanics in terms of complex
probabilities.

7. On the empirical foundations of quantum determinism

Quantum determinism might have far-reaching consequences for our understanding of quantum
physics. However, the possibility of addressing seemingly counterintuitive properties of
quantum mechanics in a new light may also cause new misunderstandings. In fact, the difficulty
of identifying the precise physics behind useful mathematical concepts seems to be the very
reason why there is so much fundamental disagreement on the proper interpretation of quantum
mechanics. It may therefore be justified to take an extra-sharp look at the physics that support
and justify the use of complex joint probabilities.

As mentioned in the introduction, it is fundamentally impossible to carry out quantum
measurements of non-commuting observables jointly. Nevertheless, all measurements can be
carried out in parallel, on separate representatives of the same system. That is why quantum
theory does define the relations between completely different measurements, and physicists
should try to make these relations as clear as possible. Unfortunately, previous constructions
of joint probabilities such as the Wigner function or the one used in Feynman’s explanation
of quantum computation all exploited the ambiguity of partial measurement results, filling the
gaps by convenient but necessarily arbitrary assumptions [30, 32–34]. It is therefore important to
emphasize that the present approach is firmly rooted in the experimentally observable properties
of quantum statistics.

Firstly, weak measurements can confirm complex joint probabilities directly. The only
assumption used in the weak measurement is that the probabilities of the actual measurement
outcomes of the weak measurement are proportional to the probability of the precise
measurement result. Since this assumption clearly holds when no final measurement is
carried out (or when the final measurement confirms the result of the weak measurement),
it seems reasonable to assume that the complex value obtained in a post-selected weak
measurement represents the conditional probability. Moreover, the same complex statistics
can also be observed in the back-action of strong measurements [15] and in the correlations
between optimally cloned quantum systems [31], confirming the empirical consistency of weak
measurement statistics.

An essential point in the experimental evaluation of joint probabilities is the interpretation
of measurement uncertainties. In the case of weak measurements, causality ensures that the
weak measurement is not affected by the post-selection process, and the weakness of the
measurement ensures that the final outcome is not influenced by the intermediate measurement.
It is therefore possible to identify the correlations between the weak measurement and the final
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measurement without any additional assumptions about the relation between the observables.
In contrast, the construction of the Wigner function from parallel measurements of linear
combinations of x̂ and p̂ implicitly assumes that the eigenvalues of x̂ + p̂ should be equal to
the eigenvalues of x̂ plus the eigenvalues of p̂—an assumption that is clearly inconsistent with
operator algebra.

Secondly, the joint complex probabilities discussed here are a natural mathematical choice
based on the properties of operator algebras in the Hilbert space. That is why they were actually
discovered long before their usefulness for the explanation of weak measurements and other
paradoxical quantum statics were known. The definition of complex probabilities as expectation
values of the products of two measurement operators is a simple representation of the ‘AND’
operation in classical logic, where the truth value is also given by a product of the individual
truth values. It therefore provides a natural expression for the joint validity of two quantum
statements, without interpretational bias in favor of a specific type of measurement or physical
system.

One problem might be that quasi-probabilities have often been motivated by the assumption
of quasi-realities, that is, by an understandable desire to return to some form of classical realism
that defines objects in terms of completely measurement-independent concepts. However, the
present approach does the opposite: it shows that such an ersatz reality cannot be constructed
from the mathematical objects that represent joint probabilities, and it explains how the
measurement-independent reality of classical physics can emerge as an approximation to
the measurement-dependent reality of quantum physics. Specifically, the functional relation
between two measurement outcomes and a third measurement outcome that characterize the
measurement-independent determinism of classical physics are only approximations. Quantum
mechanics does not provide a replacement for such classical determinism. Instead, determinism
is expressed in terms of statistical relations that should not be confused with the relative
frequencies of classical statistics: a non-zero value of p(c|a, b) does not mean that sometimes
the system is accidentally described by a, b and c, but rather indicates that the separate
frequencies of a, b and c must be related to each other in a specific way, so that complete
knowledge of the statistics of a and b means that we can determine the statistics of c as well.
The representation of the deterministic relations between a, b and c by complex conditional
probabilities is yet another indicator that a realist interpretation of the measurement outcomes
a, b and c is difficult to reconcile with the mathematical structure of the formalism of quantum
mechanics. On the other hand, the same structure can explain why the approximate outcomes of
measurements at the macroscopic level appear to describe a measurement-independent reality
of the observable quantities associated with a, b and c.

In general, it is not possible to exclude realist interpretations of quantum mechanics at
the microscopic level. However, in an empirical interpretation of quantum mechanics, reality
should be defined in terms of the outcomes of actual measurements. In the context of such
an empirical realism, each individual system is characterized by its preparation and a single
measurement outcome, where the specific form of both fully defines a context-dependent
reality accessible from the ‘outside’. The complex joint probabilities discussed here indicate
the statistical relations between different systems from the same source, measured in different
ways. Each pair of measurement outcomes (a, b) therefore refers to statistical relations between
the representatives of the ensemble with measurement outcome a and the representatives with
measurement outcome b. Empirically, the implications of these joint probabilities emerge only
when the statistics of representatives with measurement outcomes c are considered. Thus,
complex joint probabilities support and confirm the dependence of individual realities on the
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specific measurement context, while also providing a more detailed microscopic description of
the deterministic relations between the different measurement contexts.

8. Conclusions

Complex joint probabilities provide a representation of quantum states in terms of any pair of
observables with mutually overlapping eigenstates. Such states can never be measured jointly,
but their statistical connection can be observed in weak measurements. The fundamental nature
of this relation between incompatible quantum measurements is revealed when transformations
between different joint probability representations are considered, since these relations describe
how the deterministic relation between two measurements and a third measurement is
described in quantum theory. The classical notion of completeness associated with phase space
points thus survives in quantum mechanics. However, the complex probabilities associated
with joint statements about non-commuting observables require a modification of classical
determinism, so that the simultaneous assignment of measurement outcomes corresponding to
measurement-independent phase space points is impossible. Instead, determinism is expressed
in terms of complex phases relating to the properties of phase space transformations. For
sufficiently smooth phase space topologies, quantum determinism can be expressed by Gaussian
distributions with imaginary variance. Thus, the differences between classical determinism and
quantum determinism become relevant when the measurement resolution approaches or exceeds
the imaginary variance of quantum determinism.

The discussion above shows that the classical notion of reality emerges naturally from
quantum contextuality when the measurement resolution is sufficiently low. The idea of a
measurement-independent reality ‘out there’ may therefore reflect a reasonable approximation,
similar to the assumption of a flat space time in the absence of strong gravitational fields.
Importantly, the lack of measurement-independent realities can now be explained in terms
of precise deterministic relations between the different possible measurements. Hilbert space
thus provides a well-defined quantum limit of phase space topologies. In the context of time
evolution and causality, this means that a single pair of observables determines the complete
history of a quantum object. However, this history cannot be described by assigning a time-
dependent value to a specific property, since such an assignment corresponds to simultaneous
measurements of multiple non-commuting properties. Instead, quantum determinism only
provides precise statements about the relation between the measurement statistics obtained for
different representatives of the same source measured at different times.

Even from a merely technical viewpoint, quantum determinism should prove useful
by providing a consistent measurement-based description of quantum mechanics. The
reformulation of Hilbert space concepts in terms of statistical expressions may be particularly
useful in the analysis of the quantum information content of states as suggested by related
approaches to quantum statistics that contributed to the motivation for the present work [6–13].
From my own perspective, however, the most surprising aspect of the present work is
the possibility of defining deterministic relations between different measurements that are
independent of the assignment of simultaneous values to the measurements and actually
contradict such assignments in all precisely defined cases. This means that there is actually much
less freedom in the interpretation of quantum mechanics than previously thought. In particular,
quantum determinism appears to introduce a complete definition of the fabric of empirically
accessible reality, representing an entirely new framework for all experimentally accessible
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aspects of quantum physics. Once the topology of quantum determinism is fully understood,
it may finally be possible to explain quantum mechanics entirely in terms of empirical concepts,
without the need for postulates in the form of unmotivated mathematical abstractions.
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