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Abstract. We study the stable extendibility of R-vector bundles over the
(2n+1)-dimensional standard lens space Ln(p) with odd prime p, by focusing
on the normal bundle νt

n(p) for an immersion of Ln(p) to the Euclidean space
R2n+1+t. We show several concrete cases in which νt

n(p) is stably extendible to
Lk(p) for any k with k ≥ n, and also in some cases we determine exact values
of m for which νt

n(p) is stably extendible to Lm(p) but not stably extendible
to Lm+1(p).

1. Introduction

Let F be the real number field R or the complex number field C. Then, for a
subspace A of a space X, a t-dimensional F -vector bundle α over A is said to be
extendible to X if α is equivalent to the induced bundle i∗β of a t-dimensional
F -vector bundle β over X under the inclusion map i : A → X. If i∗β is stably
equivalent to α instead of the equivalence, namely i∗β + θ is equivalent to α + θ

for a trivial vector bundle θ, α is said to be stably extendible to X. (Cf. [20], [6])
Obviously, if α is extendible to X, then it is stably extendible to X.

Originally, Schwarzenberger [20], [4, Appendix I] has studied extendibility of
vector bundles over the real or complex projective spaces and shown an interest-
ing characterization of infinitely extendible vector bundles. Related topological
results have been obtained by Rees [3], [19], Adams–Mahmud [1], Thomas [23]
and ours [6], [7]. The infinite extendibility of C-vector bundles has also pulled
attention from the algebraic point of view (cf., Barth–Vane de Ven [2], Sato [21]).
Thus, an algebraic–topological analysis on (stable) extendibility of R-vector bun-
dles is considered to be worth studying.

Let Ln(p) = S2n+1/(Z/p) for n ≥ 0 denote the (2n + 1)–dimensional standard
lens space mod p. Throughout this paper, we assume that p is an odd prime
number. Then, for any R-vector bundle ζ over Ln(p), we set

(1.1) s(ζ) = max{m ∈ N | m ≥ n and ζ is stably extendible to Lm(p)}

if the maximum exists; and, we set s(ζ) = ∞ if ζ is stably extendible to Lm(p)
for any m ≥ n, namely when ζ is infinitely stably extendible.

Kobayashi-Maki-Yoshida [13], [14] and Kobayashi-Komatsu [11], [12] have stud-
ied the (stable) extendibility of vector bundles over Ln(p), and shown some de-
tailed results, in particular in the case p = 3. In [8] and [9], we have studied
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the stable extendibility of the tangent bundle τn(p) over Ln(p), and obtained the
following result.

Theorem 1.1. ([9, Theorems 1.2, 1.3].) For any odd prime p, s(τn(p)) = ∞ if
p − 3 ≤ n ≤ p, and s(τn(p)) = 2n + 1 if n ≥ p + 1.

Obviously, τ0(p) and τ1(p) are trivial vector bundles, and so infinitely ex-
tendible. In [13, Lemma 5.2], it is remarked that any orientable 2-plane bundle
over the n-skeleton of a CW-complex K with n ≥ 3 is always extendible to K.
Related to such low dimensional phenomena, we can show the following.

Theorem 1.2. Let p be an odd prime number; and, assume that 1 ≤ n ≤ 3.
Then, s(α) = ∞ for any m-dimensional R-vector bundle α over ÃLn(p) with m ≥
4.

Let νt
n(p) denote the normal bundle of an immersion Ln(p) → R2n+1+t for

t > 0. If νt
n(p) and νt′

n (p) are two normal bundles over Ln(p), they are stably
equivalent in the sense that νt

n(p) + θ and νt′
n (p) + θ′ are equivalent for trivial

vector bundles θ and θ′ of some dimensions. Thus, for a fixed prime p, the value
s(νt

n(p)) depends only on n and t if there exists an immersion Ln(p) → R2n+1+t,
and we have s(νt

n(p)) ≤ s(νt′
n (p)) if t ≤ t′.

Sjerve[22] has shown that Ln(p) is immersible to R2n+2bn/2c+2 for any n, where
brc denotes the maximal integer less than or equal to a rational number r. Thus,
it is reasonable to investigate the value of s(νt

n(p)) for any t ≥ 2bn/2c+1. Further-
more, by the stability properties of vector bundles (cf., Husemoller [5, Chapter
9, Proposition 1.1 and Theorem 1.5]), for t ≥ 2n + 2, we have an equivalence
νt

n(p) ∼= ν2n+1
n + (t − 2n − 1), and stable extendibility of νt

n(p) coincides with its
extendibility. Thus, s(νt

n(p)) for t = 2n+1 or 2n+2 seems to be a suitable object
for the first inquiry.

Concerning the infite stable extendibility of νt
n(p), we have the following theo-

rem, by which and Theorem 1.2 we could conjecture that s(νt
n(p)) = ∞ if n ≤ p.

Theorem 1.3. Let (p − 1)/2 ≤ n ≤ p for a prime p ≥ 5, and 0 ≤ n ≤ 5 for
p = 3. Then, νt

n(p) for t ≥ 2n + 1 is stably equivalent to the Whitney sum of
2-plane bundles and a trivial bundle, and thus s(νt

n(p)) = ∞.

We also show a corresponding result for t ≥ 2bn/2c + 1 in Proposition 3.4.
In the case p = 3 or 5, we have some more explicit result as follows, in which

the case of p = 3 and t = 2n + 2 has been shown in [15, Lemma B].

Theorem 1.4. Let p = 3 or 5; and, assume that t = 2n+1 or t = 2n+2. Then,
s(νt

n(p)) = ∞ if and only if 0 ≤ n ≤ 5. Furthermore, s(νt
n(p)) = ∞ if and only

if νt
n(p) is stably equivalent to the Whitney sum of 2-plane bundles and a trivial

bundle.

Schwarzenberger [20] has shown that any infinitely extendible R-vector bundle
over the real projective space RPn is equivalent to the Whitney sum of 2-plane
bundles and a trivial bundle. Thus, we can say that νt

n(p) for the values of n and
t in Theorem 1.3 or Theorem 1.4 satisfy “a stable Schwarzenberger’s property.”
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If s(νt
n(p)) < ∞, it means that s(νt

n(p)) is not stably decomposable to the
Whitney sum of 2-plane bundles and a trivial bundle. From Theorem 1.4, we
are tempted to conjecture that s(νt

n(p)) < ∞ if n ≥ 2p. Actually, we have the
following theorem.

Theorem 1.5. For any prime p ≥ 7, s(νt
n(p)) < ∞ if n ≥ 2p and t ≤ 2n + 2.

Next, we consider a case when the actual value of s(νt
n(p)) < ∞ can be spec-

ified. We denote by dre the minimal integer greater than or equal to a rational
number r, and set

la(n, p) = apd(n−1)/(p−1)e − (n + 1)
for an integer a > 0. Let ηn be the canonical C-line bundle over Ln(p); and, let
r(ηn) be the underlying R-plane bundle. Then, the normal bundle νt

n(p) is stably
equivalent to la(n, p)r(ηn) if la(n, p) ≥ 0 (see Lemma 2.2). For an odd prime p

and positive integers n and t, we consider the following condition:

(1.2)
(

la(n, p)
d(t + 1)/2e

)
6≡ 0 (mod p) and pbn/(p−1)c > d(t + 1)/2e,

where
(

c
d

)
denotes the binomial coefficient. We remark that the inequality in (1.2)

is satisfied when n ≥ 2p − 2 and t ≤ 2n + 1 (see Lemma 5.4).
Then, we have the following.

Theorem 1.6. Assume that t ≥ n ≥ p + 1 for a prime p ≥ 5; and assume that
t ≥ n ≥ 6 for p = 3. Then, if the condition (1.2) is satisfied for an integer a > 0,
we have s(νt

n(p)) = t (resp. t − 1 ≤ s(νt
n(p)) ≤ t + 1 ) when t is an odd integer

(resp. an even integer).

As a special case, we have the following corollary.

Corollary 1.7. When p ≥ 5 and n = 2pk ± 1 for an integer k ≥ 1, we have
s(ν2n+1

n (p)) = 2n + 1 ; and, νn
n(p) is not stably extendible to Ln+1(p).

We shall show some general consequences of Theorem 1.6 in Corollary 5.5 and
Corollary 5.6, which include Corollary 1.7.

From here, we organize this paper as follows. In the next section, we recall
the K–groups of the lens space and prove Theorem 1.2; and, in the section 3, we
consider infinitely extendible cases and prove Theorem 1.3. In the section 4, we
investigate upper bounds for s(νt

n(p)) and prove Theorem 1.5; and, in the section
5, we prove Theorem 1.6, Corollary 5.5 and Corollary 5.6. In the last section, we
prove Theorem 1.4.

The author would like to express his thanks to Prof. Yūji Shimizuike for his
valuable algebraic information related to Theorem 1.2.

2. K–groups of the lens spaces

For any odd prime p, the structures of the reduced unitary K-group K(Ln(p))
and the reduced orthogonal K-group KO(Ln(p)) has been determined by Kambe
[10], as in the below.
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Let ηn be the canonical C-line bundle over Ln(p), which is the induced bundle
from the canonical C-line bundle over the complex projective space CPn under
the usual projection Ln(p) → CPn. Then, we put σn = ηn − 1 ∈ K(Ln(p)).

Let r : K(X) → KO(X) and c : KO(X) → K(X) be the homomorphisms
induced by the real restriction and the complexification of vector bundles, re-
spectively. We put σ̄n = r(σn) = r(ηn) − 2 ∈ KO(Ln(p)). Also, let Ln

0 (p) be
the 2n-skeleton of Ln(p) (see [10]); and, let j : Ln

0 (p) → Ln(p) be the natural
inclusion map.

Then, the K–groups K(Ln(p)) and KO(Ln(p)) are represented as follows.

Theorem 2.1. ( [10, Theorem 1, 2, Lemma 3.4]) Let p be an odd prime number.
(1) Put n = s(p − 1) + r with 0 ≤ r ≤ p − 2. Then,

K(Ln(p)) =
r⊕

i=1

Z/ps+1{σi
n} ⊕

p−1⊕
j=r+1

Z/ps{σj
n},

and j∗ : K(Ln(p)) → K(Ln
0 (p)) is an isomorphism. Furthermore, we

have r(K(Ln
0 (p))) = KO(Ln

0 (p)).
(2) The homomorphism j∗ : KO(Ln(p)) → KO(Ln

0 (p)) induces the following
isomorphism of abelian groups :

KO(Ln(p)) ∼=

{
KO(Ln

0 (p)) if n 6≡ 0 (mod 4),
Z/2 ⊕ KO(Ln

0 (p)) if n ≡ 0 (mod 4).

(3) Let q = (p − 1)/2 and n = s(p − 1) + r with 0 ≤ r ≤ p − 2. Then,

KO(Ln
0 (p)) =

br/2c⊕
i=1

Z/ps+1{σ̄i
n} ⊕

q⊕
j=br/2c+1

Z/ps{σ̄j
n}.

As in the previous section, dre (resp. brc) denotes the smallist (resp. largist)
integer more than (resp. less than) or equal to a rational number r. Also, we
have set

(2.1) la(n, p) = apd(n−1)/(p−1)e − (n + 1)

for an integer a ≥ 1. By Theorem 2.1, the order of σ̄n = r(ηn)− 2 in KO(Ln(p))
is equal to pd(n−1)/(p−1)e. Thus, in KO(Ln(p)) we have

la(n, p)(r(ηn) − 2) = −(n + 1)(r(ηn) − 2).

Since νt
n(p) is the normal bundle of an immersion Ln(p) → R2n+1+t, we have an

equivalence
νt

n(p) + τn(p) ∼= 2n + 1 + t.

of vector bundles. Also, we have

τn(p) + 1 ∼= (n + 1)r(ηn)

(cf., [17, Chapter 6, Corollary 1.6]). Then, there are equations

νt
n(p) − t = −(τn(p) − (2n + 1)) = −(n + 1)(r(ηn) − 2)

= la(n, p)(r(ηn) − 2).

in KO(Ln(p)). Thus, we have the following.
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Lemma 2.2. Assume that la(n, p) ≥ 0 for a positive integer a. Then, νt
n(p) and

la(n, p)r(ηn) is stably equivalent in the sense that νt
n(p) + θ ∼= la(n, p)r(ηn) + θ′

for trivial vector bundles θ and θ′ of some dimensions.

Now, we begin the proof of Theorem 1.2. By Theorem 2.1, we have KO(L1(p)) =
0. Thus, any R-vector bundle α over L1(p) is stably trivial, and we have s(α) =
∞. Although this is enough for Theorem 1.2 in the case of L1(p), we remark the
following unstable property.

Lemma 2.3. Any R-vector bundle α over L1(q) with odd integer q is trivial.

Proof. Since H1(L1(q); Z/2) = 0, the first Whitney class w1(α) is 0. Thus, α is
orientable, and also α is trivial when α is an R-line bundle. Thus, we assume that
the dimension m of α satisfies m ≥ 2. Then, α is classified by an element of the
base point free homotopy set [L1(q), BSO(m)], where BSO(m) is a connected
classifying space of the rotation group SO(m). Then, it is sufficient to show that
the base point preserving homotopy set [L1(q), BSO(m)]∗ consists of 1 element,
since [L1(q), BSO(m)]∗ → [L1(q), BSO(m)] is surjective. From a cell structure
of L1(p) = (S1 ∪q e2) ∪ e3, we have an exact sequence

[S3, BSO(m)]∗ → [L1(q), BSO(m)]∗ → [S1 ∪q e2, BSO(m)]∗

of sets. But, [S3, BSO(m)]∗ = π3(BSO(m)) = π2(SO(m)) = 0, where πi(X)
denotes the i-dimensional homotopy group of a space X. Since there is an exact
sequence

π2(BSO(m)) = Z/2
×q→ π2(BSO(m)) → [S1∪qe

2, BSO(m)]∗ → π1(BSO(m)) = 0,

[S1 ∪q e2, BSO(m)]∗ has only 1 element. Thus, [L1(q), BSO(m)]∗ consists of 1
element, and we have completed the proof. ¤

We set M = L2(p) or M = L3(p). Then, by Theorem 2.1,

(2.2) KO(M) = Z/p{σ̄}.
Using this fact, we have the following.

Lemma 2.4. Let α be any R-vector bundle of dimension m ≥ 4 over M . Then,
α is stably equivalent to an m-dimensional vector bundle which is the sum of two
2-plane bundles and a trivial vector bundle, and thus s(α) = ∞.

Proof. Let p1(β) (resp. c1(γ)) denote the first Pontrjagin class (resp. the first
Chern class) of an R-vector bundle β (resp. a C-vector bundle) (cf. [18]). We refer
the necessary properties about p1(β) and c1(γ) here to the first part of the section
4. Then, x = c1(ηn) ∈ H2(M ; Z) = Z/p and p1(r(ηn)) = x2 ∈ H4(M ; Z) = Z/p

are the respective generators, where n = 2 and 3 according as M = L2(p) and
L3(p). We also have p1(r(ηk

n)) = k2x2 for any positive integer k, where ηk
n is the

tensor product over C of k numbers of ηn.
By (2.2), α−m = a(r(ηn)−2) and r(ηk

n)−2 = bk(r(ηn)−2) in KO(M) = Z/p

for some integers a and bk, respectively. But, comparing the first Pontrjagin
classes on both sides of the latter equation, we have bk = k2 and thus r(ηk

n)−2 =
k2(r(ηn) − 2).
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It is known that there are positive integers i and j satisfying

i2 + j2 ≡ a (mod p)

(cf., [16, II, Proposition 3.4]). Hence, α−m = r(ηi
n)+r(ηj

n)−4 in KO(M). Since
m ≥ 4, α is stably equivalent to the m-dimensional vector bundle r(ηi) + r(ηj) +
(m − 4). Since the 2-plane bundle r(ηk

n) for any k ≥ 0 is infitely extendible, we
obtain the required result. ¤

We have established the proof of Theorem 1.2 by Lemma 2.3 and Lemma 2.4.
Moreover, by the above deduction, we can remark that Theorem 1.2 is still valid
for the standard lens space of mod q = pk for any k ≥ 1.

3. Infinite extendibility

Recall that νt
n(p) is the normal bundle of an immersion Ln(p) → R2n+1+t and

s(νt
n(p)) is the value defined in (1.1). Also, let la(n, p) be the integer given in

(2.1). We remark again that p denotes an odd prime number.
By Lemma 2.2, if 0 ≤ 2la(n, p) ≤ t holds, then νt

n(p) is stably equivalent to
the t-dimensional vector bundle la(n, p)r(ηn) + (t− 2la(n, p)). Thus, we have the
following lemma, which implies that s(νt

n(p)) = ∞ if t is sufficiently large for any
fixed p and n.

Lemma 3.1. s(νt
n(p)) = ∞ if 0 ≤ 2la(n, p) ≤ t for some integer a ≥ 1.

Furthermore, in this case, νt
n(p) is stably equivalent to the Whitney sum of 2-

plane bundles and a trivial bundle.

Now, we examine the cases when the condition in Lemma 3.1 is satisfied. First,
we consider the condition 0 ≤ 2la(n, p).

Lemma 3.2. For an odd prime p and an integer n ≥ 0, we have the following.
(1) l1(n, p) ≥ 0 if and only if n 6= 1 and n 6= p.
(2) la(n, p) ≥ 0 for any a ≥ 2.

Proof. We shall prove (1) and (2) simultaneously. Since la(0, p) = a − 1 and
la(1, p) = a − 2, the conclusions hold for n = 0 and n = 1 obviously. Thus,
we assume n ≥ 2; and, put n = (s − 1)(p − 1) + k + 1 using integers s ≥ 1 and
1 ≤ k ≤ p−1. Then, d(n−1)/(p−1)e = s and la(n, p) = aps−((s−1)(p−1)+k+2).
Now, consider the real variable function

fa,k(x) = apx − ((x − 1)(p − 1) + k + 2)

for fixed p, a and k. Then, the inequality la(n, p) ≥ 0 holds if and only if fa,k(s) ≥
0. We have f ′

a,k(x) = a(log p)px − (p − 1) and f ′′
a,k(x) = a(log p)2px > 0 for any

x > 0. Since f ′
a,k(1) = (a log p − 1)p + 1 > 0, fa,k(x) is monotonously increasing

for x ≥ 1. Now, fa,k(1) = ap − (k + 2). Thus, when a = 1 and 1 ≤ k ≤ p − 2 or
when a ≥ 2 and 1 ≤ k ≤ p − 1, we have fa,k(1) ≥ 0 and hence fa,k(s) ≥ 0 for
any s ≥ 1. When a = 1 and k = p − 1, we have f1,p−1(1) = l1(p, p) = −1. Also,
for any s ≥ 2, a ≥ 1 and 1 ≤ k ≤ p − 1, we have fa,k(s) ≥ p2 − 2p > 0. Hence,
la(n, p) > 0 for any a ≥ 1 and n ≥ p + 1. Thus, we have obtained the required
result. ¤
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Next, we consider the case when the condition 2l1(n, p) ≤ t in Lemma 3.1 is
satisfied for t = 2n + 1 or t = 2bn/2c + 1.

Lemma 3.3. Let n ≥ 2. Then, we have the following.

(1) For p ≥ 5, 2l1(n, p) ≤ 2n+1 if and only if (p−1)/2 ≤ n ≤ p. For p = 3,
2l1(n, 3) ≤ 2n + 1 if and only if 2 ≤ n ≤ 5.

(2) 2l1(n, p) ≤ 2bn/2c + 1 if and only if (2p − δ)/3 ≤ n ≤ p, where δ = 1 or
2 according as n is odd or even.

Proof. We shall use the similar method as in the previous lemma. Thus, we
put n = (s − 1)(p − 1) + k + 1 using integers s ≥ 1 and 1 ≤ k ≤ p − 1. Then,
l1(n, p) = ps − ((s − 1)(p − 1) + k + 2).

Now, we prove (1). Consider the real variable function

gk(x) = px − 2((x − 1)(p − 1) + k) − 3

for fixed p and k. Then, 2l1(n, p) ≤ 2n + 1 if and only if gk(s) ≤ 0. We
have g′k(x) = (log p)px − 2(p − 1) and g′′k(x) = (log p)2px > 0. Then, since
g′k(2) = (p log p − 2)p + 2 > 0, gk(x) is monotonously increasing for x ≥ 2. We
have gk(1) ≤ 0 if and only if (p − 1)/2 ≤ k + 1, since gk(1) = p − 2k − 3.
Also, since gk(2) = p2 − 2p − 2k − 1 and k ≤ p − 1, gk(2) ≤ 0 if and only
if (p2 − 2p − 1)/2 ≤ k ≤ p − 1, which is possible when and only when p = 3
and k = 1 or 2. Thus, for p ≥ 5, 2l1(n, p) ≤ 2n + 1 if and only if s = 1 and
(p − 1)/2 ≤ k + 1, that is, if and only if (p − 1)/2 ≤ n = k + 1 ≤ p as required.
When p = 3, gk(1) ≤ 0 if and only if n = 2 or 3, and gk(2) ≤ 0 if and only if n = 4
or 5. Moreover, when p = 3, gk(3) = 16 − 2k > 0 and thus 2l1(n, 3) > 2n + 1 for
any n ≥ 6. Hence, 2l1(n, 3) ≤ 2n + 1 if and only if 2 ≤ n ≤ 5, as required. In
this way, we have proved (1).

Since we can prove (2) just similarly by considering the real variable function

hk(x) = px − ((x − 1)(p − 1) + k + 2) − ((x − 1)(p − 1)/2 + b(k + 1)/2c)

for fixed p and k, we omit the details. ¤

Using these lemmas, we can complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Since s(νt
n(p)) ≤ s(νt′

n (p)) if t ≤ t′ as remarked in the
first section, we have only to prove the result when t = 2n + 1. Thus, for any
n ≥ 0 with n 6= p, the required result follows from Lemma 3.1, Lemma 3.2(1)
and Lemma 3.3(1). When n = p, since 0 < 2l2(p, p) = 2p − 2 < 2n + 1, we have
also the required result by Lemma 3.1. ¤

Similarly, using Lemmas 3.1, Lemma 3.2(1) and Lemma 3.3(2), we have a
corresponding result in the case t ≥ 2bn/2c + 1, as follows.

Proposition 3.4. For t ≥ 2bn/2c + 1, s(νt
n(p)) = ∞ if (2p − 1)/3 ≤ n < p.
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4. Upper bound for the extendibility

Let pi(α) ∈ H4i(Ln(p); Z) be the i-th Pontrjagin class of an R–vector bundle
α over Ln(p) (cf., [18]); and, let P (α) = 1 + p1(α) + · · · + pi(α) + · · · denote the
total Pontrjagin class, where we use the capital letter P instead of p to avoid
the confusion with the prime p. Then, since H∗(Ln(p); Z) has no 2–torsion, the
multiplicative property P (α + β) = P (α)P (β) holds. Also, since P (θ) = 1 for
a trivial bundle θ, we have P (α) = P (β) if α and β are stably equivalent, and
thus we can consider the Pontrjagin class pi(u) of any element u ∈ KO(Ln(p)).
Later on, we shall use the fundamental property that pi(ζ) = 0 if 2i > m for any
m-dimensional R-vector bundle ζ.

Let x ∈ H2(Ln(p); Z) be the Euler class of the C–line bundle ηn. Then,
H2i(Ln(p); Z) ∼= Z/p is generated by xi for 1 ≤ i ≤ n (cf., [22]). Let ηk

n be the
tensor product over C of k (resp. −k) numbers of ηn (resp. the conjugate bundle
ηn of ηn) if k is a positive (resp. negative) integer. Then, P (r(ηk

n)) = 1 + k2x2

since the Euler class of ηk
n is equal to kx (cf., [4]), which we have already used in

the proof of Lemma 2.4.
To investigate an upper bound of s(νt

n(p)), we use the following proposition,
which is shown essentially in the proof of Theorem 1.1 in [13], but we give a proof
for completeness.

Proposition 4.1. Let k > n > 0 and h ≥ 0 be integers; and, let α be a vector
bundle over Lk(p). We assume that the following two conditions are satisfied.

(i) For the inclusion map i : Ln(p) → Lk(p), i∗α is stably equivalent to
hr(ηn). That is, i∗α + θ ∼= hr(ηn) + θ′ for trivial vector bundles θ and θ′

of some dimensions.
(ii) 2pbn/(p−1)c > k.

Then, we have P (α) = (1 + x2)h.

Proof. First, by Theorem 2.1(1), the K-group K(Lm(p)) for any m > 0 is gener-
ated additively by σm = ηm − 1, σ2

m, · · · , σp−1
m . Since we have

(4.1) σi
m =

i∑
j=0

(
i

j

)
(−1)i−j(ηj

m − 1) and ηi
m − 1 =

i∑
j=1

(
i

j

)
σj

m,

K(Lm(p)) is also generated additively by ηm − 1, η2
m − 1, · · · , ηp−1

m − 1. Let t be
the dimension of α; and, let j : Lk

0(p) → Lk(p) be the inclusion map. Then, since
r(K(Lk

0(p))) = KO(Lk
0(p)) by Theorem 2.1(1), we have

j∗(α − t) = r

(
p−1∑
i=1

bi(ηi
k − 1)

)
∈ KO(Lk

0(p))

for some integers bi. Since i∗(α−t) = hr(ηn−1) ∈ KO(Ln(p)) by the assumption,
it follows

(4.2) r((b1 − h)(ηn − 1) +
p−1∑
i=2

bi(ηi
n − 1)) = 0.
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We notice that cr(ηi
n) = ηi

n + ηp−i
n for the complexfication homomorphism c :

KO(Ln(p)) → K(Ln(p)), and we apply c on both sides of (4.2). Then, we have

(4.3)
p−1∑
i=1

(bi + bp−i − di)(ηi
n − 1) = 0,

where we put

di =

{
h if i = 1 or i = p − 1,

0 otherwise.

Using the latter relation in (4.1), (4.3) is written as

(4.4)
p−1∑
j=1

p−1∑
i=j

(
i

j

)
(bi + bp−i − di)

 σj
n = 0.

We put s = bn/(p− 1)c. Then, by Theorem 2.1(1), the order of σj
n is equal to ps

or ps+1, and thus, from (4.4), it follows

p−1∑
i=j

(
i

j

)
(bi + bp−i − di) ≡ 0 (mod ps)

for any j with 1 ≤ j ≤ p − 1. Thus, we have

bj + bp−j = dj + ujp
s

for 1 ≤ j ≤ p − 1, where uj are some integers. Then, we can calculate the total
Pontrjagin class of j∗α as follows.

j∗P (α) = P

(
p−1∑
i=1

bir(ηi
k)

)
=

p−1∏
i=1

P (r(ηi
k))

bi =
p−1∏
i=1

(1 + i2x2)bi

=
(p−1)/2∏

i=1

(1 + i2x2)bi+bp−i =
(p−1)/2∏

i=1

(1 + i2x2)di+uip
s

= (1 + x2)h

(p−1)/2∏
i=1

(1 + i2ps
x2ps

)ui .

But, since 2ps > k by the assumption, x2ps ∈ H4ps
(Lk

0(p); Z) = 0. Hence, we have
j∗P (α) = (1 + x2)h, and obtain the required result, since j∗ : H4i(Lk(p); Z) →
H4i(Lk

0(p); Z) is an isomorphism for any i. ¤

Now, we put

(4.5) k0 = pd(n−1)/(p−1)e−1 − (n + 1) for n ≥ 2.

Then, we have the following lemma.

Lemma 4.2. Let n ≥ 2. Then, the inequality k0 > n + 1 holds if and only if
n ≥ 2p when p ≥ 7, n = 10, 11 or n ≥ 14 when p = 5 and n ≥ 8 when p = 3.
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Proof. We use the similar method as in the proof of Lemma 3.2. Thus, we put
n = (s − 1)(p − 1) + u + 1 for s ≥ 1 and 1 ≤ u ≤ p − 1. Then, k0 − (n + 1) =
ps−1 − 2((s − 1)(p − 1) + u + 2). Consider the real variable function

fu(x) = px−1 − 2((x − 1)(p − 1) + u + 2)

for fixed p and u. Then, the inequality k0 > n + 1 holds if and only if fu(s) > 0.
We have f ′

u(x) = (log p)px−1 − 2(p − 1) and f ′′
u (x) = (log p)2px−1 > 0. Since

f ′
u(3) = (log p)p2 − 2p + 2 = p((log p)p − 2) + 2 > 0, fu(x) is monotoneously

increasing for x ≥ 3. Now, fu(1) = −2u− 3 < 0, fu(2) = −(p + 2u + 2) < 0, and
fu(3) = p2−4p−2u = p(p−6)+2(p−u) > 0 if p ≥ 7. Thus, we have the required
result for p ≥ 7. Also, we have fu(3) = 5 − 2u if p = 5, fu(3) = −2u − 3 < 0 if
p = 3, and fu(4) = p3 − 6p − 2u + 2 ≥ p(p2 − 8) + 4 > 0. Hence, for p = 5 (resp.
p = 3), the inequality k0 > n + 1 holds if and only if n = 10, n = 11 or n ≥ 14
(resp. n ≥ 8), as required. ¤

Now, we can complete the proof of Theorem 1.5, as follows.

Proof of Theorem 1.5. Let p ≥ 7, n ≥ 2p and t ≤ 2n+2. We suppose that νt
n(p)

is stably extendible to L2k0(p) for k0 in (4.5), and we shall deduce a contradiction.
Thus, there is a vector bundle α of dimension t over L2k0(p) satisfying that i∗(α)
is stably equivalent to νt

n(p) for the inclusion map i : Ln(p) → L2k0(p). Then,
we have i∗α + θ ∼= νt

n(p) + θ ∼= l2(n, p)r(ηn) + θ′ for trivial vector bundles θ and
θ′ of some dimensions, where l2(n, p) ≥ 0 by Lemma 2.2(2). Since bn/(p − 1)c ≥
d(n − 1)/(p − 1)e − 1, we have 2pbn/(p−1)c > 2k0. Also, 2k0 > n by Lemma 4.2.
Hence, we can apply Proposition 4.1 to α for k = 2k0 and h = l2(n, p). Thus, we
have p(α) = (1 + x2)l2(n,p). Then,

pk0(α) =
(

l2(n, p)
k0

)
x2k0 6= 0 in H4k0(L2k0(p); Z) ∼= Z/p,

because it holds(
l2(n, p)

k0

)
=

(
(2p − 1)pd(n−1)/(p−1)e−1 + pd(n−1)/(p−1)e−1 − (n + 1)

pd(n−1)/(p−1)e−1 − (n + 1)

)
6≡ 0 (mod p).

However, since 2k0 > 2n + 2 ≥ t by Lemma 4.2 and the assumption, we have
pk0(α) = 0 on the other hand, which is a contradiction. Thus, we have established
the required result. ¤

Concerning the cases p = 3 and p = 5, we have the following lemma which will
be used in the proof of Theorem 1.4, the proof of which is just the same as the
above using Lemma 4.2.

Lemma 4.3. For t ≤ 2n+2, s(νt
n(3)) < ∞ if n ≥ 8, and s(νt

n(5)) < ∞ if n ≥ 10
with n 6= 12, 13.

5. Proof of Theorem 1.6

Let g. dimα denote the geometric dimension of a vector bundle α. Then, α is
stably equivalent to a (g. dimα)-dimensional vector bundle. About the geometric
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dimensions of vector bundles over the lens space Lm(p), Sjerve [22] has shown
the following result, where πm : S2m+1 → Lm(p) is the canonical projection.

Theorem 5.1 ([22], Theorem A). Let ζ be a k-dimensional R-vector bundle over
Lm(p). Then, if ζ − k ∈ KO(Lm(p)) ∩ kerπ∗

m, it follows g. dim ζ ≤ 2bm/2c + 1.

Using Theorem 5.1, we have the following.

Proposition 5.2. For any normal bundle νt
n(p), we have s(νt

n(p)) ≥ 2dt/2e−1.

Proof. We put m = 2dt/2e − 1. By Lemma 2.2, νt
n(p) is stably equivalent

to la(n, p)r(ηn) for some a ≥ 1. Since π∗
m(r(ηm) − 2) = 0 in KO(S2m+1),

la(n, p)r(ηm) is stably equivalent to a (2bm/2c+ 1)–dimensional vector bundle β

over Lm(p) by Theorem 5.1. But, we have 2bm/2c+ 1 ≤ t since m = 2dt/2e − 1.
Then, the t–dimensional vector bundle γ = β + (t − 2bm/2c − 1) over Lm(p)
satisfies that i∗γ is stably equivalent to νt

n(p), where i : Ln(p) → Lm(p) is the in-
clusion map. Thus, νt

n(p) is stably extendible to Lm(p), and we have the required
result. ¤

Using Proposition 4.1, we also have the following.

Lemma 5.3. Let α be a t-dimensional R-vector bundle over Ln(p); and, as-
sume that α is stably equivalent to lr(ηn) for some integer l ≥ 0. Then, if the
incongruence (

l

k

)
6≡ 0 (mod p)

is satisfied for an integer k with (t + 1)/2 ≤ k < pbn/(p−1)c, α is not stably
extendible to L2k(p).

Proof. Suppose that α is stably extendible to L2k(p). Then, there exists a t–
dimensional vector bundle β over L2k(p) satisfying that i∗β is stably equivalent to
α, where i : Ln(p) → L2k(p) is the inclusion map. Then, i∗β is stably equivalent to
lr(ηn); and, 2pbn/(p−1)c > 2k by the assumption. Hence, we can apply Proposition
4.1 to β, and thus we have P (β) = (1 + x2)l. Since

(
l
k

)
6≡ 0 (mod p) by the

assumption, pk(β) =
(

l
k

)
x2k 6= 0 in H4k(L2k(p); Z) ∼= Z/p. On the other hand,

since the dimension of β is t and since 2k ≥ t + 1 by the assumption, we have
pk(β) = 0, which contradicts the above. Thus, we have the required result. ¤

Now, we can prove Theorem 1.6 as follows.

Proof of Theorem 1.6. First, we remark that la(n, p) ≥ 0 for any a ≥ 1 by the
assumption n ≥ p + 1 and Lemma 3.2. Since the conditions in Lemma 5.3 for
α = νt

n(p), l = la(n, p) and k = d(t + 1)/2e are satisfied by the assumptions
in Theorem 1.6, νt

n(p) is not stably extendible to L2d(t+1)/2e(p). On the other
hand, by Proposition 5.2, νt

n(p) is stably extendible to L2dt/2e−1(p). When t is
odd, (2dt/2e − 1, 2d(t + 1)/2e) = (t, t + 1), and hence we have s(νt

n(p)) = t as
required. When t is even, (2dt/2e − 1, 2d(t + 1)/2e) = (t − 1, t + 2), and hence
s(νt

n(p)) = t − 1, t or t + 1 as required. Thus, we have completed the proof. ¤
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Concerning the latter condition pbn/(p−1)c > d(t + 1)/2e in (1.2), we have the
following expression when t = 2n + 1 and t = 2bn/2c + 1.

Lemma 5.4. Let s = bn/(p − 1)c. Then, we have the following.
(1) ps > n + 1 if and only if n ≥ 2(p − 1).
(2) ps > bn/2c + 1 if and only if n ≥ p − 1.

Proof. We set n = s(p − 1) + r for s ≥ 0 and 0 ≤ r ≤ p − 2. Then, we have
s = bn/(p − 1)c. For the proof of (1), we consider the real variable function
f(x) = px − (x(p − 1) + r + 1) for fixed p and r. Then, it is sufficient to show
that f(s) > 0 if and only if s ≥ 2. Since f ′(1) = (log p − 1)p + 1 > 0 and
f ′′(s) = (log p)2ps > 0, f(x) is monotonously increasing For x ≥ 1. But, f(0) =
f(1) = −r ≤ 0 and f(2) = p2 − 2p − r ≥ p2 − 3p + 2 > 0, and thus we have the
required result.

We can prove (2) just the same way using the function g(x) = px−x(p−1)/2−
br/2c − 1 instead of f(x), and we omit the details. ¤

As a corollary of Theorem 1.6, we have the following.

Corollary 5.5. Let p be a prime number with p ≥ 5; and, assume that n ≥
2(p − 1). Then, if the p–adic expansion of n + 1 satisfies the below condition
(5.1), we have s(ν2n+1

n (p)) = 2n + 1.

(5.1) n + 1 =
m∑

i=1

aip
ti with 1 ≤ ai ≤

p − 1
2

(1 ≤ i ≤ m− 1) and 1 ≤ am ≤ p

2
,

where m ≥ 1 and t1 > t2 > · · · > tm ≥ 0.

Proof. Since we are considering the case that t = 2n + 1 and n ≥ 2(p − 1), the
condition t ≥ n ≥ p+1 in Theorem 1.6 is cleared. Also, we have pbn/(p−1)c ≥ n+1
by Lemma 5.4(1). Thus, the inequality in (1.2) is satisfied, since d(t+1)/2e = n+1
in this case. Also, la(n, p) ≥ 0 for any a ≥ 1 by Lemma 3.2. From (2.1) and (5.1),
the p–adic expansion of la(n, p) is represented as

la(n, p) = (a − 1)pd(n−1)(p−1)e + (p − 1)pd(n−1)(p−1)e−1 + · · ·
+(p − a1 − 1)pt1 + · · · + (p − ai − 1)pti + · · · + (p − am)ptm .

Then, we have(
la(n, p)
n + 1

)
≡

(
p − a1 − 1

a1

)
· · ·

(
p − am−1 − 1

am−1

)(
p − am

am

)
6≡ 0 (mod p),

because it holds(
p − ai − 1

ai

)
6≡ 0 (mod p) for 1 ≤ i ≤ m− 1 and

(
p − am

am

)
6≡ 0 (mod p)

by the conditions on ai in (5.1). Hence, the incongruence in (1.2) is also satisfied
in this case. Thus, we have the required result by Theorem 1.6. ¤

We have also the following corollary of Theorem 1.6 using Lemma 5.4(2) instead
of Lemma 5.4(1). Since the proof is quite similar with the above, we omit the
description of the proof.
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Corollary 5.6. Let p be a prime number with p ≥ 5; and assume that n is an
odd integer with n ≥ p+1. Then, if the p–adic expansion of (n+1)/2 satisfies the
below condition (5.2), we have s(νn

n(p)) = n, that is, νn
n(p) is not stably extendible

to Ln+1(p).

(5.2)
n + 1

2
=

m∑
i=1

aip
ti with 1 ≤ ai ≤

p − 1
3

(1 ≤ i ≤ m−1) and 1 ≤ am ≤ p

3
,

where m ≥ 1 and t1 > t2 > · · · > tm ≥ 0.

Corollary 1.7 is a special case of Corollary 5.5 and Corollary 5.6.

6. Proof of Theorem 1.4

In this section, we shall complete the proof of Theorem 1.4. First, we consider
the case p = 3. By Theorem 1.3, s(νt

n(3)) = ∞ for 0 ≤ n ≤ 5 and t ≥ 2n+1. Also,
by Lemma 4.3, s(νt

n(3)) < ∞ for n ≥ 8 and t ≤ 2n + 2. Thus, it is sufficient to
prove the following lemma, since s(ν13

6 (3)) ≤ s(ν14
6 (3)) and s(ν15

7 (3)) ≤ s(ν16
7 (3)).

Lemma 6.1. We have s(ν14
6 (3)) < 40 and s(ν16

7 (3)) < 38.

Proof. Let n = 6 or 7. Then, since l1(6, 3) = 20 and l1(7, 3) = 19, the required
inequality is represented as s(ν2n+2

n (3)) < 2l1(n, 3). We suppose that ν2n+2
n (3) is

stably extendible to L2l1(n,3)(3). Then, there exists a (2n + 2)–dimensional R–
vector bundle α over L2l1(n,3)(3) whose restriction to Ln(3) is stably equivalent to
ν2n+2

n (3). Since n = 6 or n = 7, ν2n+2
n (3) is stably equivalent to l1(n, 3)r(ηn) by

Lemma 2.2 and Lemma 3.2, and 2 ·3bn/2c > 2l1(n, 3) holds. Thus, by Proposition
4.1 we have P (α) = (1 + x2)l1(n,3), where x = c1(ηn) ∈ H2(Lm(p); Z) = Z/p

is a generator for m = 2l1(n, 3). Therefore, pl1(n,3)(α) = x2l1(n,3) 6= 0, which
contradicts that the dimension of α is 2n + 2 and 2l1(n, 3) > 2n + 2. Thus, we
have comleted the proof. ¤

Next, we consider the case p = 5. In this case, s(νt
n(5)) = ∞ for 2 ≤ n ≤ 5 and

t ≥ 2n + 1 by Theorem 1.3, and s(νt
n(5)) < ∞ for n ≥ 10 with n 6= 12, 13 and

t ≤ 2n+2 by Lemma 4.3. Thus, it is sufficient to show that s(ν2n+2
n (5)) < ∞ for

6 ≤ n ≤ 9 and n = 12, 13, since s(ν2n+1
n (5)) ≤ s(ν2n+2

n (5)).
First, consider the cases n = 6 and n = 7.

Lemma 6.2. We have s(ν14
6 (5)) < 16 and s(ν16

7 (5)) < 30.

Proof. First, we prove s(ν14
6 (5)) < 16. Suppose that ν14

6 (5) is stably extendible
to L16(5). Then, there is a 14-dimensional vector bundle α over L16

0 (5) satisfying
that i∗α is stably equivalent to ν14

6 (5), where L16
0 (5) is the 32-skeleton of L16(5)

and i : L6(5) → L16
0 (5) is the inclusion map. By Theorem 2.1, KO(L6(5)) =

Z/25{σ̄6} ⊕ Z/5{σ̄2
6} and KO(L16

0 (5)) = Z/54{σ̄16} ⊕ Z/54{σ̄2
16}, where σ̄n =

r(ηn)−2. Since i∗(α−14) = ν14
6 (5)−14 = l1(6, 5)σ̄6 = 18σ̄6 and since i∗(σ̄i

16) = σ̄i
6,

we have

(6.1) α − 14 = (18 + 25s)σ̄16 + 5tσ̄2
16
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in KO(L16
0 (5)) for some integers s and t. As mentioned about the total Pontrjagin

class in the section 4, we have P (σ̄16) = P (r(η16)−2) = 1+x2. Also, since σ̄2
16 =

r(η2
16)−4r(η16)+6, we have P (σ̄2

16) = P (r(η2
16))P (r(η16))−4 = (1+4x2)(1+x2)−4.

Thus, it follows from (6.1) that

P (α) = (1 + x2)18+25s−20t(1 + 4x2)5t

= (1 + x2)3(1 + x10)3+5s−4t(1 − x10)t

= (1 + x2)3(1 + (3 − 4t)x10)(1 − tx10) = (1 + x2)3(1 + 3x10)

= 1 + 3x2 + · · · − x14 + 3x16,

where we use the property that (1 + y)5 = 1 + y5 and x20 = 0 in H2∗(L16
0 (5); Z).

Hence, we have p8(α) = 3x16 6= 0, which contradicts that the dimension of α is
14.

We can proceed similarly for s(ν16
7 (5)). Suppose that ν16

7 (5) is stably extendible
to L30(5). Then, there is a 16-dimensional vector bundle β over L30(5) satisfying
that i∗β is stably equivalent to ν16

7 (5), where i : L7(5) → L30(5) is the inclusion
map. By Theorem 2.1, KO(L7(5)) = Z/25{σ̄7} ⊕ Z/5{σ̄2

7} and KO(L30(5)) =
Z/58{σ̄30} ⊕ Z/57{σ̄2

30}. Since i∗(β − 16) = ν16
7 (5) − 16 = l1(7, 5)σ̄7 = 17σ̄7 in

KO(L7(5)), we have

β − 16 = (17 + 25s)σ̄30 + 5tσ̄2
30

in KO(L30(5)) for some integers s and t. Then, it follows that

P (β) = (1 + x2)17+25s−20t(1 + 4x2)5t

= (1 + x2)2(1 + x10)3+5s−4t(1 − x10)t

= (1 + x2)2(1 + (3 − 4t)x10 +
(

3 + 5s − 4t

2

)
x20 +

(
3 + 5s − 4t

3

)
x30)

(1 − tx10 +
(

t

2

)
x20 −

(
t

3

)
x30).

Put p10(β) = ux20 using some integer u. Then, calculating the coefficient of x20 in
the above expression, we have u ≡ 3, 2, 1, 0 or 4 (mod 5) according to t ≡ 0, 1, 2, 3
or 4 (mod 5). Thus, p10(β) 6= 0 unless t ≡ 3 (mod 5). When t ≡ 3 (mod 5), we
have p15(β) = 2x30 6= 0 from the coefficient of x30 in the above expression. Since
the dimension of β is 16, we have a contradiction that p10(β) = 0 and p15(β) = 0.
Thus, we have the required result. ¤

To obtain s(νt
n(5)) < ∞ for n = 8, 9, 12 or 13, we apply the following theorem

due to Kobayashi–Maki–Yoshida [15].

Theorem 6.3. ([15, Theorem 3.6]) Let p be an odd prime number, and assume
that n ≡ 0, 1 (mod p − 1). Then, if

(6.2) bt/2c < pb(n−2)/(p−1)c+1 − (n + 1),

we have s(νt
n(p)) < 2(pb(n−2)/(p−1)c+1 − (n + 1)).

About the condition (6.2), we have pb(n−2)/(p−1)c+1 − (n + 1) = l1(n, p) since
n ≡ 0, 1 (mod p− 1). Furtheremore, by the method used in the proof of Lemma
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3.2, we can easily prove that l1(n, p) > n + 1 if p ≥ 5 and n ≥ p + 1. Thus, we
have the following corollary.

Corollary 6.4. Let p ≥ 5, n ≥ p + 1 and t ≤ 2n + 2. Then, if n ≡ 0, 1
(mod p − 1), we have s(νt

n(p)) < 2l1(n, p).

Hence, we have s(ν2n+2
n (5)) < ∞ for n = 8, 9, 12 and 13, as required. Thus,

we have completed the proof of Theorem 1.4.
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