Numerical Simulations of Bifurcation Phenomena in Reaction Diffusion Systems
アクセス数 : 838 件
ダウンロード数 : 360 件
今月のアクセス数 : 5 件
今月のダウンロード数 : 3 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00031669
ファイル情報(添付) |
diss_otsu4110.pdf
5.11 MB
種類 :
全文
|
タイトル ( eng ) |
Numerical Simulations of Bifurcation Phenomena in Reaction Diffusion Systems
|
タイトル ( jpn ) |
反応拡散系における分岐現象の数値シミュレーション
|
作成者 |
高石 武史
|
抄録 |
The bifurcation structures of two types of reaction diffusion systems are investigated.
A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. A phase field to represent the shape of the crack with a regularization parameter ε > 0 is introduced. The phase field model is derived as a gradient flow of this regularized energy that is approximated by the Francfort-Marigo type energy using the idea of Ambrosio and Tortorelli. Several numerical examples of the crack growth computed with an adaptive mesh finite element method are presented. A simplified coupled reaction-diffusion system is derived from a diffusive membrane coupling of two reaction-diffusion systems of activator-inhibitor type. It is shown that the dynamics of the original decoupled systems persists for weak coupling, while new coupled stationary patterns of alternated type emerge at a critical strength of coupling and these become stable for strong coupling independently of the dynamics of the decoupled systems. The approach which is used here is singular perturbation techniques and complementarily numerical methods. In this Thesis, the usefulness of the combination of the mathematical modeling and the numerical simulation for investigating the bifurcation phenomena on the nonlinear pattern formation in reaction diffusion system is found. |
著者キーワード |
reaction-diffusion system
crack growth
phase field model
Turing pattern
diffusive coupling
numerical simulation
|
NDC分類 |
数学 [ 410 ]
|
言語 |
英語
|
資源タイプ | 博士論文 |
権利情報 |
Copyright(c) by Author
|
アクセス権 | オープンアクセス |
収録物識別子 |
(1) Phase Field Model for Mode III Crack Growth in Two Dimensional Elasticity, T. Takaishi and M. Kimura, Kybernetika 45(4) (2009), 605-614.
~を参照している
(2) Pattern Formation in Coupled Reaction-Diffusion System, T. Takaishi, M. Mimura and Y.Nishiura, Japan Journal of Industrial and Applied Mathematics 12(3) (1995) 385-424.
~を参照している
[URI] http://www.kybernetika.cz/content/2009/4/605
~を参照している
[DOI] http://dx.doi.org/10.1007/BF03167236
~を参照している
|
学位授与番号 | 乙第4110号 |
学位名 | |
学位授与年月日 | 2010-03-08 |
学位授与機関 |
広島大学
|