Stable extendibility of normal bundles over lens spaces

Topology and its Applications Volume 157 Issue 15 Page 2435-2445 published_at 2010-09-15
アクセス数 : 564
ダウンロード数 : 151

今月のアクセス数 : 3
今月のダウンロード数 : 0
File
TopolAppl_157_2435.pdf 139 KB 種類 : fulltext
Title ( eng )
Stable extendibility of normal bundles over lens spaces
Creator
Source Title
Topology and its Applications
Volume 157
Issue 15
Start Page 2435
End Page 2445
Abstract
We study the stable extendibility of R-vector bundles over the (2n + 1)-dimensional standard lens space L (p) wills odd prime p, focusing on the normal bundle v(n)(t)(p) to an immersion of L-n (p) in the Euclidean space R2n+1+1 We show several concrete cases in which v(p) is stably extendible to L-k(p) for any k with k >= n. and in several cases we determine the exact value in for which i)(p) is stably extendible to Un (p) but not stably extendible to Lm+1 (p). (C) 2010 Elsevier BV All rights reserved
Keywords
Extendible vector bundle
Normal bundle
Lens space
NDC
Mathematics [ 410 ]
Language
eng
Resource Type journal article
Publisher
Elsevier Science BV
Date of Issued 2010-09-15
Rights
Copyright (c) 2010 Elsevier B.V.
Publish Type Author’s Original
Access Rights open access
Source Identifier
[ISSN] 0166-8641
[DOI] 10.1016/j.topol.2010.07.031
[NCID] AA00459572
[DOI] http://dx.doi.org/10.1016/j.topol.2010.07.031