Stably extendible tangent bundles over lens spaces

Topology and its Applications Volume 154 Issue 18 Page 3145-3155 published_at 2007-10-15
アクセス数 : 597
ダウンロード数 : 121

今月のアクセス数 : 0
今月のダウンロード数 : 0
File
TopolAppl_154_3145.pdf 102 KB 種類 : fulltext
Title ( eng )
Stably extendible tangent bundles over lens spaces
Creator
Hironori Yamasaki
Source Title
Topology and its Applications
Volume 154
Issue 18
Start Page 3145
End Page 3155
Abstract
The purpose of this paper is to study the stable extendibility of the tangent bundle τn(p) over the (2n + 1)-dimensional standard lens space Ln(p) for odd prime p. We investigate for which m the tangent bundle τn(p) is stably extendible to Lm(p) but is not stably extendible to Lm+1(p), where we consider m = ∞ if τn(p) is stably extendible to Lk(p) for any k ≥ n, and determine m in the case n ≥ p - 3.
Keywords
Stably extendible
Tangent bundle
Lens space
KO-theory
NDC
Mathematics [ 410 ]
Language
eng
Resource Type journal article
Publisher
Elsevier Science BV
Date of Issued 2007-10-15
Rights
Copyright (c) 2007 Elsevier B.V.
Publish Type Author’s Original
Access Rights open access
Source Identifier
[ISSN] 0166-8641
[DOI] 10.1016/j.topol.2007.08.007
[NCID] AA00459572
[DOI] http://dx.doi.org/10.1016/j.topol.2007.08.007