Stable extendibility of normal bundles over lens spaces
Topology and its Applications Volume 157 Issue 15
Page 2435-2445
published_at 2010-09-15
アクセス数 : 564 件
ダウンロード数 : 151 件
今月のアクセス数 : 3 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00030791
File |
TopolAppl_157_2435.pdf
139 KB
種類 :
fulltext
|
Title ( eng ) |
Stable extendibility of normal bundles over lens spaces
|
Creator | |
Source Title |
Topology and its Applications
|
Volume | 157 |
Issue | 15 |
Start Page | 2435 |
End Page | 2445 |
Abstract |
We study the stable extendibility of R-vector bundles over the (2n + 1)-dimensional standard lens space L (p) wills odd prime p, focusing on the normal bundle v(n)(t)(p) to an immersion of L-n (p) in the Euclidean space R2n+1+1 We show several concrete cases in which v(p) is stably extendible to L-k(p) for any k with k >= n. and in several cases we determine the exact value in for which i)(p) is stably extendible to Un (p) but not stably extendible to Lm+1 (p). (C) 2010 Elsevier BV All rights reserved
|
Keywords |
Extendible vector bundle
Normal bundle
Lens space
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Elsevier Science BV
|
Date of Issued | 2010-09-15 |
Rights |
Copyright (c) 2010 Elsevier B.V.
|
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[ISSN] 0166-8641
[DOI] 10.1016/j.topol.2010.07.031
[NCID] AA00459572
[DOI] http://dx.doi.org/10.1016/j.topol.2010.07.031
|