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主論文



Abstract 

The bifurcation structures of two types of reaction diffusion systems are 

investigated. 

A phase field model for anti-plane shear crack growth in two dimensional 

isotropic elastic material is proposed. A ph出 efield to represent the shape 

of the crack with a regularization parameter E > 0 is introduced. The phase 

field model is derived as a gradient flow of this regularized energy that is ap-

proximated by the Francfort-Marigo type energy using the idea of Ambrosio 

and Tortorel1i. Several numerical examples of the crack growth computed 

with an adaptive mesh finite element method are presented. 

A simplified coupled reaction-diffusion system is derived from a diffusive 

membrane coupling of two reaction-diffusion systems of activator-inhibitor 

type. It is shown that the dynamics of the original decoupled systems per-

sists for weak coupling， while new coupled stαtionαry patterns of αltemated 

type emerge at a critical strength of coupling and these become stable for 

strong coupling independently of the dynamics of the decoupled systems. 

The approach which is used here is singular perturbation techniques and 

complementarily numerical methods. 

In this Thesis， the usefulness of the combination of the mathematical 

modeling and the numerical simulation for investigating the bifurcation phe-

nomena on the nonlinear pattern formation in reaction diffusion system is 

found. 



Keywords: reaction-diffusion system， crack growth， phase白eldmodel， Tur-

ing pattern， diffusive coupling， numerical simulation 
AMS Subject Classification: 74RlO， 35K57， 81T80 
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Chapter 1 

Reaction Diffusion System and 

Bifurcation Phenomena 

1.1 Reaction Diffusion System 

Reaction diffusion systems raise the great interests in nonlinear phenom-

ena. Focusing on the spatiか temporalpattern formation， reaction diffusion 

systems were appllied to the texture on animal skin， population and distribu-

tion dynamics of the biological system， mutual interaction on nerval matrix 

of coral system， to name a few. 

The simplicity of the structure would be the reason why reaction-diffusion 

system has had great interests on many genre (or category) of nonlinear phか

nomena that posess various kind of complexity in it. With some ingenu-

ity， we are able to build a mathematical model that has the expression of 

reaction-diffusion sysytem which is easily handled by analytical and numer-

ical approaches. 

3 



CHAPTER 1. REACTION DIFFUSION SYSTEM AND BIFURCATION PHENOMENA4 

In this thesis， two types of reaction diffusion system are treated. Both 

of them consist of the reaction-diffusion equations on two scalar variables u 

and v. 
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Diffusion systems with nonlinear reaction terms have multiple solutions in 

many case. Taking up the two types of reaction-diffusion system， the author 

investigate the bifurcation structure of their dynamics in this thesis. 

Chapter 2 treats spatial patterns arising from crack evolutions on a elastic 

plate. In usual， the path of crack evolution is investigated by the energy 

estimation of its system， however， artificial conditions for numerical scheme 

are assumed in many cases. The author and Kimura introduce a kind of the 

reaction-diffusion equations that describes the force balance of the media and 

the phase field of crack and damage. Investigating these equations， the paths 

of cracks are categorized by the initial cracks without any artificial condition 

of on the numerical simulation. 

In Chapter 3， spaticトtemporalpatterns found in mutual interaction be-

tween 2 sheets of reaction-diffusion system are treated. Each system has pcト

tential to make spatiか temporalpattern， the Turing-like instability is found 

when 2 sheets have mutual interaction via diffusive membrane coupling. This 

coupled-RD system has an analogy of the interaction between the pattern 

dynamics. Stationary and oscilattory pattern are treated here. 



Chapter 2 

Crack Evolution 

2.1 Crack Evolution of Isotropic Elastic Plate 

We propose the following mathematical model for the mode III (anti-plane 

shear mode) crack growth in an elastic plate. Let 0 be a bounded two 

dimensional domain with a piecewise smooth boundary f， and let lD be a 

nonempty open portion of f which consists of a finite number of connected 
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CHAPTER 2. CRACK EVOLUTION 6 

components. For t > 0， we consider the equations 
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(2.1) 

O Z εrN 

。 Z εr 

+ 1.C. (2.2) xE  n， 

where rN := r¥rD and u(x， t) represents the small anti-plane displacement 

at the position x εn and time t三0，and g(x， t) is a given anti-plane 

displacement on the boundary r D • The variable z(x， t) satisfies 0壬z(x，t)壬

1 in n and represents the crack shape， as z田 oin the region without crack 

and z同 1near the crack. The minimum length scale of z is given as O(ε) 

with a small regularization parameterε> O. The function z(x， t) is called 

the phase field for the crack shape. For stable numerical simulations， we also 

introduce small time relaxation parameters α1 2': 0 and α2 > O. The initial 

conditions for (2.1) are given as follows: 

((0)=() 
z(x， 0) = zo(x)ε[0，1] 

Z ξn (omitted ifα1 = 0) 
(2.2) 

Z ξ Q  

The first equation of (2.1) express田 theforce balance in the u凹1I即I

region (μz勾 O町)， and the second equation expresses the crack evolution due 
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to the modulus of the stress l'Vul. The material constant γ> 0 is called the 

fracture toughness， which prescribes the critical value of the energy release 

rate in the Gri伍th'scriterion. It is harder for the crack to grow， if the value 

of γis larger. 

A crack once generated can be no longer repaired. We put ( )+ to the right 

hand side of the second equation， where (α)+ = max(α， 0). It guarantees the 

non-repair co凶 tionfor the crack:告と O

The derivation of this mathematical model is shown in Section 2.3， and 

some computational results will be given in Section 2.4. 

2.2 Three modes of crack evolution and the 

fundamental equations of elastic media 

Crack evolution is found in a various place， wall， structure， body， ground， 

and etc. Investigation of the crack has a long history， because we recognize 

that the crack induce the serious damage of the materials. 

Numerical simulation of the crack evolution problem has actually many 

di田culties.One is the singularity of the stress concentration at the tip of the 

crack. Classical theory of the crack evolution tells us that the gradient of the 

displacement of material becomes infinity at the tip， then， di伍cultyon the 

numerical treatment at the tip is inevitable. The second is the lack of the 

explicit method for selecting the direction of the crack evolution. We need 

the energy evaluation for all directions every time the crack is elongated. The 

method of the selection of the direction and the cost of computation induces 

the difficulty to solve this problem. The third is difficulty for treating the 
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new cracks or subcracks. For estimating the energy， it is necessary to check 

the new cracks everywhere except the tip. The fourth， to remesh for new 

boundaries that crack evoution make is the essential task for computation. If 

one assumes the crack line as a new boundary， the shape of the computational 

region changes according to the crack evolution. Then， we need to restart 

the computation for the new shape of the mesh， it costs very much. Many 

schemes have been developed for solving these problem ([9]，etc.). We derived 

the temporal evolution equation of the reaction-diffusion type with phase field 

for describing the cracked region. 

ト2

制 計 /-. x: 
1----+ %2 J----+匂

(a) 、‘，，，
L
U
 

，t

・、
(c) 

Figure 2.1: Three types of crack evolutio叫a)mode 1， (b) mode II， and (c) 

mode III 

The crack evolution on the plate is classified into three types by the 

direction of the stress (Figure 2.1) . Using the phase field， we introduce the 

mathematical model of the mode III crack evolution that is free仕omthe 

computational di伍cultiesmentioned above. 

In the classical theory of linear elasticity， the strain-displacement equation 

in cartesian coordinate is written as 

同j ニ~(告+詰)， (2.3) 



CHAPTER 2. CRACK EVOLUTION 9 

where σij is the strain tensor and Ui is the displacement vector. When Hook's 

law is introduced in isotropic media， stress tensor T;.j is written as follows 

Z Cijklσkl 

(2.4) 

入8ij8kl+μ(8ik8jl + 8il8jk) 

where Cijkl are the coe伍cientsof the elasticity tensor，入 andμare Lame's 

constants. Then (2めisrewrite as 

T;.j Cijklσkl 

{入8ij8kl+μ(8ik8jl + 8il8jk)}σkl 

入8ijσkk+μ(σij +σji) 

入8ijdiv(u) + 2μσlJ・

The balance equation of stress and body force f is 

aL 
τ'J + fi = o. 
ax ~~J 

The bulk energy of domain n， E， is written as follows 

jzJσij 

where ωis the energy density. 

(2.5) 

(2.6) 

(2.7) 

When the plate in the two dimensional domain n ε(Xl， X2) is subjected 

to only the anti-plate displacement in x3-direction， the displacement vector 
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becomes u = (0，0，U3(XbX2)) and divu = 0 (mode III type， Figure 2.1). 
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θU3 θU3 
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θX2 θXl 

(2.8) 

The balance equation for (2.8) is 

0=μ(告+告)+んニμ(会+ゑ)U3 +ん (2.9) 

and the bulk energy density is defined as 
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Then， the total bulk energy of mode III crack evolution is given by 

(2.11) 

2.3 Griffith's criterion and the phase field model 

of the mode-III crack growth 

A crack propagation in a plate by the deformation perpendicular to the plate 

is considered. Let 0 be a bounded two dimensional domain as described in 

Section 2.1. X = (Xl， X2)εJR2 stands for the Cartesian coordinate parallel 

to the plate， and X3 is the coordinate perpendicular to the plate. The plate 

is assumed to be an isotropic elastic material with a constant thickness and 

is treated as a two dimensional domain O. 
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A crack in the plate n is denoted by a closed subset ~ c n. It is assumed 

that the deformation of the plate is limited to the x3-direction， and the anti-

plane displacement is denoted by u(x)εffi. for x ξQ¥L If the speed of 

the crack evolution is very slow， we may adapt the quasi-static assumption， 

saying that the following equations are valid for every fixed t: 

-μムu= f in 。¥2
U g on fD 

θu 
(2.12) 

μ一一 h on fN θη 

θu土 。 2土

θη 
on ， 

where f(x) is a given externalload perpendicular to the plate on n， g(x) is 

a given anti-plane displacement on f D， and 1市)is a given boundary load 

in the x3-direction on f N. The outward normal derivative on the boundary 

of n\~ is denoted by :n. In pa凶 cul町，智 and努 standfor the outward 

normal derivatives of u on the sides ~+ and ~-， respectively， where the both 

sides of the crack ~ are denoted by ~+ and ~-. The parameter μ>  0 

measures the rigidity， which is one of the Lame constants. 

The solution u to (2.12) is obtained出 aur凶I

elastic potential energy including the externalloads: 

El(V，~) = ~ / l¥7vl2 
dx - / fv dx - / hv ds (υε V(g， n\~)) ， 

ム JO¥E JO JrN 

where V(g， n\~) := {v ξ H1 (n\~);υ = 9 on fD}. We have assumed that 

9 = g!rD with 9εH1(n) and that h εL2(fN). 

According to the classical theory of brittle fracture by A. A. Gri伍th[8]， 

the elastic energy which is released along the crack evolution is the source 
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of energy supply for creating new cracks. Francfort-Marigo [7] proposed the 

following energy based on the Gri田th'stheory: 

E(~) El(U，~) + E2(~) ， 

El(U， ~) !lli~. _. El (v， ~) 
uεV(g，。¥E)

印):=か)ds 

(U ε V(g ， n\~)) ， (2.13) 

The total energy of our system E， which is called the free energy in the 

analogy of the time dependent Ginzb町 g-Landau(TDGL) theory or the phase 

field model approach ([12] etc.)， is given as the sum of the elastic potential 

energy El over 。\~ and a surface energy E2 on the crack. At a time t， the 

bulk energy El (u，~) which is generated by the strain of the elastic plate is 

given as the minimum potential energy of El・

Let us suppose that a crack ~ grows and becomes ~(コ~). Since V(g， n\~) 

c V(g ， n\~) ， 

El(U，~) = _.!ll-i~. _， El(V，~) 三 min _ El(V，~) = E1 (仏~)，
UξV(g，!1¥E)νεV(g，!1¥E) 

holds. The released potential energy El (u， ~) -El (仏~)三 o along the crack 

growth from ~ to ~ is used to reduce the surface energy E2 depending on 

the fracture toughness γ(x) > O. 

In [7]， a mathematical model for crack growth with this energy is prか

posed and studied in detail. In practical numerical computations， however， 

we have the following numerical di伍Cl削 es:1) numerical treatment of stress 

concentration at the crack tip (i.e. IV'ul =∞)， 2) no explicit formula for 

crack path determination， 3) numerical treatment of crack initiation or sub-
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cracks， 4) numerical task to re-mesh 0\~(t) for the finite element method or 

other numerical methods. 

In order to represent the crack shape， we consider a phase field z(x)， which 

satisfies z田 1around the crack and z回 ofor the other region. Introducing 

a su伍cientlysmall spatial regularization parameter E > 0， we suppose that 

the crack has O(ε) thickness. Let &1 (u， z) and &2 (z) be approximations of the 

bulk energy E1(U，~) and the surface energy E2(~) ， respectively. Using the 

idea of Ambrosiか Tortorellio[1]， we consider the following regularized energy 

which depends on the anti-plane displacement u ξ V(g， 0) and the phase 

field for the crack shape z εH1(O) with 0三z(x)三1:

凸川-叫(1一仰山-AM-jN(1-z川 S

GU):=iL州
(2.14) 

In [1]， it is mathematically proved that this energy approximates (2.13)出

E → o in the sense of r -convergence. 

We suppose that the given external force J， h and the given boundary 

displacement 9 change slowly in time and that u and z approach the (quasi-

)equilibrium state in relatively smaller time scales. In the TDGL theory 

or the phase field approach， the dynamics near equilibrium of a system is 

described by the gradient flow of the free energy (see [12] etc.). In general， 

for a仕eeenergy F(u)， its gradient flow is given by α告=-iE，whereα>0 

is a suitable time constant and ~~ is the first variation of F with respect to 

u. 
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Let us make a brief comment on the gradient flow of energy F(u) by 

TDGL. We set that F(u) is a function in R2. The change of F(u + p()抗

ρ= 0 for u fixed is given by 

か(u+化
where "F(u) is the gradient of the function F(u) and it describes the gra-

dient of energy flow. When we assume that the dynamics of u(t) evolves出

descending the energy with the speed proportional to 1" F(u)l， the equation 

of u is given by 
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"F(u) . (. 

Suppose that rN r~ u r}..r， r~ n r}..r o and that h 0 on r~. 

We assume that h may not vanish on r}..r and the crack does not touch the 

boundary r}..r. We assume the following conditions: 

θz rD u=g 一一=0 on θη 

θ uθz  
r~ μ一一 =h=O 一一=0 on 

θ ηθ η  N 

θu r! μ一一 =h z=O on 
θη N 

(2.16) 

Calculating the energy gradient of this system. The boundary conditions 

are set so that u 9 on rD，ま oon rN・Wenow compute the first 
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variation of the energy in (2.14). For any cε V(O，O)， 

手会かε引伽 (
(2.17) 

μ4十Aルか(ο1ト一 z向 マ町叩¥1cdxμ帥d白Zト一Aかかf尺と

From the boundary condition at r， the first term is rewriten as follows: 

J-l 1 (1 -Z)2¥1U' ¥1c dx 

from which we obatain 

4(1-45ds-小iv((1 -z削ごdx

d品v((1 -z州ご批

会(u+中)し。=-1 {μdiv ((1 -Z)2¥1U) +仰 x. (2.18) 

Then， the gradient flow of the energy (2.14) with respect to u becomes 

4=μ品v((1 -z州 +1 (2.19) 

We remark thatα1 = 0 corresponds to the original quasi-static assumption 

in (2.12) and the case with 0 <α1 < < 1 is considered as its natural叩-

proximation. Actually， in case of α1 = 0， the elliptic equation degenerates if 

z = 1 and a small time constant α1 > 0 is effective to stabilize its numerical 

computation. 

Similarly， under these conditions we have the gradient flow for z(x， t) with 
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a suitable time constant α2 > 0: 

会l(叩 +ρ()Ip=o

か(z+ p()lp=o 

-J1.1 (1ー斗!日|い

心(x)(EVZ' V( +ド)批

16 

ε{t 7(吠(dS-1d討 (γ(x問 (dX}+か);zcdz

-1 {E div(γ(x)Vz)一手}(dx 

(2.20) 

then， the following equation is obtained. 

三ε(u，z+バ)|p=o=-L(Ediv(γ(加)一手+μ|日 1
2
ド )}(dx 

U sing the appropriate time constant α2 > 0， the energy flow for the phase 

field z is written as follows: 

γ(x) _ ，1<""7_ 12 
2一=E div (γ(x)Vz)一一-"-z+μ!日 1

2(1-z) (2.22) 
θt 

From the non-recovable nature of crack， it is reasonable to set 

az > 0 
θt -

(2.23) 

AlthOlゆthereare many po凶 bilitiesto realize this condition，α233=(・・・)+

is adoptted here， where (α)+ = max(α，0). Then， following equation is ob-

tained from (2.22). 

α22=(Ediv(γ仲間-4+川 ο-z)) + (2.24) 
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Summarizing (2.19) and (2.24)， we obtain the following phase日eldmodel 

for crack growth: 

U
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円。τ
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μdiv ((1-Z)2V'U) + f(x，t) Z εQ  

(εdiv (γ(x)V'Z)一平+μ!日 1
2
(1-Z))+ X刊

+ B.C. (2.16) 

+ I.C. (2.2). 
(2.25) 

In the second equation， to guarantee the non-repair condition for the crack 

(3?と0)，we have modified (2.22)回 α237=(ー・)+， where (α)+ = max(α，0). 

A class of such evolution equations with constraint is studied mathematically 

in [14]. Similar approaches for computing the Francfort-Marigo model with 

reg山 rizedenergy are found in [2， 3， 4， 5]. 

In (2.25)， setting r~ = rN， f = 0，γ(x)三 γ>0，μ= 1 and replacing Eγ 

by ε， we obtain (2.1). This model no longer has any numerical difficulties for 

computer simulation. Several numerical results is shown in the next section. 

Finally， we estimate the temproal evolution of the total energy of the 

system which the phase field model describes， when h， f and 9 are constant 

in time. From the quasi-static assumption， the time-evolutions of u and Z 

are assumed to be slower than the variation of the energy (菩=0，告=0)， 
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and we can compute五凸 and最&2as follows: 

J151(u，z) 
dt 

For &2， 

J152(z) 
dt 

IL 1 {-(1-収作+(1-z向 vZ)dz-Lや z

-IL 1(1 一斗卯1¥1引刊旬叶咋|

4品耐州州叩V刈巾巾((1-z州安dz-Afzdz

=叫ド)|V4

か)(EVzvZ+;zZ)dz

ト(Z)zzds-AE肋州VZ)Zdz+LZFizzdz

-1 {f. div(γ(x)¥1z)一ZP142dz

(2.27) 

One can see that the temporal evolution of the total energy of this system 

has the feature of dissipative system as follows: 

~t:(u， z) ~ -1 (α11212+的 1:1')dx ~ 0 ρ  

Notice that (2.28) holds not only in the case of (2.22)， but also (2.25) with 

α227=(・・・)+・
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2.4 Numerical simulation 

2.4.1 Numerical scheme 

In this section， we exhibit numerical simulation performed with FEM on 

adaptiv令 mesh.An adaptive mesh finite element solver was used for reaction 

diffusion systems in [10， 11] with an adaptive mesh FEM toolbox ALBERTA 

[13] . 

Let uk(x) and zk(x) be the approximations of u and z at tニ kT(kニ

0，1，2，'" )， respectively， with time increment T > O. To obtain uk and zk 

from Uk-1 and zk-l， the following implicit scheme for the first two equations 

of (2.25) is adopted: 

k ..k-l u" -u 
α1一一一一一一一ー一

7 

:::.k _k-l z" -z 
α2一一一一一一一一一

T 

μdiv ((1 -zk-l )2'VUk) 

γ(x) ::k 
e div (γ (x) 'Vzk ) ーっ'-:"i~ +μl'VUk-112(1 _ zk) 

ιゐ

z
 

m拡 (Zk，zk-l) 

(2.29) 

Here， we set y = min(zk，O) and integrate the second equation， then 

10 {1+よけ)一一+μ|引い12 山 +L-VEkvudz 

= 1 (zk-l +ごl'Vukサydx 

is obtained， and almost everywhere，ν三oand zky = y2， 'Vzk . 'Vy = l'Vyl2ヲ

1 {1+ え (/~X) +μl'VUk
-112

) }向+伝l'Vyl2dx 

= 10 (zk勺芝l'Vu
kー112)Y dx 
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If zk-l三0，(R.H.S)三oleads to ν= 0， and hence 計三 ofollows. Similar 

calculations on ( = 1 -zk-l， zk-l ::; 1 leads to 計三 1. Then， when the 

initial value ZO satisfies 0 ::; ZO ::; 1， 0 ::; zk ::; 1 is guaranteed. 

The condition zk E [0，1] is derived by the maximum principle for elliptic 

equations for zk， and it leads to zkε[0，1]. In this paper， the simple scheme 

(2.29) with sufficie凶 ysmall T is adopted. It will be interesting， however， 

to apply the projected SOR method [6] to the second equation of (2.25) for 

more accurate computation. 

1D 
芯応次尚治おお明日改活必出担割泌総対応決日ミ部対応泊、、市

z 
lN lN 

Q 
X2 

血 、時閣時間関制時前時間ぬ油開制措油国

1D 

Xl 

Figure 2.2: Computational domain 

We solve (2.29) by using the adaptive mesh FEM with P1 elements and 

adaptive time step control (see [10， 11]). In the following simulations， we put 

Eニ 10-3，α1= 0，α2二 10-3in (2.25)， and set the computational domain出

0=  (-1，1) X (-1，1) with rD = {(九X2)IXlE (-1， 1)，x2 =土1，}(Figure 

2.2). The boundary condition for u is given by g(x， t) = lOx2t for x E rD 

and t > O. 
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max(mesh number) I min(mesh size) I min(T) I max (T) 

8192 I 0.005524 I 0.001477 I 0.089005 

40824 I 0.001953 I 0.001407 I 0.066417 

iii) (a) I 18496 I 0.002762 I 0.001477 I 0.063254 

iii) (b) I 17788 I 0.002762 I 0.001477 I 0.069738 

iv) (a) I 128856 I 0.001953 I 0.001407 I 0.088783 

討)(b) I 114264 I 0.000691 I 0.001407 I 0.098128 

Table 2.1: Computational data on adaptive mesh 

Four cases with differentγand zo(x) are considered. The fracture tough-

ness γis set to be constant in the first three cases， and variable γ=γ(x) is 

treated in the last case. 

Table 2.1 shows the computational data on adaptive mesh for these nu-

merical simulations. 

2.4.2 One crack evolution (γ= 0.5) 

One straight crack in the plate is set at t = o. The initial condition for z is 

defined by zo(x):= (O(Xl +0.5，x仏where(o(x) := e一(x2/d)2(1 + exI/d)一1with 

8 = 0.1. (In the other simulations of this section， initial conditions are also 

defined similarly with suitable shift and superposition of the above (o(x).) 

It can be seen that the crack grows straight and reaches the right-hand 
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t=O t = 0.5 t = 1 t=2 

Figure 2.3: Bird's-eye views of u(top)， u (middle) and z (bottom) in the 

temporal crack evolution 

side boundary (Figure 2.3). Bird's-eye views of displacement u are shown 

at top， graphs in the middle show the dぉtributionof u (middle) wh凶 are

normalized by its maximum and minimum values. Graphs of u shows that 

the deformation of u is recovered after the growth of crack. Intensity of the 

graphs at the bottom shows the value of z， zニ oas black， zニ 1as white， and 

the temporal growth of the crack domain (z ~ 1 : wh巾)is shown there. For 

reference， all the graphs have the color-bar (grey-scale) at the right-hand side 

of them. As the crack grows， the region z > 0 grows wider than o( E)， because 
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the model is implicitly de五nedthat the history of the deformation makes the 

plate damaged. Once the plate is damaged， repair of damage of the deformed 

material (ex. dev凶 ionof atomic coodination) needs the long time although 

the deformation is recovered soon. 1n this model， this effect is shown as the 

width of Z > 0仕omthe positiveness of Zt (Zt = (F(u， z))+と0)，and the 

numerical reults shows that the region Z > 0 changes its width according to 

the functional ofゆ(x)of Zt =ゆ(F).1n this model， mendingless assumption 

of the damage (ゆ(x)= x+) leads to the result that the w凶 hof the region 

Z > 0 becomes larger where the deformation stays longer. 

It is confirmed that this numerical result is supported by the mesh adap-

tation. From the result of the numerical simulation， the minimum mesh size 

reaches the smallest when the crack evolution starts (t rv  0.5 in Figure 2.5)， 

the total number of the computational mesh increments after that. The total 

number of the mesh saturates when the crack reaches the opposite bundary. 

Figures 2.4 and 2.5 shows how the mesh adaptation works on this numerical 

simulation (Figure 2.3)， and that it is possible to calculate this problem on 

the fixed mesh when h rv 0.003 is employed. 

t=O t = 0.5 t=l t=2 

Figure 2.4: Adaptive mesh in the temporal crack evolution 
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rN 
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''
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u
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(a) 

Figure 2.6: Computational domain and initial 2 cracks in the case i) (a) and 

the case ii) (b) 
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i) Two cracks in the same direction (γ = 0.5) 

At t = 0 two cracks on the left-hand side boundary with the same length is 

set. If the length is long enough， they reach to the right-hand side boundary 

They， however， merge into one crack when the length of the two cracks is not 

enough long (Figure 2.7). When the initial crack is given as zo(x) := (O(Xl + 

t=O t = 0.5 t=l t=2 

Figure 2.7: Bird's-eye views of u(top)， u (middle) and z (bottom) in the 

temporal evolution of the cracks when initiallength of cracks is 0.5. 

0.5，X2十0.2)+ (O(Xl + 0.5， X2 -0.2)， (Fig. 2.6 (a) and Xo = -0.5， YO = 0.2)， 2 

crack merge together and grow as one and reach the opposite side (Fig. 2.7) 
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r 1__1… 1- … 1__1…E 

Figure 2.8: Profiles of u at t = 2 on various initial positions of top of the 

crack when 2-cracks start from the same side. Length of cracks (horizontal) 

v.s. width between 2 cracks (vertical) 
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Figure 2.9: Profiles of z at t = 2 on various initial positions of top of the 

crack when 2-cracks start from the same side. Length of cracks (horizontal) 

v.s. width between 2 cracks (vertical). 
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Treating the length and the interval of the initial cracks出 paramers，

numerical simulations are performed. The results are categorized as follows: 

a) each crack separately reaches the opposite boundary， b) two cracks merge 

to one crack at the tip of the cracks and evolve to the opposite boundary 

出 onecrack. Fig. 2.8 and 2.9 show the profile of u and Z of the numerical 

simulation at t = 2， seated as the length (horizontal) and interval (vertical) 

of the initial cracks. Careful examination reveal that the case a) includes 

the case that two cracks grow to the opposite boundary after approaching 

the side bundaries when the lengths of the initial cracks are su伍cientlyshort 

and their interval is wide enough (Left-upper of Figure 2.8 and 2.9). 
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ii) Two cracks starti時 fromopposite sides (γ= 0.5) 

t = 0 t = 0.5 t = 1 t=2 

Figure 2.10: Bird's-eye views of u(top)， u (middle) and z (bottom) in the 

temporal evolution of the cracks with initial cracks of length l. 7 

When two cracks start from opposite sides， that is， one starts from the 

left-hand side boundary and another starts from the right-hand side bound-

ary， the growth patterns are classified in three cases. Only when the initial 

cracks are su伍cientlylong， they reach the opposite boundaries (Figure 2.10). 

If su伍cientlyshort cracks are initiallu set at the opposite sides， as we can 

easily imagine， they reach and connect to each other. But， in some middle 

length case， a subcrack (side-branched crack) appears 
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「即

ー・・掴..11回・E晶.・...
..11圃・・・・・・・・・・・園田園

Figure 2.11: Profiles of u at t 2 on various initial positions of top of 

the crack when 2-cracks start from the opposite sides. Length of cracks 

(horizontal) v.s. width between 2 cracks (vertical) 
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Figure 2.12: Profiles of z at t 2 on various initial positions of top of 

the crack when 2-cracks start from the opposite sides Length of cracks 

(horizontal) v.s. width between 2 cracks (vertical) 



CHAPTER 2. CRACK EVOLUTION 32 

Similar to the case i)， treating the length and the interval of the initial 

cracks国 paramersof numerical simulation， it is categorized as follows: a) 

two cracks reach the opposite boundaries， respectively， b) two cracks connect 

to one crack at the tip of the cracks， c) side-branched crack appe町 s.Fig.2.11 

and 2.12show the profile of u and Z of the numerical simulation at t = 2， 

seated出 thelength (horizontal) and interval (vertical) of the initial cracks. 

It is found that the case a) includes the case that two cracks grow to the 

opposite boundaries， respectively， after approaching to the side bundaries 

when the lengths of the initial cracks are sufficient1y short and their interval 

is wide enough (Left-upper of Figure 2.11 and 2.12). 

On the real experiment it is di血cultto set the experimental condition to 

the completely isotropic and symmetric state， once a crack growh is started 

仕oma tip of a crack， it grows only from the first one. These results show 

that this model makes possible to calculate on such a severe conditions. 

2.4.4 One crack with variable fracture toughness (γ= 

γ(x)) 

The results for two cases where the fracture toughness varies in the plane are 

shown. While the crack grows，on the way to the other side， the front of crack 

find the weak (small toughness) point and turn into there. We consider two 

cases where γvaries according to i) a checkerboard pattern and ii) a stripe 

pattern. 

i) Checkerboard pattern (γ(x) = 0.5(1 + 0.2 cos lOx・cos10υ)) 

A checkerboard-like distribution of the toughness shows the periodically 
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(a) 、.，，，
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、
Figure 2.13: Spatial profile of fr山 turetoughness γ(x)， (a) a checkerboard 

pattern γ(x) = 0.5(1 + 0.2cos 10xcos 10y)) and (b) a stripe pattern γ(x) = 

0.5(1 + 0.2cos 10(x + y)). 

自nestructure that is found on many materials. When toughness γ(x) is set 

as checkerboard like Figure 2.13 (a)， crack grows along an elongation like 

zig -zag street (Figure 2.14). The crack searches the weak area and selects 

automatically the direction to grow. 

ii) Stripe pattern (γ(x) = 0.5(1 + 0.2 cos(10x + 10y))) 

Dividing the chopsticks straight is sometimes di田cultwhen the stripe line 

of the wooden fiber lies slant on it. The thorny edge on the cracked surface 

is found. From the view point of this model， it is considered as the case that 

the plate has a slant stripe pattern of the toughness γ(x) (Figure 2.13 (b)) 

Figure 2.15 shows that the crack propagates to the right-hand side bound-

ary through the weaker points of γ(x) 
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t=O t = 0.5 t = 1 t=2 

Figure 2.14: Bird's-eye views of u(top)， u (middle) and z (bottom) in the 

temporal evolution of the cracks when γ(x) = 0.5(1十0.2cos 10x . cos 10y) 
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t=O t = 0.5 t = 1 t=2 

Figure 2.15: Bird's-eye views of u(top)， u (middle) and z (bottom) in the 

temporal evolution of the cracks when γ(x) = 0.5(1 + 0.2 cos 10(x +ν)) . 



Chapter 3 

Coupled Reaction-Diffusion 

System 

3.1 Activator-Inhibitor Type RD System 

Various spatia1 and/or spatiか tempora1patterns in diffusing media are ob-

served in chemica1 physics， popu1ation dynamics， deve1opmenta1 bio1ogy and 

other fie1ds. As an examp1e of nonstationary or moving patterns， target and 

spira1 waves arising in the Be1ousov-Zhabotinsky (BZ) reaction have been 

intensive1y investigated仕omthe viewpoint of spatio-tempora1 pattern dy-

namics (for instance [27]). 

1n contrast to the BZ reaction， recent1y， experimenta1 evidence of station-

ary or unmoving patterns has been found in a chemica1 system [17J. 1n this 

system， iodide (1一)and ch10rite (C102") p1ay the ro1es of an activator and 

its inhibitor， respective1y. 1n order to understand theoretically the forma-

tion of such chemica1 patterns， a reaction-diffusion (RD) mode1 system has 

36 
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The been proposed in a framework of activator-inhibitor re1ationship [18]. 

reaction is known to be described by a five-component mode1 consisting of 

three reactions， but chemically reasonab1e simplifications reduce it to the 

following two component system with u and v， which denote respective1y the 

(3.1) 
f(u，v) 

4k~uり
わ-k?u-ー」ーで
ーー α +u~

k?u-k3uv ?u一一一一ーで
ー α +u~

concentrations of 1-and C102: 

2-dム

竺-dムu g(u， v)， 

where du and dv are the effective diffusion coe伍cientsof u and v， respective1y; 

ムisthe Lap1acian; k1， k2， k3 and αare positive constants. For suitab1e choice 

of these parameters， the kinetics of (3.1) are drawn in Figure 3.1. 

，，，
yq''' 

10-05 

y 5e-06 

o o 10-06 5e-07 

Figure 3.1: The nullclines ofthe non1inealities ofthe Ch1orite-Iodide-Ma1onic 

Acid-Starch reaction (3.1) w here k1 = 10-4， k2ニ 102，h=104，α=10-14 

Since the reaction proceeds in the ge1， it is experimentari1y confirmed that 
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1-diffuses slowly so that the e宜'ectivediffusion coe伍cientsare estimated回

dv/ du = 15. It is understood that the spatial patterns of chemicals occur 

due to the combination of local autocatalysis and lateral inhibition. This 

explanation was originally proposed by Turing to explain cell-differentiation 

in biology [26]. 

In addition to the above chemical reaction， biological patterns such回

pigmentation patterns on shells and animal coat markings can be also mod-

elled by RD systems of the type (3.1) with qualitatively similar nonlinearities 

([16]， [20]). 

As a prototype of (3.1)， the following 2-component system has been pro-

posed in a framework of activator-inhibitor model systems: 

(生=い +f(u，v)θt 

Z=仙 +8g(u， v) 

with the Bonhoeffer-van der Pol kineteics 

(3.2) 

f(u，v) 三 u(uー α)(1-u) -v and g(u， v) 三 uー γv+ ()， (3.3) 

where u and v are two variable species respectively corresponding to the 

activator and its inhibitor. du and dv are the diffusion rates of u and v. 

1>α> 0，γ> 0 and () are constants. 8 is the time constant related to the 

kinetics. For suitable choice of γand () such that nonlinearities of f and 9 are 

given回 inFigure 3.2， one finds the kinetics (3め arequalitatively similar 

to the ones in (3.1) where (3.2) has a unique spatially constant equilibrium 

solution， say (u， ii). 

In addition to the above situation， if the activator diffuses more slowly 
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Figure 3.2: The nullclines of f and 9 in (3めwhereα= 0.25，γ= 1，0 = -0.4. 

than the inhibitor does (du < dv)， the system falls into the framework of Tur-

ing's diffusive instability so that spatially inhomogeneous stationary patterns 

with stripe or hexagonal structures叩 pearin higher dimensions [21]. 

Under this framework， we assume that the activator diffuses much more 

slowly than the inhibitor does (du << dv). With suitable transformations 

ε= Vd;.， T = d/ゾ石andd = dv/d， it is convenient to rewrite (3.2) as 

εムu+シ(い)
(3.4) 

H
U
-
s
t
u
u
u
-
4
b
 

O

一θ
θ

一円。

T
 

dムυ+g(u， v)， 

where we assume d is of the order 0(1) with su伍cientlysmall ε. The system 

(3.4) can be interpreted as follows: If T = 0(1/ε)， then u and υreact to the 

same degree， but u diffuses much slower than v does; if T = 0(1)， u reacts 

faster than v does， and u diffuses slower than v does. If T = O(ε)， u reacts 

much faster than v does， but u and v diffuse to the same degree. 

We consider (3.4) with the case when T = 0(1) in a bounded domain n 
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with the zerか fluxboundary conditions 

nu 
u
一
n

n
O

大。
θυ 

θη 
(3.5) 

on the boundary θD， where ηis the outward normal vector on θD. 

Sinceεis su伍cientlysmall， (3.4) can be approximated by叫回 (1/ε)f(u，v(x，O))

in a short time so that almost all of u takes either h+ ( v (x， 0)) or h_ (υ(x，O)) 

in D， where u h士(v)are two stable branches of f(u， v) = 0，出 seenm 

Figure 3.2. This indicates that the u-component approximately is separated 

into two different states which are connected by internallayers in a way that 

D consists of three parts D+， D_ and Do where D土 ={(x，y)ε0仲間 h土(v)}，

and Do is the layer region between D士・ Figures 3.3 and 3.4 show a time eVIか

lution of a 2 dimensional solution of (3.4)， (3.5). It clearly shows that there 

appear internal layers which distinginshes into two di百erentstates in the u-

component， and that the subsequent time evolution of patterns is described 

by the dynamics of these layers. 

From the layer dynamics viewpoint， theoretical山 diesof (3.4)， (3.5) have 

recently progressed [25]. Especially， the existence and stability of noncon-

stant equilibrium solutions with internallayers (we call them simply layer-

equilibrium solutions) of the 1 dimensional problems of (3.4)， (3.5) can be 

discussed almost completely by using singular limit analysis as ε! 0 ([19]， 

[23]) . It is known that these solutions are stable for large T， while， when T 

decreases， these become unstable through Hopf bifurcation and there appear 

spatio-temporal periodic solutions with oscillating layers (Figure 3.5)[24]. 

For this reason， one finds that the system (3.4) with (3.5) is one of pattem 

generators. 

Chemical and biological systems may generally communicate by exchange 
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Figure 3.3: Spatial profile of the u-component of the 2 dimensional system 

of (3.4) when T = 1.0， E = 0.01， d = 0.1，α= 0.5，γ= 3， e = -0.5， L = 1. (a) 

Timeニ o(random initial state). (b) Time = 0.3. (c) Time = 0.5. (d) Time 

= 10.0 
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Figure 3.4: Spatial profile of the u-component of the 2 dimensional system 

of (3.4) when T = 1.0，ε= 0.01， d = 0.1，α=  0.5，γ=  3， () =ー0.5，L= 1. 

Contour plot at u = 0.5 when time = 10.0 . The interval 0 = (0， L) x (0， L) 

is divided into three parts: 0+， 0_， and 0 0 • 
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(a) 、‘‘，，，'b
 

，，E
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Figure 3.5: (a) The dynamics of the 10-1ayer equilibrium solution of U of 

(3.4) when T = 0.1，.:: = O.Ol，d = 4，α=0お，γ=1，0 = -O.4，L = 10. 

(b) The dynamics of the 10-1ayer oscillatory solution of U of (3.4) when 

T = 0.08，ε= O.01，d = 4，α= 0.25，γ= 1，0 = -O.4，L = 10. 

of species involved in the systems through a membrane. This suggests study-

ing the membrane coupling by diffusive transport between two activator-

inhibitor systems. Along this line， Winston et.al [28] have recently reported 

the dynamical behaviour arising from the diffusive membrane coupling of spi-

ral patterns in the BZ reaction reagent， and also， using two coupled model 

equations of (3.4) with d = 0， they numerically demonstrate that the cou-

pling of two spiral waves gives rise to dynamical patterns which never appear 

in decoupled systems. 

Motivated by the above， we are interested in the coupling of stable pat-

terns arising in decoupled systems (3.4) with (3.5). The essential differe即 e

from Winston et.al is that the diffusivity of the inhibitor is very large com-
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pared with that of the activator. 

In order to study the diffusive membrane coupling of patterns in the 

decoupled systems， we propose the following RD equations with the coupling 

coefficient k > 0: 

θUl 
T一一一 = 
θt 

θVl 

θt 

θU2 
7一一一θt 

θV2 

θt 

込町+シ(川)

dムVl+ g(U1， Vl) + k(V2 -Vl) 

ε幻 2+シ(い)

dムV2+ g(U2' V2) + k(Vl -V2) 

with the boundary conditions 

t > 0， (x，y)εn， (3.6) 

主=0 祭(日2) t > 0， (x，y)εθn， (3.7) 

where n is a bounded domain with boundary θn. (3.6) indicates that the 

direct coupling only proceeds between Vl and V2・

Since (3.4)， (3.5) is the decoupled problem of (3.6)， (3.7)， we note that 

(包1， Vl; U2， V2) = (u， v; u， v) is a triviα1 solution of (3.6)， (3.7) for any k > 0， 

if (叫v)is a solution of (3.4)， (3.5). 

We numerical1y demonstrate the effect of the coupling parameter k on the 

stability of a trivia12 dimensional equilibrium solution (u(x， y)， v(x，ν);u(x，ν)，v(x，y)) 

of (3.6)， (3.7). Here， (u(x， y)， v(x， y)) is the stable equi1ibrium solution of 

(3.4)， (3.5) which was obtained in Figure 3.3 and Figure 3.4. We take the 

trivial equi1ibrium solution with small disturbances as an initial function 

and compute (3.6)， (3.7) when k is varied. For k = 0.5， the trivial equilib-

rium solution is stable， even if the disturbances are not smal1. However， for 
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k = 1， 2， and 5， it is no longer stable but the solution tends to a nontrivial 

2 dimensional equilibrium solution (ih (x， y)， Vl (x， y);む(X，y)，V2(X，y))，as in 

Figure 3.6. These numerical results indicate two features: (i) Stabi1ity of 

the trivial equilibrium solution clearly depends on the value of k; (ii)The 

shapes of O+i = {(x，y)εOIUi回 h+(仏)}(i= 1，2)， which is called the ex-

cited domain of Ui， are shifted in such a way that the overlapped region of 

0+1 n 0+2 decreases when k increases. In fact， when k = 5， Ul (x， y) and 

U2(X， y) are separated almost completely as in Figure 3.6 (d). For the 1 di-

mensional problem of (3.6)， (3.7)， we find the k-dependency of the solution 

more qualitatively. For the interval 1 = (0， L) with arbitrarily fixed L > 0， 

the problem is 
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t > O，X εI (3.8) 

with the boundary conditions 

主=0 妥(iニ 1，2) t > 0， x = 0， L 伊

Obviously， the decoupled version of (3.8)， (3.9) is 
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Figure 3.6: Contour plot of Ul and U2 of 2 dimensional coupled RD system at 

Ui = 0.5 (i = 1，2) for some coupling strength (a)k = 0ム(b)1， (c) 2， (d) 5. 

The OH domain is shaded with straight lines， and the 0+2 domain is shaded 

with dots. When k = 0.5， the decoupled pattern is still stable， however， 

when k 1，2 patterns on each RD system move differentely. Moreover， 

when k = 5， the overlapped region between two RD system is almost extinct. 
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with the boundary conditions 

学=0 =字 t>い =O，L
ox ox 

(3.11) 

To study the stability of the trivial equilibrium solutions， we take the triv-

ial equilibrium solution with small disturbances as initial functions. In a 

similar way to n封 in2 dimension ， we use the symbols 1土ifor the excited 

domain OfUi(X，t)， (i = 1，2) to explain the interaction of (Ul(X，t)，Vl(X，t)) 

and (U2(X， t)パ)2(X，t)). It is obvious that 1，土1= 1土2for the trivial solution. 

We found the following: For small k (weak coupling)， the trivial solution is 

stable，出 isexpected， while for large k (strong coupling)， it becomes unsta-

ble and there exist stable nontrivial equilibrium solutions for which 1+1 and 

1+2 (respectively L1 and L2) locate alternately in such a way that all of the 

layers in Ul(X， t) (respectively U2(X， t)) shift to the right or left (respectively 

left or right) direction， as in Figures 3.7 and 3.8. We may call such pattern 

“αltemated" or “toothedωheel-like". In a 1-1ayer system， there appear anti-

directionally shifted patterns， however， we similarly call them the alternated 

patterns. 

It is also of interest to consider the stability of the trivial periodic sか

lutions (uP(x， t)， vP(x， t)j uP(x， t)， vP(x， t))， assuming that (uP(x， t)， vP(x， t)) 

is a stable periodic solution of (3.10)， (3.11). The trivial periodic solution 

is stable for small k， while it becomes unstable for large k， and there ex-

ist stable nontrivial equilibrium solutions with alternated patterns， which is 

the same one as was shown above. Furthermore， even if the initial function 

of (Ul，パ川v川J

with the time period T， it is numerically confirmed that the similar dynamical 

behaviour occurs. 
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Ul U2 

Figure 3.7: The dynamics of U of the solution of (3.8)， (3.9) where T = 

0ムε=0.01， d = 4.0，α=  0.25，γ= 1， () = -0.4， L = 10 and k(t) = 0.0(0 < 

t < 200)， 20.0(200 < t) 

These numerical observations indicate that when k is large， regardless to 

the trivial solution being either stationary or periodic， it becomes unstable 

in the coupled system， and there exist stable nontrivial equilibrium solutions 

which exhibit an“αlternαted pαttern" . The purpose here is to understand 

such behavior from the viewpoint of bifurcation. 

In Section 3ムwederive the coupled system (3.8)， (3.9)仕omtwo systems 

with a diffusive membrane boundary condition. In Section 3.3， we numer-

ically investigate the global structure of a 1-1ayer equilibrium and periodic 

solutions of (3.8)， (3.9)回 kis varied. In Section 3.4， we study the stability of 

the trivial 1-1ayer equilibrium solutions of (3.8)， (3.9)， by using the spectral 

analysis in the limit ε↓o. Finally， a few remarks are given in Section 3.5. 
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。 5 10 x 

U (x， t) 

。 5 10 x 

U (x， t) 

Figure 3.8: Spatial profiles of Ul and U2 in Figure 3.7 at t = 0 and t = 400. 

An alternated pattern， in which the layers in Ul shift to the right and those 

in U2 shift to the left， appears in the coupled system. 

3.2 Settings of the Coupled RD Systems 

In order to derive the coupled system (3.8) with (3.9) in a 2 dimensional 

domain n， we present two RD systems of the form (3.4) for (Ui， Vi) in the 3 
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dimensional domains Oi (i = 1，2) 

一
Tこごと = εムUi十一f(Ui，Vi)
θ t ε t > 0， (x，y，z)εOi (i = 1，2)， 

E竺 dムVi+ g(Ui' Vi)， 

where Oi (i = 1，2) are given by 

。 {(x，y， z) E R31(x， y)ε0，0 < z < l} 

。2 {(x，y，z)εR31(x， y)ε0， -l < z < O} 

(3.12) 

with the base rectangular region 0 = (0， L) X (0， L) and the thickness l. The 

symbolム=θ2/θx2+θ2/θポ+θ2/θZ2stands for the 3-dimensional Laplace 

operator. On the common boundary we impose the following conditions. 

(θu ー εaz 二ーεす kU(U2一向)

θV1 
-乍 -dす=ん(V2-V1) 

(3.13) 

t> 0， (x，y，z)εnm = {(X，y，Z)εR31(x， y)εO，z = O}， 

where ku and kv are the transport rates of Ui and Vi(i = 1，2) through Om. 

The conditions (3.13) imply that the plane Om is a “diffusive" membrane 

(Figure 3.9). Other boundary conditions at θQ¥Om with 0 = 01 U O2 U Om 

are 

βHー β引J

J =O  =」， (i=1J)，
θη 

where n is the outward normal vector on the boundary θO. 

(3.14) 

In order to understand the coupling between (U1パ71)and (U2パ72)in (3.12) 

through the boundary conditions (3.13)， we assume that l is sufficiently small 
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+
 

01 O2 

y 
diffiUSlve membrane 

x 。

Figure 3.9: The coupled system consisting of two box domain 01 and O2 

which interact through the “diffωive" membrane between them. 

and then reduce the 3 dimensional problem (3.12) -(3.14) to the 2 dimen-

sional one by taking the limit Z 1 o. Taking the spatial average of Ul with 

z-direction for the first equation of (3.12)， we have 

;ijIM=;J14UIdz+jjl仇 U件 (3.15) 

By using (3.13) and (3.14)， the diffusion term of Ul to the z-direction is 

written as 

1 rl β2仙 1 rβ仙 11
:;-I εー-....dz -:-ε1J| = ーたの2- ut). 
Z Jo θZ2 -- Z-Iθz J z=O 

Similar expressions are obtained for U2， VI， and V2・
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Suppose that ku and kv are very small in the sense that ku =九olβand

kv =んolβwithsome constant s > O. Taking the limit l ↓0， one could expect 

th抗(Ui， Vi) (i = 1， 2) are nearly uniform in the direction of the z-axis， and 

thus， we forn叫 lyderive a 2 dimensional system for (町(x，y， t)， Vl(X， y， t)j U2(X， y， t)， V2(X，ω)) 

from (3.15). It turns out that its form depends on the value of s as follows: 

(i) (0 < s < 1) 

For this case， lim/→o(ku/l) =∞=  lim/→o(kv/l)j that is， the transport 

rates become infinity， so that Ul = U2二 U and Vl = V2 = V hold for large 

time. It implies the diffusive homoger由 ationbetween (Ul' Vl) and (U2， V2). 

Then， the limiting system of (3.12)， (3.13)加 l↓o is 

tb+lf() 
θtε t > O，(x，y)εn， 

8v dムυ+g(u，v) 
θt 

where s =θ2/θx2 +θ2/θυ2 

(ii) (β= 1) 

For this case， lim/---to(ku/l) 九。 andlim/→o(kv/l) =んoso that the 

limi ting system is 

内
側
一
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t > 0， (x，y)εn， (3.16) 

dムV2+ g(U2' V2) +んO(Vl- V2) 

which is a truly coupled system for (Ui，Vi) (i = 1，2). 
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(iii) (s> 1) 

For this c出 e，liml→o(ku/l)= 0 = 1iml→o(kv/l); that is， there is no trans-

portation between D1 and fh so that the limiting system is 

y， t)) 
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(3.17) 

for which (U1， V1) and (U2， V2) are completely isolated. 

1n this paper， we concentrate our study on the 1 dimensional system of 

(3.16) assuming that 

n
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(3.18) 

which implies that the activator can scarcely p出 sthrough the diffusive mem-

brane because the activator diffuses much more slowly than inhibitor does， 

国 kuo/kvorv O(ε). 

Then the resulting system is 
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t > O，Xε1 = (0， L) (3.19) 

with the boundary conditions 

警 o 安門，2)，t >伽 =0，ム (3.20) 

tosho-seibi-repo
長方形
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which are the same ones出 (3.8)，(3.9). 

Our purpose is to study the stability of trivial equilibrium solutions for 

the problem (3.19)， (3.20) when the coupling parameter k is globally varied 

and to investigate what kind of patterns develop when the trivial solution 

becomes unstable. 

3.3 Emergence of new staionary patterns through 

strong coupling 

3.3.1 1-1ayer case 

In this section， taking L = 1， we numerically study the coupling of l-layer 

equilibria or periodic solutions of (3.8)， (3.9). Before doing it， we note that 

if (u*(x)， v*(x)) is the equilibrium solution of (3.10)， (3.11)， then so is the 

reflected image at x = 1/2， (*u(x)，* v(x)) = (u*(l -x)， v*(l -x)). 

We first remark that there is a critical value T* such that the l-layer 

equilibrium solutions of (3.8) with (3.9) are stable in the deco叩 ledsystem 

(i.e.， k = 0) when T >ザ;however， they become unstable through the Hopf 

bifuraction， and the stable 1-1ayer periodic solutions exist when T < Tホ [24].

Therefore the coupling interactions of l-layer patterns are classified into the 

following four cases. 

(1) Coupling of (u*(x)， v*(x)) and (u*(x)， v*(x)) 

We consider the case (仇u叫1，川川り町1)= (u均2，川Aυ句ω2ρ)= (伊u*正:i*川3功本吋+彰可ヤ，(いx)，v*喝*市z

i凶nthe decoupled system (3.10)， (3.11) (Figure 3.3.1 (a)). 

Our interest is the stability of the trivial solution (u*(x)， v*(x)) of (3.8)， 
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Figure 3.10: The spatial profiles of Ul (solid line) and U2 (hashed line) of 

the nontrivial equilibrium solution of the 1-1ayer coupled RD system， (3.8)， 

(3.9)， where 7 ニ 0.2，ε=O.Ol，d = 4，α=0お，γ=1，B = -0.4，L = 1. 

(a) When k = 5， trivial equilibrium solution is stable. (b) When k = 20， 

trivial equilibrium solution becomes unstable and the nontrivial equilibrium 

solution becomes stable. 

(3.9) when the coupling parameter k is globally varied. The result is出

follows: It is stable for small k， while for large k， it becomes unstable and 

there appears a stable nontrivial equilibrium solution (Figure 3.3.1 (b)). The 

global structure of equilibrium solutions is shown in Figure 3.11， which clearly 

indicates the appearance of a supercritical pitchfork bifurcation when k is 

increased. 

(11) Coupling of (u*(x)， v*(x)) and (*u(x)，* v(x)) 

We still assume that 7 is large， and consider the case (Ul' Vl; U2， V2) 

(u*(x)， v*(x);* u(x)，* v(x)) which is no longer a equilibrium solution of (3.10)， 
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亡bd
E壬ー

S 
h 

Figure 3.11: The global structure of the solution of the 1-1ayer coupled RD 

system for category (1). The solid line is the branch of the stable equlibrium 

solution， and the hashed line is that of the unstable one. 

(3.11). Taking this function with or without small disturbances as the initial 

data， we find that the resulting solution tends to a unique equilibrium sか

l凶 on(町(X)，Vl(X); U2(X)， V2(X)) for which (Ul(X)パ}l(X))and (U2(X)， V2(X)) 

have the reflection property at X = 1/2 (Figure 3.12). The global structure 

ofthe equilibrium solution is drawn in Figure 3.13. Our numerical simulation 

shows that the solution branch is always stable and there is no bifurcation 

phenomenon when k is varied. 

(III) Coupling of periodic solutions bifurcating from (u*(x)，ii*(x)) 
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Figure 3.12: The spatial profiles of UI， U2 (top) and Vl， V2 (bottom) of the 

unique equilibrium solution of the 1-1ayer coupled RD system， (3.8)， (3.9)， 

where T = 0.2，ε= O.Ol，d = 4，α =  0.25，γ=  1， () = -0.4， L = 1 in the case 

of k = 5 (solid lines) and k = 20 (hashed lines). 
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h 

Figure 3.13: The global structure of the solution of the 1-1ayer coupled RD 

system for category (II). 

and (u*(x)， v*(x)) 

This case is similar to (1) except that (u*(x)， v*(x)) is unstable in the 

decoupled system. Under this situation， there is a spat“ICかトt白empo町ralperiodic 

solution (いu*叩P(いx，tの)，パv'功吋4

(σFi刷g伊ur閃e3.1叫4吋). Wes坑t吋 ythe悶ec∞ou叩1中plin時l屯goft出h由isp戸e巾 d仕ics叫olu凶t“10叩nl泊n(ρ3.8め)， (σ3.9的).

Taking (UI，パt川 =(u*喝*吋.

with small disturbances as initial data where s(卯O壬 S 壬T)is arbitrary 

phase d也i百erencewithin the period T， we numerically show that for small 

k， the solution tends to the trivial periodic solution (UI'パ，v川1

(いU*吋 Z叫，t+ s匂0心)，パv'功吋'
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Figure 3.14: The dynamics of the oscillatory solution U of the 1-1ayer RD 

system， (3.10)， (3.11)， where T = 0.08，ε= 0.01，d = 4，α=  0.25，γ= 1，0 = 

-O.4，L = 1. 

periodic solution is orbitally stable in the coupled system (Figure 3.15). On 

the other hand， for large k， oscillation of the solution is damped out， and 

then the solution tends to the nontrivial equilibrium solution which is the 

same出 inthe case (1) (Figure 3.16). The result indicates that the trivial 

periodic solution is destabilized and a nontrivial equilibrium solution is sta-

bilized when k increases. More precisely speaking， there are two cases for 

the stability of equilibrium solutions depending on the value of Tj there is 
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Ul U2 

Figure 3.15: The dynamics of the 1-1ayer solution (ut， U2) for the coupled 

RD system， (3.8)， (3.9)， where k = 1， T = 0.08，ε= O.Ol，d = 4，α= 0.25，γ= 

1， () = -0.4， L = 1. Two periodic solutions with different initial phase shift 

entrain to the trivial periodic solution. 

the critical value T~ such that when 0 < T < T~ two Hopf bifurcation points， 

say A and B， lie on the nontrivial equilibrium solution branch (Figure 3.17 

(a))， and when T~ < T < T'¥one Hopf bifurcation point， A'， lies on the 

trivial equilibrium solution branch and the other， B'， lies on the nontrivial 

equilibrium solution branch (Figure 3.17 (b)). The r閉山ivialequilibrium 
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Ul U2 

Figure 3.16: Trivial periodic solution tends to the stationary nontrivial equi-

librium solution as in Figure 3.3.1， where k = 25，7 = 0.08，ε= O.Ol，d = 

4，α =  0.25，γ=  1， () = -0.4， L = 1. 

solutions recover their stability when k passes the second Hopf bifurcation 

point， B (respectively B'). We note that the exchange of stability occurs bか

tween the trivial periodic solution and the nontrivial equilibrium one， which 

suggests the existence of the nontrivial periodic solution bifurcating from the 

nontrivial equilibrium solution branch at the point B (respectively Bj which 

connects with the trivial periodic solution branch at C (respectively Cう.
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Figure 3.17: The global structure of the solution of the 1-1ayer coupled RD 

system for category (III) ， where the solid lines describe the stable equilibrium 

solution， the hashed lines describe the unstable equlibrium branch， and the 

small circles describe trivial periodic solutions; the black circles are stable 

ones and the white circles are unstable ones. Furthermore double circles show 

the Hopf bifurcation points. (a) When 0 < T < T~ ， 2 Hopf bifurcation points 

are located on the nontrivial equilibrium branch. (b) When T~ < T < 戸， 2

Hopf bifurcation points exist so that one is located on the trivial equilibrium 

branch， and another is located on the nontrivial equilibrium branch. 
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Unfortunately， we have not yet been able to show the complete diagram 

for solutions bifurcating from A and A '. 

(IV) Coupling of periodic solutions bifurcating from (u*(x)，v*(x)) 

and (沿い)，*v(x)) 

This situation is similar to the case (II)， except that (u*(x)，v*(x)) and 

(可(x)，*v(x)) are unstable in the decoupled system under which there are 

periodic solutions (いUιt"喝吋4

i阻n時glayers. This is also possible by taking the value of T small回 incase (III). 

We note that there uniquely exists the equilibrium solution which is shown in 

case (II). Taking these periodic functions with or without small disturbances 

出 theinitial data， we numerically solve the problem (3.8)， (3.9). Then for 

small k， we白ldthat the unique equilibrium solution is unstable and any so-

lution tends to a unique periodic solution (Ul (x， t)， Vl (x， t); U2(X， t)パJ2(X，t)) 

which satisfies Ul(X， t) = u2(1 -x， t) and Vl(X， t) = v2(1-x， t) (Figure 3.18 

(a)). On the other hand， for large k， the solution tends to the unique equi-

librium solution (Figure 3.18 (b)). This indicates the reco刊 ryof stability of 

the equilibrium solution as k increases. It suggests that the stable periodic 

solution connects to the equilibrium solution branch at the Hopf bifurcation 

point B" (Figure 3.19). 

The above numerical results confirm that no mαtter whαt the dynαmics 

of the decoupled system is solutions of the coupled system generically tend to 

αnontrivial equilibrium solutions for lαrge k. 

We will consider this problem for the case (1) and show that the trivial 

equilibrium solution becomes stable when k increases (Theorem 3.4.1) in 

Section 3.4. 
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Figure 3.18: The dynamics of the l-layer solution Ul and U2 for the coupled 

RD system， (3.8)， (3.9)， where T = 0.08，ε= O.Ol，d = 4，α=0お，γ=1，0= 

-0.4， L = 1. (a) When k = 1， two periodic solutions with different initial 

phase shift entrain to the unique nontrivial periodic solution. (b) When 

k = 25， periodic solution becomes stationary nontrivial solution which have 

the reflection property at x = 1/2回 inFiugre 3.12. 

3.3.2 2・layercase 

In Section 3.3.1 we have found that for large T there is a critical value kc1 such 

that when 0 < k < kc1， the trivial1-1ayer equilibrium solution is stable， while， 

when k > kc1， it becomes unstable， and nontrivial equilibrium solutions 

appear instead as a result of pitchfork bifurcation. 
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Figure 3.19: The global structure of the solution of the 1-1ayer coupled RD 

system for category (IV)， where the solid lines describe the stable equilibrium 

solution， the hashed lines describe the unstable equilibrium solution， and the 

small circles describe the stable nontrivial periodic solutuion. 

From the viewpoint of pattern formation， it is more interesting to study 

the coupling of mu1tilayer equilibrium solutions. As the simplest case， we 

consider the coupling of 2-1ayer equilibrium solutions which are stable in the 

decoupled system. We take L = 2 so that two 2-1ayer equilibrium solutions 

can be directly constructed by reflecting of the 1-1ayer equilibrium solution 

symmetrically at x = 1 on the interval (0，2)，回 inFigure 3.20. Although 

there are two ways to do it as in Figure 3.20， we consider only the case of 

Figure 3.20 (a)， because 3.20 (b) can be treated similarly. By the reflection 
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Figure 3.20: The spatial profiles of U of the equilibrium solution of the 2-

layer RD system， (3.10)， (3.11)， where r = 0.2，ε= O.Ol，d = 4，α= 0.25，γ= 

1， () =ー0.4，L= 2. 

argument， it is clear from Figure 3.11 that there exists a global branch bi-

furcating from the trivial 2-1ayer equilibrium solution which is symmetric at 

x = 1. Recalling the result on the 1-1ayer equilibrium solutions， one would 

naturally like to ask the following two questions:“Is the trivial 2-1ayer equi-

librium solution still stable for small k?" and “Is the nontrivial symmetric 

2-1ayer equilibrium solution still stable for large k?" 

1n order to answer the questions， we fix r to be large so that the 2-1ayer 

equilibrium solution is stable in the decoupled system. We first show the 

following result: 

Proposition 3.3.1. For a 2・layerequilibrium solution of the coupled system， 

there α問 twobifurcαtion points of pitchfork type when k = kclαnd kc2 with 
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0< kc2 < kcl， such thαt the nontrivial symmetricαnd asymmet吋cequilibrium 

solutions bザurcαtefrom the triviαl equilibrium solution，αt k = kclαnd k = 

kc2， respectively. 

一

1
J
一ー020

The proof is found in Appendix C. 

U2 Ul 

、I
J

b
 

〆，‘‘、

Figure 3.21: (a) The dynamics of the 2-layer solution(ul' U2) for the coupled 

RD system， (3.8)， (3.9)， where k = 20， T = 0ムε=O.Ol，d = 4，α= 0.25，γ= 

1，0 =ー0.4，L = 2. (b) The spatial profiles of Ul (solid line) and U2 (hashed 

(a) 

line) of the nontrivial equilibrium solution. 

U sing this information on the bifurcation phenomena， we can numerically 

draw the global structure of equilibrium solutions with stability properties. 

(i) For 0 < k < kc2 the 2-layer trivial symmetric equilibrium solution is stable; 

and (ii) for kc2 < k there is a stable 2-layer asymmetric equilibrium solution 
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of alternated pattern which is asymmetric with x = 1 as in Figure 3.21， and 

there are the nontrivial symmetric equilibrium solutions for kc1くた， which 

are directly constructed by the refiection of the 1-1ayer solutions. What 

we emphasize here is the relation kc2 < kc1; namely， asymmetric equilibrium 

solutions primarily bifurcate and symmetric ones do secondly from the trivial 

2-1ayer solution when k increases. When k increases further， the primary 

branch remains stable and no secondary bifurcations on this branch occurs. 

The global picture of 2-1ayer equi1ibrium solutions is drawn in Figure 3.22. 
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Figure 3.22: The global structure of the solution of the 2-1ayer coupled RD 

system where the trivial equilibrium solution is stable when k = O. 
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3.3.3 Multilayer case 

Let us continue to investigate the coup1ing of stab1e 4-1ayer equi1ibrium sか

1utions. Taking L = 4， we find that such equi1ibrium solutions are easi1y 

constructed by flipping the 2-1ayer equilibrium solution at x = 2 in (0，4). 

Simi1ar to the 2-1ayer case， it turns out that there is a critica1 va1ue kC4 sat-

isfying 0 < kC4 < kc2 < kcl such that the trivia1 solution 10ses its stabi1ity 

at k = kc4， and there appears instead a stab1e 4-1ayer asymmetric alternated 

pattern . On the other hand， by the reflection argument， the symmetric sか

1utions a1so bifurcate at kc2 and kcl from the trivia1 4-1ayer branch; however 

these branches are unstab1e because the above a1ternated pattern already 

bifurcates primarily. The globa1 picture of these solutions is drawn in Fig-

ure 3.23. 

The observations indicate that for 1arge r the nontrivia1 equilibrium so-

1utions of a1ternated type appear as a primary bifurcation台omthe trivia1 

mu1tilayer equi1ibrium solution， and there are no bifurcation on this nontriv-

ia1 branch. This means that the nontrivia1 equi1ibrium solutions of a1ternated 

type are stab1e. 

N ext consider the case for small r. In the situation simi1ar to the category 

(III) of the 1-1ayer case， for small k the trivia1 periodic solution is stab1e， 

and there are no stab1e equi1ibrium patterns. However， when k increases， 

we numerically find that the exchange of stabi1ity occurs so that the trivia1 

periodic solution 10ses its stability， and the equi1ibrium solutions of alternated 

type become stab1e. We thus arrive at the following p1ausib1e conjecture: 

An a1ternated pattern is stab1e for strong coupling (i. e.， 1arge 

k) independent1y of the individua1 decoup1ed dynamics and the 
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Figure 3.23: The global structure of the solution of the 4-1ayer solutions for 

the coupled RD system where the trivial equilibrium solution is stable when 

k=O. 
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number of layers. 

3.4 Stability analysis for 1-1ayer trivial equi-

librium solution 

By using the spectral analysis called the SLEP method， the decoupled system 

(i.e.， k = 0) was already studied in [24J when T is employed as a bifurcation 

parameter. 

As was seen in the Section 3.3.1 (1)， increase of the coupling strength k 

causes destabilization of the trivial (or symmetric) solution， which is replaced 

by nontrivial (or asymmetric) ones. This is apparently a symmetry br叫 ing

bifurcation and could be detected by investigating the spectral behaviour 

with respect to k. If there are eigenvalues which cross the origin when k is 

varied， we call these critical real eigenvalues with kc as the critical value of 

k. 

The aim of this section is to give a rigorous proof to the bifurcation 

phenomenon with respect to k for the trivial 1-1ayer equilibrium solution 

when T is fixed such that the equilibrium solution of the decoupled system 

is stαble. 

Let (u(x;ε)， v(x;ε)) be the 1-1ayer equilibrium solution of (3.8) and (3.9). 

Substitute the following forms into (3.8)， 

、‘‘，，，、、.，，，

，7
i

v

a

?

b

 

z

z
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・
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制

u

u

r
E
E
E
E』
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E
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E
Z
‘、

u(x;ε)+e入tωi(X;ε)
(i = 1，2)， (3.21) 

v(X;ε)+eλtZi(X;ε) 
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and use the symmetric and asymmetric expressions of ωand z， 

1 
ωs = ~(ω1+ω2) 

1 
ωα= ~(ω1 一 ω2)

(3.22) 2 

1 
Zs 一(Z1+ Z2) 

2 

1 
z.α 一(Z1-Z2). 

2 

Then， the resulting linearized eigenvalue problem of (3.8) is given by 

uωs + f~zs εT入ωs

ME:zs + g~叫 入Zs
Z ε1， (3.23) 

LE:ωα +gz.α εァ入ωα

(ME: - 2k)zα+ g~ωa 入Zα

d2 

with LE: 三 ε2-+fεandMε =d一 +g~ ， where f~ = fu(ii(x;ε)，v(x;ε))， u -----.- - -dx2 ' "v' ..-----Ju 

f~ ， g~ ， and g~ are similarly defined. The boundary conditions are 

17J (i=s，a)，xεθI 
az. 

θη 

(3.24) 

In our setting， two RD systems have the same parameters，ε， 7， a，γ， 

e， so that the symmetric and asymmetric parts， (w s， zs) and (wαグα)，are 

decoupled as in (3.23). Apparently the symmetric part， (ωs， zs)， is exactly 

the same回 thatof the decoupled RD system of the category (1) in Section 
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3.3.1， and hence it has only stable eigenvalues. Therefore we may investigate 

only the coupling e旺ectfor the second system of (3.23) for (wα，Z，α)， including 

the coupling parameter k. In a parallel way to the one in [24]， we can derive 

the following singular limit eigenvalue problem of (3.23) for the asymmetric 

part (叫，Za).The outline of the proof is as follows (for details， see Appendix 

A): For simplicity， we write (叫，Z，α)出 (ω，z) without confusion. First we 

rewrite (3.23)ωthe equation for ZR and Z[， which are real and imaginary 

parts of z， respectively， with the complete orthonormal set of eigenfunctions 

and eigenvalues {rtj， (J}TO of the Sturm-Liouville operator for U. Then， 

taking the singular limit as ε↓0， we derive the equations for zn and zj， 

where zn 1ime↓OZR and zj二日me!OZ[. We set the Dirac's 8-function at 

f 回 8*= 8(x*)， where x* is the limiting position of the internal transition 

layer of the decoupled 1-1ayer system (3.10)， (3.11)回 ε↓O.Letting <・"> 

be the L2-pairing and operating <・，8*> to each side of these equations， we 

get the following equation: 

I < zホ 8*> I ........ ""'R'U ，..." 

Nk I 1=0， 

¥ < z~. 8* > J ........... ""'j， v ~ 

where Nk is the 2x2 matrix depending on the parameter k (the derivation is 

found in Appendix A). Consequently the necessary and sufficient condition 

for the existence of nontrivial solution of t( < zn，8* >， < zj， 8* >) is given by 

o det Nk 

合*
干(Aj)2n '12.rTAj 合事ド

{三旦AK+「 LBK一 1}+{JAK-=μ
ム5 ムo ' do ム5

(3.25) 
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where 1imdo入=入*入主+i入;，主;=CJ-7入主， andAo = ((o-T入五)2+(T入;)2.

It is a1ready known in [24] 1imdo((0/c) = (o > 0 where (0 is the principa1 

eigenva1ue of the Sturm-Liouville operator U. Ak and Bk are respective1y 

defined by 

Ak <九均(叩>

Bk < IAIl+2k{Kぬ+2kP(ec5*)，c5* >， 

r . d2 det* _ _ 1-1 

hereKλ五+2k=卜d一一一一+ぬ+2k I ' iAIl+2k三 [I+{入jKAIl十2k)可-1l ~ dx2 f:' '"lt ，-，vJ ' ~^R 

(3.26) 

ホ
C l イ三J(♂)> 0 

c~ κ*{g(h+(♂)， v*) -g(h_ (v*)， v*)} > 0， 

with a positive constant "，* ， h土(v) is defined in the higher (or 1ower) 1eve1 
rh+(v) 

p1ateau region th抗 satisfiesf(h土(υ)，υ)= 0， J(υ) = I f(8， V)d8， I is 

t巾hei凶d白en此t均 O伽p戸era肌 a刷n凶ddet*ニ fM-g;fJ，w拍he悦r問ejr?戸4f3旬?Li
and 9~ are similarly defi白白ned.

For 1ater use， it is convenient to introduce the following notation: 

一

一

一

ーκ
ι

κ

A

B

 

r
E
E
E
E』
〈

E
E
E
E
E
K

A(入主+2k， (入j)2)
(3.27) 

B(入五+2k， (入j)2).

Then it turns out that 

、、，，，，，、‘‘，，，

内

4

n
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E
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E
E
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k

<Iλhkλ五(ec5*)，c5* > 

<Iλ五{K.λ五}2(ec5*)，c5* >， 
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r _ d2 det本 1-1

wh叫 ぬ=[1 + (机五)2l-I，andh=l-dp-77+吋
The equation (3.25) for入車=入主 +i入jis much more tractable than the 

original one and leads us to the following result for the stabi1ity of the trivial 

equi1ibrium solution. 

Theorem 3.4.1 (Behaviour of singular limit eigenvalues). Fix T αrbitrarily 

sαtisfying 

B(O，O)三T. (3.28) 

Then there exists kc > 0 such th α t α unique reα 1 c 門吋tic印α1 ei匂gε m叩 l如u町e0ザ1(.β3.25り/ 
l crosses t抗hεO吋gi仇ηαatk= kιc traα7附ZωSt肥1氾εrsαall旬yfrom rη~egαtit即1氾e t初opositive on t抗hεT陀Eαd

axiおs.All the remaining eigenvalues lie strictly on the left side of imaginary 

αxis， nαmely， the triviα1 solution is stable in the singulαr limit sense for 

o ::; k < kc， while it is unstαble when k > kc. 

Note that the above results can be extended to small positive ε. 

Theorem 3.4.2 (Symmetry breaking pitchfork bifurcation). There exists 

k~ > 0 for αny smαIIε >  0 such thαt (，α) when k increases， there exists 

αuniquie simple c付ticaleigenvalue )'.，e:(k) of (3.23) such that it crosses the 

o吋gintrans町何allyfrom negαtive to pos倣

ε↓0，入)..E:(k刈)a仰Tη~d k符:CωO叩m閃j沼er，旬yet初O入A*(伊k)α仰ηdkιco.ザIfTheorem 3.4.1， rl陀es叩pe白ctu閃j沼Jel旬y.

(bりjα symmet旬 b陀 αki句 pitchforkbifurcαtion occursαt k =符 αndnon-

symmetric solutions emαnαte from the triviα1 branch like Figure 3.11. (c)αt 

k = k~ ， αII the rest of spectra of (3.23) lie strictly on left side of the imaginary 

αxis， namely the pitchfork bifurcαtion (b) isαp吋mαryone. 

Once Theorem 3.4.1 is proved， Theorem 3.4.2 can be proved in a similar 

way to that of Theorem 4.1 of [24]. Hence we focus on the proof of Theorem 
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3.4.1. A noteworthy thing for the coupled system is that only real eigenvalues 

cause the instabi1ity under (3.28). Namely we have 

Lemma 3.4.1 (No critical complex eigenvalues). 1f 7αnd kc sαtisfy the 

condition (3.28)， thereα陀 nocωomηlpμlεαxe白igεm叩 l如ue白st抗hαωtcross the imαginary 

αxzs. 

We prove this lemma in Appendix B. 

Lemma 3.4.2 (Existence of a bifurcation point and its transversality). (a) 

(existence) For reα1 eigenvalues， (3.25) is equivαlent to 

F(入~， k)=O， (3.29) 

where 

F(入主，k)三C;-7入主-A(入五+2k， 0) (3.30) 

For fixed 7， there existsαunique kc > 0 thαt sαtisfies 

F(O， kc) = 0， (3.31) 

nαmely， there isαzero ezgenvαlueαt k = kc which is simple. 

(b) (transversality) When conditioη (3.28) is s伽 :fied，there isαpositive 

constαnt 81 such thαt for k sαtisfyi句 Ik-kcl < 81αnd F(入~， k) = 0， 

there existsαunique C1-function 

入五=入五(k)， (3.32) 

αndαreal eigenvαlue入五 crossesthe origin transversαllyαt k = kc・
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Remark 3.4.1. In αsimilar初旬 to[24J，ωe cαn prove the following relation: 

B(入品0)= _ 8A 
θ入R

(3.33) 

λ[=0 

Proof of lemmα3.4.2 

First we prove that there uniquely exists ke such that zero eigenvalue 

exists. 

By putting 

F(k) 三 F(O，k) 

(o -A(2k， 0)， 

(3.34) 

it follows from the Theorem 2.2 of [24] that 

F(O) = (o -A(O， 0) < O. (3.35) 

On the other hand， it follows from the Lemma 3.3 of [24] that 

)im F(k) = (o -.lim A(入品0)= (o > 0 (3.36) 
κー→四コ λRー"00

and 

、I
，J

'
K
 

r
t
、

MF 

d
一品

-1A(2hO) 
dk 

-2 8土
θ入R

(3.37) 

> 0 
λR=2k，λ[=0 

Hence， there exists a unique 丸(>0) satisfying the equation (3.31) 

Next we show that this critical eigenvalue crosses the origin transversally 

when k is varied. Here， applying the implicit function theorem to F(入R，k)= 

o at入主=0， k = ke， we can determin the sign of d入五/dk.



CHAPTER 3. COUPLED REACTION-DIFFUSION SYSTEM 78 

Since the Lemma 3.2 of [24] implies that B(O，O) > B(2ke，0) for九>0， 

it turns out that 

θF 

θ入R λR=O，k=kc λR=2kc，>']=0 

-r+ B(2k引 0)
(3.38) 

< -r + B(O，O) < O. 

The implicit function theorem tells us that there exists a positive constant 

81 such that the unique function入五=入五(k)defined for Ik -kel < 81，入五(k)

is real-analytic and continuous with respect to k when (3.28) is satisfied. 

Di百'erentiati時 (3.29)with r田 pectto k at入主=0 and k = ke， we have 

o = dF 

dk 
lλR=O，k=kc 

θF I + ~入五
θk 1>.、R=O，κ"'=κkc dk Iκ"'=κkC 

θA 
2広二

λR=2kc，λ]=0 

d入E
dk 

θF 

θ入R 、 n.・
日 1λR=U，IC=κc

|ァ+立さ
k=kc Iθ入R

、l
r

Q
d
 

q
d
 

qo 
，t
‘、

1
1
1
1
1
1
1」nu --

I
 

、AC
 

L
九

内

4

一一R
 

、A

Then， we find 
2A' 

where 

dk r+A" 
k=kc 

A'= θA 

θ入RIλR=2kc，λ]=0 

(3.40) 

(3.41) 

Since Lemmas 3.2 and 3.3 of [24] and the inequality (3.28) tell us that for 
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kc > 0 

A

A

 +
 

T
 

I
E
-
E
Y
、E
E
l
-

< 0 
(3.42) 

7 - B(2kc， 0) > 7 - B(O， 0) 三 0，

we have 

d入h
dk 

>0 (3.43) 

k=kc 

where入五(kc)= O. 

Consequently， one finds that the critical eigenvalue crosses the origin 

transversallyat k = kc. 

Proof of Theorem 3.4.1 

It is apparent that 

< 0 for kc -<>1 < k < kc 

入五 o for k = kc (3.44) 

> 0 for kc < k < kc + <>1・

The simplicity of this critical eigenvalue can be proved by using the same 

discussion回 inTheorem 4.1 of [24]， although the complex eigenvalue was 

treated there. 

In view of Proposition 2.2 of [15] it is easily seen that the simple bifurca-

tion at k = kc is of pitchfork type. 

Although we do not discuss the direction of this bifurcation， our numerical 

results suggest that the pitchfork bifurcation occurs super-critically at k = kc. 
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3.5 Concluding remarks 

In the previous sections， we have investigated the stability of the trivial equi-

librium solution ofthe coupled RD system (3.6) with (3.7)， and have observed 

that the stationary patterns of alternated type become stable ones regard-

less to the dynamics property of the decoupled system when the coupling 

strength k becomes large. Let us state this more precisely for the case of 

1-1ayer solutions. For large T， the trivia11-1ayer equilibrium solution remains 

stable for weak coupling (i.e. small k)， while it loses stability at the criti-

cal value k = ke， and the nontrivial equilibrium solutions of alternated type 

appear via symmetry breaking pitchfork bifurcation， which persist as stable 

solutions for strong coupling (i.e. large k). On the other hand， for small 

T， the trivial equilibrium solution is already destabilized， and instead there 

appears a stable periodic solution with oscillating layers in the decoupled 

system. Under this situation， there are two critical points C (respectively 

C 1， and B (respectively B 1 as in Figure 3.17， s吋 1that， i即 reasingthe value 

of k， the trivial periodic solution loses its stability as it p出 S田 C(respectively 

Cうandthe nontrivial equilibrium solutions of alternated type become stable 

出 itpasses B (respectively Bl 

The fact that alternated patterns dominate the dynamics for large k also 

explains the stability of the anti-phase coupling patterns (category (II) and 

(IV) of Section 3.3.1). It seems a common feature for 2 dimensional coupling 

patterns出 isdemonstarated in Figure 3.6. 

Finally we make one remark that although we have restricted the kinetics 

to Turing type， the result holds true for the other cases such as bistable 

and excitable types. That is， the alternated stationary pattern develops 
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generically if the coupling is strong. This is an essential feature of coupled 

RD systems. 



Chapter 4 

Summary 

In this thesis， the bifurcation structures of dynamics of two types of the 

reaction-diffusion systems are investigated. 

In Chapter 2， crack evolution model is investigated. Generally speak-

ing， it is hard to confirm the crack evolution phenomena repeatedly on both 

experiment and numerical simulation. Because many scheme is developed 

for resolving these di田culties，it is considered that special scheme for nu-

merical simulation of the crack evolution problem is necessary. The PDE 

equations that is simple enough to solve the problem numerically is obtained 

from introducing the phase field for describing the cracked region (and also 

the damaged region). Using this models several numerical example of crack 

growth computed， and the bifurcation phenomena of the growth of two cracks 

is found. These equations require only the fixed domain for numerical sim-

ulation. It is realized to solve these phenomena using well-known numerical 

scheme such as finite di旺erencemethod，自nitevolume method. 

In Chapter 3， a simplified coupled reaction-diffusion system is derived 
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from a diffusive membrane coupling of two reaction-diffusion systems of 

activator-inhibitor type. It is shown that the dynamics of the original decou-

pled systems persists for weak coupling， while new coupled stαtionαry pat-

terns of αltemated type emerge at a critical strength of coupling and become 

stable for strong coupling independently of the dynamics of the decoupled 

systems. The approach which is used in this thesis is singular perturbation 

techniques and complementarily numerical methods. 

The bifurcation phenomena of the dynamics of the reaction-diffusion sys-

tems is took up here. Those are the temporal evolution of the phase field that 

describes the cracked， and the temporal evolution of the profile of the concen-

tration of the chemicals on the coupled reaction-diffusion system. Those can 

be categorized部 followings:i) bifurcation phenomena that is parameterized 

by the constants of the equations， such as time constants， di旺Usionconstants， 

and energy constants， ii) bifurcation phenomena tl凶 isparameterized by the 

initial pattern， profile of the valiables. The crack evolution problem is cate-

gorized into ii)， and the coupled reaction-diffusion system is categorized into 

i). In this thesis， the bifurcation phenomena is investigated by the results of 

the temporal evolution using numerical simulation. However， from the view 

point to analyze the bifurcation structure numerically on i)， such as coupled 

reaction-diffusion system， it is also possible to use the branch-tracking ap-

proach， like AUTO. It is expected that the global bifurcation structure of 

the coupled reaction-diffusion system may be more clear using the results of 

the temporal evolution and the branch-tracking complementarily. 
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Appendix A 

SLEP method for l-layer 

coupled RD system 

In this Appendix， we consider the eigenvalue problem of the coupled RD system for the 

trivial 1-1ayer equilibrium solution. First we make an assumption that the equilibrium 

solution of the decoupled system is stable. 

We derive the eigenvalue equations from the linearized equations of (3.8)， (3.9) around 

the 1-1ayer equilibrium solution (u(x;e)，ii(x;e);U(X;e)，ii(x;e)) and write it in symmetric 

and asymmetric components (旬以;e)，Zs(X;e))and (ωα(X;e)，Za(X;e)) as follows: 

L句 s+ f~zs eT入ωs

MεZs +g~ωs 入Zs
xEI (A.l) 

Lε叫 +f~za eT入ωα

(M" -2k)za + g~wα 入Zα

。d2 • d2 

with Lε三 E4EE+f;andMε== d d~2 + g~ ， where f~ = fu(u(x; e)， ii(x; e))， f~ ， g~ ， and 

88 



APPENDIX A. SLEP METHOD FOR l-LAYER COUPLED RD SYSTEM89 

g~ are similarly defined. The boundary conditions for (A.1) are 

(ご::ぃ，α川 θI
Z; 

θz 

(A.2) 

Obviously， one notices tl国 theequations for (叫，Zs)and (叫，Za)， are completely sepa-

rated， and the equations for (叫，Zs)with (A.1)， (A.2) are the eigenvalue problem of the 

decoupled system (3.10)， (3.11). Therefore， we do no七needto study the distribution of 

eigenvalues of this problem for (叫，Zs)because of the assumption on the stability of the 

1-1ayer equilibrium solution of the decoupled equilibrium solution. We thus only study the 

eigenvalue problem of asymmetric component (ωα，Z，α)， because it determines the stability 

of the trivial solution of the coupled system (3.8)， (3.9). We may simply write (Wa， Zα)出

(ω， z) without confusion. 

We consider the dependency of the distribution of eigenvalues of (A.1) when k is 

varied. To do this， we put入ニ入R+i入1，ω=ωR+ i WI， and Z = ZR + i ZI， where入R

and λ1 are real and imaginary parts of入， respectively. Rewrite (A.1) as 

L
E
ωR+!:ZR eT(入RWR一入I町)

L
Eω1 + f~zI eT(入I初 R+入Rω1)

(A.3) 

(Mε- 2k)ZR + g~ωR 入RZR一入IZI

(Mε- 2k)ZI + g~ωI 入IZR+入RZI.

Following the discussion similar to the one on the deco叩 ledsystem in [24J， we write (A.3) 

as 

ωR - [1 + (eT入J)2(Lε-eT入R)-2t1

[(Lε -éT入R)一l(-f~zR)-éT入I(Lε -éT入R)-2(-f~zI)J
(A.4) 

ω1 = [1 + (eT入1)2(Lεー ε7入R)-2t1

[(Lε -éT入R)-l(-f~ZI) +eT入I(Lε-eT入R)-2(-f~zR)J 

where 1 denotes the identity operator. 
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U sing the complete orthonormal set of eigenfunctions and eigenvalues {1>j， q} tO of 
the Sturm-Liouville operator Lε， we can expand (A.4) as follows: 

|ω=「=405+吟

ω[ω?侃 =ω?佑 +ω!

(A.5) 

where wR = (3;'/企;.)く -f~ZR ， 1>;' >ー(eT入dム;.)< -f~z[ ， 1>;' >， and ωI = (3;'/ s;.)く

-f~z[ ，1>;. > +(eT入J/s;.)< ーだZR，1>;.>， and 3;' = (~ -eT入R，s;. = ((~ -eT入R?+

(eT入[)2.The mos七dangerousparts of the above expressions are w~伺 and ω?婦 because

their denominators and the numerators tend to zero as e ↓o. We call these the singular 

parts. The other pa巾 whand ωJ consist of the components orthogonal to偽・ Wecall 

these the nonsingular parts which are represented as 

叫 [1+ (eT入d(Lε-eT入R)-2P

[(Lε ー εT入R)t(-f~ZR) -eT入[(Lε-eT入R?t(-gZ[)j

ω}=II+(57入d(Lε-eTλR)-2jt

[(U -éT入R)↑ (-f~Z[)+éTλ[(Lε-éT入R)2t (-f~ZR)j. 

(A.6) 

Then， the line泡rizedequations for asymmetric components are given as follows: 

(万一… II ZR I 

入[-eT入[Sε Tt J ¥ Z[ J 

(く fC)9ZR，-J;-V右 ε盆

<ZIJE65ud 
，川d

(A.7) 

where 
，12 

万三一d会 +g~+ 入R+2ν

-g~[1 + (eT入[?(Lε-eT入R)-2P(Lε-eT入R)↑(-f~.) 

sε 三 [1+ (eT入[)2(Lε-éT入R)-2P(Lε-éT入R)t(-f~.)
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and 

{BO 7入1， 
政ε 三|ム5AE|，

I 7入I 251 
1 ム5 ムoJ 

whereさ5=CZ-T入R，&o = (布 -7入R)2+ (7入1)2，and伝=信/e・

Now， taking the 1imit e ↓0， we get 

l-g 11m一一 ー ニニ，
E:!0 "fi -1 

l ・ g~品。
1m 巴 C~

E:!O ，/e 
where d* = d(x*) with x* being the position of the interna1 1ayer of the trivia1 1-1ayer 

equi1ibrium solution (1.8) for singu1ar 1imit e ↓0， and 

c:=-ttJ(♂) > 0， 

c:i κ*{g(h+(v*)，v*) -g(h_(v*)，v*)} > 0 

where κ事 isa positive constant， h土(v)are defined as the 1eft and right branches of 
rh+(v) 

f(h土(v)，v)= 0， respective1y (see Figure 3.2)， and J(む)= I f(s，v)ds. In this limit， 
Jh_(v) 

(A.7) becomes 
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d2 det事直

Tλ ・+2k 三 一d一一一一一一+入R事 +2k
R T~" -dx2 f~ 

l Z57入j， 
r̂E .̂，* _ ム5 ムホ l 1imM" =M率三 """"0 J....&O 

ε10 I 7入;主5|

¥ム;ムoJ 
and limE:!o入=入五 +i入;， limdod=CZ，主o (o -7入b，ムo= (令 -7入主)2+ (7入j)2，

det* = f~g~ -g~f; ， and e = Ci C;. From Lemma 2.4 of [24]， it follows that 

ヨKλ五+2k 三 T足+2k for 入五+2k>ー μ1，
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where μ1 is a positive constant so that all the remaining eigenvalues are located in the 

half plane left to Re(入)=一μin入.-plane.Then， we can derive the equations for ZIl and 

zj as 
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Operating <・，o' > to each side of (A.9)， we have 

I < ZIl，O* > I 
Nk I 1=0 

¥ < zj，O* > J 

(A.lO) 

where 

L町内q
，a
 +

 

-
R
 

、A

I

K

 
*
 ，a

 
、A

J
F
f
t
t
i
t
i
-
E
1

、、

L
h
 

q

，. +
 

-
R
 

《

vb
く一一

一ιA 
N
 

入r*K)..';，+2k I 
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Then， it turns out that 

det Nk = 0 (A.ll) 

is the necessary and sufficient ∞ndition to assure the existence of of nontrivial solutions 

of t(く Z五，0'>，く zj，o*>) . (A.ll) can be rewritten出

o det Nk 

So A ，T(A叫2 _T'\~ 合:':À車、
{三旦Ak+ ":'~J Bk -1}2 + { ':'! Ak ーご~'.'I Bk} 

5 ム;ム;ムE'

where Ak =< Iλ五+2kK.λ五+2k(eo*)，0掌>and Bk =< I.入計2dKλ計 2d2(己0*)，0牟>・
Then， (A.ll) is equivalent to 

S~ A ，T(A叫2
手旦A必+":'r } Bkー1 0 
ム ;一ム5-

(A.12) 

(A.13) 

and 
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Appendix B 

Proof of Lemma 4.1 

Now we assume that入j-10 when 7 satisfies equation (3.28). Then， we can eliminate Ak 

from (A.13)， (A.14) and thus obtain 

[(ゐ -7入五)2+(7入j)2](Bk-7) = O. (B.l) 

From the condition (3.28)， there exists k > 0 such that I入五(k)1< Oo holds for 0 < Ooく μ1，

which is of our concern such that Bkく 7・ KλRis a well-defined uniformly bounded 

operator from H-1(I) to H1(I) for入五>ーμ1・Because

(; 、 for 入五+2k> 0 

θBk 
θ(入j)2 、 u ror 

Then equation (3.25) cannot be satisfied. 
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(入j)2三O.

(B.2) 



Appendix C 

Analysis of the primary 

bifurcation point for the 2-1ayer 

equilibrium solution 

Applying the same change of variables as (3.22) to the linearized eigenvalue problem at 

2-1ayer equilibrium solution， we obtain 

Lo叫 +f~zs E:T入叫

Mozs + g~ω 入Zs
XEI=(O，2) (C.l) 

Loωα + f~za E:T入山

(Mε -2k)za + g~wα= 入zα

subject to the Neumann boundary conditions on θ1. The first two equations of (C.l) 

for (ws， zs) are independent of k， and hence， from our assumption that the trivial 2-1ayer 

solution is stable， we see that they do not contribute to the critical eigenvalues. 
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The remaining two equations for (wα， Za)， 

{ (M' -2:ω 十万(Mε-2k)za + g~ωα 

eT入ωα

入zα，
Z ε1 = (0，2) (C.2) 

has exactly the same form出 (3.12)in [22] ex田 ptfor the k-dependency being replaced 

eT入by入.

The same arguments in [22] (s田 also[24]) holds for (C.2)， in particular， it has two 

critical eigenvalues which can be obtained by solving the following two eigenvalues on the 

half interval with di紅白巴ntboundary conditions: 

L加α +f~zα eT入山

(Mε- 2k)za + g~ωα= 入Za

(ωα)x(O) 

(ωα)x(1) 

o = (za)x(O) 

o = (za)x(l) 

Leωα+ f~za eT入ωα

(Mε-2k)za + g~wa 入Za

(ωα)x(O) o = (Za)x(O) 

ωα(1) o = za(1) 

XE(O，l) 

(C.3) 

Z ε(0，1) 

(C.4) 

It is apparent that the even (respectively odd) exte凶 onof (C.3) (respectively (C.4)) to 

(0，2) becomes a solution of (C.2). Hence， the zero eigenvalue of (C.3) (respectively (C.4)) 

gives us a symmetric (respectively asymmetric) bifurcation point， respectively. What we 

have to do is to find k-values of (C.3) (or (C.4)) with入=o. The singular limi七procedures

出 in[23] and [22] can be done in a similar way for (C.3) and (C.4)， and the resulting 

singular limit problem is to find k satisfying 

(d£+宅:ーか=-c'o' /命
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subject to 

(z;)x(O) 0， (z;)x(x*) = 1 

(z;)x(1)(respectively z;(l)) 0， 

respectively. 

Noting that (* does not depend on the boundary condition， we see that there exists 

a unique positive k kNN (respectively kND) with 0く kND< kNN. This pro四 S

Proposition 3.3.1， since kc2 = kND and kc1 = kNN. 
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