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ABSTRACT: The purpose of this paper is to study the stable extendibility of
the tangent bundle τn(p) over the (2n + 1)-dimensional standard lens space
Ln(p) for odd prime p. We investigate for which m the tangent bundle τn(p)
is stably extendible to Lm(p) but is not stably extendible to Lm+1(p), where
we consider m = ∞ if τn(p) is stably extendible to Lk(p) for any k ≥ n, and
determine m in the case n ≥ p − 3.

1 Introduction

Let F be the real number field R, the complex number field C or the quater-
nion number field H. For a subspace A of a space X , a t-dimensional F -vector
bundle ζ over A is defined to be extendible to X , if there is a t-dimensional
F -vector bundle over X whose restriction to A is equivalent to ζ, that is, if
ζ is equivalent to the induced bundle i∗η of a t-dimensional F -vector bundle
η over X under the inclusion map i : A → X . We can observe the interest-
ing studies about the extendibility of vector bundles by Schwarzenberger[12],
Adams-Mahmud[1], Rees[11], Kobayashi-Maki-Yoshida[8] and so on.

In [4, p.273], we have introduced the notion of stably extendible vector bundle
as follows: In the above situation, if i∗η is stably equivalent to ζ, namely i∗η+k
is equivalent to ζ +k for a trivial F -vector bundle k of some dimension k ≥ 0,
ζ is defined to be stably extendible to X . Obviously, if ζ is extendible to X ,
then ζ is stably extendible to X . When A is an n-dimensional CW complex
and the dimension t of ζ is more than or equal to ((n + 2)/d) − 1, where
d = dimR F , ζ is stably extendible to X if and only if it is extendible to X ,
by the stability property (cf. [3, pp.111-113]).
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The tangent bundle τ(FP n) over the F–projective space FP n is stably ex-
tendible to FP n+1 if and only if n = 1, 3 or 7 when F = R ([9, Theorem
4.2]), n = 1 when F = C considered τ(CP n) as a C–vector bundle ([2, Ap-
pendix I, p.166]) and n = 1 when F = H ([5, Theorem A]). We study the
stable extendibility of the tangent bundle over the standard lens space for an
odd prime, and show that the difference between the stable extendibility and
extendibility appears in this case.

Let Ln(p) = S2n+1/(Z /p) be the (2n + 1)-dimensional standard lens space
mod p, and τn(p) = τ(Ln(p)) denote the tangent bundle over Ln(p). Then, our
purpose is to determine the integer s(τn(p)) defined by

s(τn(p)) = max{m | m ≥ n and τn(p) is stably extendible to Lm(p)},

where we set s(τn(p)) = ∞ if τn(p) is stably extendible to Lm(p) for any m ≥ n.
We have the following result about the extendibility of τn(p) and s(τn(p)).

Theorem 1.1. Let p be an odd integer.

(1) [8, Theorem 1.2], [9, Theorem 5.3] τn(p) is extendible to Ln+1(p) if and
only if n = 0, 1 or 3, and τn(p) for n = 0, 1 or 3 is extendible to Lm(p)
for any m ≥ n.

(2) [10, Theorem 1, Theorem 5.3], [6, Theorem 2,Theorem 3] When p = 3, 5
or 7, s(τn(p)) = ∞ if 0 ≤ n ≤ p, and s(τn(p)) = 2n + 1 if n ≥ p + 1.

In this paper, we generalize the result of Theorem 1.1 (2) to the case of any
odd prime p, and show the following theorems.

Theorem 1.2. Let p be an odd prime. Then, we have

s(τn(p)) = 2n + 1 for n ≥ p + 1.

Theorem 1.3. Let p be an odd prime. Then, we have the following.

(1) s(τn(p)) = ∞ for p − 3 ≤ n ≤ p.
(2) s(τ2(p)) = ∞ if p ≡ ±1 mod 12.

Notice that s(τn(p)) = ∞ for n = 0, 1 or 3 by Theorem 1.1(1), and s(τ2(p)) =
∞ for p = 3, 5 or 7 by Theorem 1.1(2). For the case of p = 11, 13 or 17, we
have the following additional result.

Lemma 1.4. s(τn(11)) = ∞ for n = 4 or 5, s(τn(13)) = ∞ for 5 ≤ n ≤ 7,
and s(τ2(17)) = ∞.

These results support our following conjecture given in [6]:
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Conjecture 1.5. For any odd prime p,

s(τn(p)) = ∞ for 0 ≤ n ≤ p, and s(τn(p)) = 2n + 1 for n ≥ p + 1.

We remark that, in the case of p − 3 ≤ n ≤ p for any odd prime p ≥ 7, a
difference between the extendibility and the stable extendibility appears by
Theorem 1.1(1) and Theorem 1.3, that is, τn(p) is not extendible to Ln+1(p)
in spite of s(τn(p)) = ∞.

The paper is organized as follows: In §2, we state some known results necessary
to the proofs, and prove Theorem 1.2 in §3. The proofs of Theorem 1.3 and
Lemma 1.4 are shown in §4 and §5 respectively.

2 Preliminary

Throughout the paper, p denotes an odd prime. Let η be the canonical C–line
bundle over Ln(p), that is, η is the induced vector bundle from the canonical
C–line bundle over the complex projective space CPn under the projection
π : Ln(p) → CPn, and r(η) the underlying 2–dimensional R–vector bundle of
η. Sometimes, we denote η by ηn to make it clear that η is over Ln(p).

Let K̃O(X) (resp. K̃ (X)) denote the reduced real (resp. complex) K–ring.
Then, we have the homomorphisms r : K̃ (X) → K̃O(X) defined by taking
the underlying R–vector bundles of given C–vector bundles and z : K̃O(X) →
K̃ (X) defined by taking the complexifications z(γ) = γ ⊗C of given R–vector
bundles γ. Then, z is a ring homomorphism, and the composition zr is equal
to the homomorphism 1 + t : K̃ (X) → K̃ (X) where 1 is the identity map
and t is the homomorphism defined by taking the conjugate vector bundles of
given C–vector bundles.

We set σ = η − 1 ∈ K̃ (Ln(p)) and σ̄ = r(σ) = r(η) − 2 ∈ K̃O(Ln(p)). Then,
the explicit structure of K̃ (Ln(p)) and K̃O(Ln(p)) are determined by Kambe
[7] as follows, where Ln

0 (p) is the 2n-skeleton of Ln(p) and [x] for a real number
x denotes the largest integer m with m ≤ x.

Theorem 2.1. [7, Theorem 1, Theorem 2, Lemma (3.4)]

(1) Let n = s(p − 1) + r with 0 ≤ r < p − 1. Then,

K̃ (Ln(p)) ∼= (Z /ps+1)r ⊕ (Z /ps)p−r−1,

and the direct summands are generated by σ1, · · · , σr and σr+1, · · · , σp−1 re-
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spectively. Furthermore, the ring structure is determined by the relations

σp = −
p−1∑
i=0

(
p

i

)
σi, σn+1 = 0,

where
(

a
b

)
denotes a binomial coefficient.

(2) Let q = (p − 1)/2 and n = s(p − 1) + r with 0 ≤ r < p − 1. Then,

K̃O(Ln
0 (p)) ∼= (Z /ps+1)[

r
2] ⊕ (Z /ps)q−[r2],

and the direct summands are generated by σ̄1, · · · , σ̄[r2] and σ̄[r2]+1, · · · , σ̄q re-
spectively. Also, we have

K̃O(Ln(p)) ∼=

K̃O(Ln
0 (p)) if n 6≡ 0 mod 4,

Z /2 ⊕ K̃O(Ln
0 (p)) if n ≡ 0 mod 4.

Furthermore, the ring structure of K̃O(Ln
0 (p)) is determined by the relations

σ̄q+1 = −
q∑

i=1

2q + 1

2i − 1

(
q + i − 1

2i − 2

)
σ̄i, σ̄[n/2]+1 = 0.

The following property is also necessary.

Lemma 2.2. [7, Lemma (3.5)] The homomorphism z : K̃O(Ln
0 (p)) → K̃ (Ln

0 (p))
is a monomorphism.

About the lower bound of the stable extendibility of τn(p), we have shown the
following proposition using the result due to Sjerve [14, Theorem A].

Proposition 2.3. [6, Proposition 3.1] For any n ≥ 1, s(τn(p)) ≥ 2n + 1.

Alternatively, about the upper bound of the stable extendibility of τn(p), the
following has been shown.

Proposition 2.4. [9, Theorem 4.3] If p[n/(p−1)] > n + 1, then τn(p) is not
stably extendible to Lm(p) with m ≥ 2n + 2.

It is easy to show that p[n/(p−1)] > n+1 holds if and only if n ≥ 2p−2. Hence,
by Propositions 2.3 and 2.4, we have the following.

Corollary 2.5. [6, Theorem 1] s(τn(p)) = 2n + 1 if n ≥ 2p − 2.

Thus, Theorem 1.2 extends Corollary 2.5 in the case p + 1 ≤ n ≤ 2p− 2, and
we shall prove it in the next section.
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3 Proof of Theorem 1.2

As mentioned in the previous sections, s(τn(p)) ≥ 2n + 1 for any n ≥ 1 by
Proposition 2.3, and s(τn(p)) = 2n + 1 for n ≥ 2p − 2 by Corollary 2.5. Also,
s(τn(3)) = 2n + 1 for n ≥ 4 by Theorem 1.1(2). Thus, the rest of this section
is devoted to prove the following proposition, which establishes Theorem 1.2.

Proposition 3.1. Assume that p ≥ 5 and n = p + m with 1 ≤ m ≤ p − 3.
Then, s(τn(p)) ≤ 2n + 1.

Now, under the assumption on p and n in Proposition 3.1, we suppose that
s(τn(p)) ≥ 2n + 2, and derive a contradiction. Thus, it is supposed that there
is a (2n + 1)-dimensional vector bundle α over L2n+2(p) satisfying that i∗α is
stably equivalent to τn(p) for the inclusion map i : Ln(p) → L2n+2(p).

By Theorem 2.1, we have

K̃O(Ln
0 (p)) ∼= Z /p2{σ̄, · · · , σ̄[m+1

2 ]} ⊕ Z /p{σ̄[m+1
2 ]+1, · · · , σ̄q} (3.1)

since n = (p − 1) + (m + 1), where q = (p − 1)/2, and

K̃O(L2n+2
0 (p)) ∼= Z /ps+1{σ̄, · · · , σ̄[r2]} ⊕ Z /ps{σ̄[r2]+1, · · · , σ̄q} (3.2)

when 2n + 2 = s(p − 1) + r with s ≥ 0 and 0 ≤ r ≤ p − 2, where L2n+2
0 (p) is

the (4n + 4)–skeleton of L2n+2(p).

We set [α] = j∗α − (2n + 1) ∈ K̃O(L2n+2
0 (p)) for the inclusion map j :

L2n+2
0 (p) → L2n+2(p). By (3.2), we can represent [α] as

[α] =
q∑

i=1

aiσ̄
i ∈ K̃O(L2n+2

0 (p)),

where ai for 1 ≤ i ≤ q are some integers. Then, we have i∗[α] =
q∑

i=1
aiσ̄

i ∈

K̃O(Ln
0 (p)) for the inclusion map i : Ln

0 (p) → L2n+2
0 (p). On the other hand, we

recall that the tangent bundle τn(p) satisfies τn(p) + 1 = (n + 1)r(ηn). Since
i∗[α] = τn(p) − (2n + 1), it follows i∗[α] = (n + 1)σ̄. Thus, by (3.1), we have

a1 ≡ n + 1 = p + m + 1 mod p2 and ai ≡ 0 mod p for 2 ≤ i ≤ q.

Hence, we can put ai as follows using some integers bi:

ai =

b1p + m + 1 if i = 1

bip if 2 ≤ i ≤ q.
.
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Here, the integer b1 satisfies

b1 ≡ 1 mod p. (3.3)

Hence, we have

[α] = (m + 1)σ̄ +
q∑

i=1

bipσ̄
i. (3.4)

Let z : K̃O(L2n+2
0 (p)) → K̃ (L2n+2

0 (p)) and r : K̃ (L2n+2
0 (p)) → K̃O(L2n+2

0 (p))
be the homomorphisms mentioned in §2. Then, since zr(η − 1) = η + η̄ − 2,
where η̄ denotes the conjugate vector bundle of η, we have

z(σ̄)i = (η + η̄ − 2)i =
i∑

j=0

(
i

j

)
(−2)i−j((η + η̄)j − 2j). (3.5)

Since ηη̄ = 1,

(η + η̄)j − 2j =
[j/2]∑
k=0

(
j

k

)
(ηj−2k + η̄j−2k − 2). (3.6)

Hence, substituting (3.6) into (3.5), we have

z(σ̄i) = z(σ̄)i =
i∑

j=0

[j/2]∑
k=0

(−2)i−j

(
i

j

)(
j

k

)
(ηj−2k + η̄j−2k − 2), (3.7)

Thus, by (3.4) and (3.7), we have

z[α] = (m + 1)(η + η̄ − 2) (3.8)

+
q∑

i=1

i∑
j=0

[j/2]∑
k=0

bip(−2)i−j

(
i

j

)(
j

k

)
(ηj−2k + η̄j−2k − 2).

Let c(β) =
∑
j≥0

cj(β) be the total Chern class of a C–vector bundle β over

a space X, where cj(β) ∈ H2j(X; Z) denotes the j–th Chern class of β and
c0(β) = 1. As is known, the multiplicative property c(β + γ) = c(β)c(γ)
holds for any C–vector bundles β and γ. Also, since c(k) = 1 for a trivial C–
vector bundle k, c(β + k) = c(β), and the Chern class cj(β − b) of an element

β − b ∈ K̃ (X), where b is the dimension of β, is also defined to be cj(β). We
denote the mod p reductions of c(β) and cj(β) by the same letters. Then, the
following lemma holds.

Lemma 3.2. For the Chern class of z[α] ∈ K̃ (L2n+2
0 (p)), we have

c(z[α]) = (1 − x2)m+1

1 −
q∑

i=1

bi

 i∑
j=0

[j/2]∑
k=0

(−2)i−j

(
i

j

)(
j

k

)
(j − 2k)2

 x2p

 .
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Proof. From (3.8), we have

c(z[α]) = c(η + η̄)m+1
q∏

i=1

i∏
j=0

[j/2]∏
k=0

c(ηj−2k + η̄j−2k)bip(−2)i−j(i
j)(

j
k). (3.9)

We recall that
⊕
i≥0

H i(L2n+2
0 (p); Z /p) = Z /p[x]/(x2n+3),where x = c1(η), and

we have c(ηj−2k + η̄j−2k) = 1−(j−2k)2x2. Since hp ≡ h mod p for any integer
h, it follows from (3.9)

c(z[α]) = (1 − x2)m+1
q∏

i=1

i∏
j=0

[j/2]∏
k=0

(1 − (j − 2k)2x2p)bi(−2)i−j(i
j)(

j
k).

Remark that (x2p)2 = 0, because n ≤ 2p − 3 by the assumption and thus
(x2p)2 ∈ H8p(L2n+2

0 (p); Z /p) = 0. Therefore, we have

c(z[α]) = (1 − x2)m+1
q∏

i=1

i∏
j=0

[j/2]∏
k=0

(
1 − bi(−2)i−j

(
i

j

)(
j

k

)
(j − 2k)2x2p

)

= (1 − x2)m+1

1 −
q∑

i=1

i∑
j=0

[j/2]∑
k=0

bi(−2)i−j

(
i

j

)(
j

k

)
(j − 2k)2x2p


= (1 − x2)m+1

1 −
q∑

i=1

bi

 i∑
j=0

[j/2]∑
k=0

(−2)i−j

(
i

j

)(
j

k

)
(j − 2k)2

 x2p

 ,

as is required.

For each 1 ≤ i ≤ q and 0 ≤ j ≤ i, we put

Ij =
[j/2]∑
k=0

(
j

k

)
(j − 2k)2 and Ki =

i∑
j=0

(−2)i−j

(
i

j

)
Ij.

Then, the equation in Lemma 3.2 is represented as

c(z[α]) = (1 − x2)m+1

(
1 −

( q∑
i=1

biKi

)
x2p

)
. (3.10)

We shall show the following.

Lemma 3.3. K1 = 1 and Ki = 0 for 2 ≤ i ≤ q.

Proof. First, we assume that j is odd. Then, we have the following equalities:

[j/2]∑
k=0

(
j

k

)
=

1

2
2j = 2j−1;
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[j/2]∑
k=0

k(j − k)

(
j

k

)
=

[j/2]∑
k=1

j!

(k − 1)!(j − k − 1)!

= j(j − 1)
[j/2]∑
k=1

(
j − 2

k − 1

)
= j(j − 1)

[(j−2)/2]∑
k′=0

(
j − 2

k′

)

= j(j − 1)
2j−2

2
= j(j − 1)2j−3.

Hence,

Ij = j2
[j/2]∑
k=0

(
j

k

)
− 4

[j/2]∑
k=0

k(j − k)

(
j

k

)
= j22j−1 − 4j(j − 1)2j−3 = j2j−1.

Next, we assume that j is even. Then, we have

[j/2]∑
k=0

(
j

k

)
=

1

2

(
2j −

(
j

j/2

))
+

(
j

j/2

)
= 2j−1 +

1

2

(
j

j/2

)
, and

[j/2]∑
k=0

k(j − k)

(
j

k

)
= j(j − 1)

[j/2]∑
k=1

(
j − 2

k − 1

)
= j(j − 1)

(
2j−3 +

1

2

(
j − 2

(j/2) − 1

))
.

Hence, Ij is transformed as follows:

[j/2]∑
k=0

(j2 − 4kj + 4k2)

(
j

k

)
= j2

(
2j−1 +

1

2

(
j

j/2

))
− 4j(j − 1)

(
2j−3 +

1

2

(
j − 2

(j/2) − 1

))

= j2j−1 +
1

2
j2

(
j

j/2

)
− 2j(j − 1)

(
j − 2

(j/2) − 1

)
.

Here,

2j(j − 1)

(
j − 2

(j/2) − 1

)
=

1

2
j2

(
j

j/2

)
,

and thus we have the same conclusion Ij = j2j−1 as in the case of odd j.

Therefore, we have

Ki =
i∑

j=0

(−2)i−j

(
i

j

)
j2j−1 = (−1)i2i−1

i∑
j=0

(−1)jj

(
i

j

)

= (−1)i2i−1
i∑

j=1

(−1)ji

(
i − 1

j − 1

)
= (−1)i+12i−1i

i−1∑
j′=0

(−1)j′
(
i − 1

j′

)
.

Since

i−1∑
j′=0

(−1)j′
(
i − 1

j′

)
= (1 − 1)i−1 = 0 for i ≥ 2 and = 1 for i = 1,
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we have the required result.

Now, we can complete the proof of Proposition 3.1 as follows. By (3.10) and
lemma 3.3, we have

c(z[α]) = (1 − x2)m+1(1 − b1x
2p) = 1 + · · · + (−1)mb1x

2p+2m+2.

Recall that n = p+m and b1 ≡ 1 mod p by (3.3). Since H4n+4(L2n+2
0 ; Z /p) =

Z /p generated by x2n+2, c2n+2(z[α]) 6= 0. On the other hand, since α is of
dimension 2n+1, we have c2n+2(z[α]) = 0, which contradicts the above. Thus,
we have completed the proof of Proposition 3.1, and obtained Theorem 1.2.

4 Proof of Theorem 1.3

In the remainder of the article, we denote the stable equivalence of two R–
vector bundles (resp. C–vector bundles) ζ and γ with the same dimensions
over a space X simply by ζ = γ considering them as elements of the K–ring
KO(X) (resp. K (X)) if there is no confusion. In order to prove Theorem 1.3,
we first have the following combinatorial congruence.

Lemma 4.1. Let p be an odd prime, and k an integer with 0 ≤ k ≤ p − 2.
Then, the following holds.

p−1∑
j=k

(
j

k

)
≡ 0 mod p.

Proof. Let S be the value of the left hand side in the required congruence.
Then, S appears as the coefficient of xk in the expansion of the polynomial
f(x) =

∑p−1
j=k(1 + x)j on the variable x. But, since

f(x) = (1 + x)k(1 + (1 + x) + · · · + (1 + x)p−k−1)

= (1 + x)k (1 + x)p−k − 1

x
=

1

x
((1 + x)p − (1 + x)k),

S is equal to the coefficient of xk+1 in the expansion of (1 + x)p − (1 + x)k.
Hence, we have

S =

(
p

k + 1

)
≡ 0 mod p

since 0 ≤ k ≤ p − 2, which shows the required result.

Using Lemma 4.1, the next lemma follows.
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Lemma 4.2. Let p be an odd prime and 0 ≤ n ≤ p− 2. Then, over Ln(p), we
have the following stable equivalences:

ηp−1
n + ηp−2

n + · · · + ηn + 1 = p;

r(η
[p2]
n ) + r(η

[p2]−1
n ) + · · · + r(ηn) + 1 = p.

Proof. Since 0 ≤ n ≤ p − 2, K̃ (Ln(p)) ∼=
⊕n

i=1 Z /p{σi} and σn+1 = 0 by
Theorem 2.1(1). Hence, σp−1 = 0. Then, using Lemma 4.1, we have

p−1∑
j=0

ηj
n =

p−1∑
j=0

(σ + 1)j =
p−1∑
j=0

 j∑
k=0

(
j

k

)
σk


=

p−1∑
k=0

p−1∑
j=k

(
j

k

) σk =
p−2∑
k=0

p−1∑
j=k

(
j

k

) σk

= p +
p−2∑
k=1

p−1∑
j=k

(
j

k

) σk = p.

Thus, we obtain the first required stable equivalence. About the second stable
equivalence, since ηp

n = 1 and ηnη̄n = 1, r(ηi
n) = r(η̄p−i

n ) = r(ηp−i
n ) for 0 ≤ i ≤

p. Therefore, from the first equivalence, we have

2r(η
[p2]
n ) + 2r(η

[p2]−1
n ) + · · · + 2r(ηn) + 2 = 2p.

Since K̃O(Lp−2(p)) is a torsion group without 2–torsion by Theorem 2.1(2),
dividing both sides of the above equivalence by 2, we have the required equiva-
lence for n = p−2. Then, taking the induced vector bundles r(ηj

n) = i∗r(ηj
p−2)

for 0 ≤ n ≤ p − 3 and 1 ≤ j ≤ p − 1, we have the required result.

Proof of Theorem 1.3(1). Recall that τn(p) = (n + 1)r(ηn) − 1, and notice
that p(r(ηn) − 2) = 0 by Theorem 2.1(2) when 0 ≤ n ≤ p. Thus, we have
τp(p) = (p+1)r(ηp)−1 = r(ηp)+2p−1. Since the vector bundle r(ηp)+2p−1
over Lp(p) is extendible to Lm(p) for every m ≥ p, we have s(τp(p)) = ∞.
Similarly, since τp−1(p) = pr(ηp−1) − 1 = 2p − 1, we have s(τp−1(p)) = ∞. As
for the case of n = p − 2 or p − 3, using Lemma 4.2, we have

τp−2(p) = (p − 1)r(ηp−2) − 1 = 2
[p/2]−2∑

i=0

r(η
[p2]−i

p−2 ) + r(ηp−2) + 1,

τp−3(p) = (p − 2)r(ηp−3) − 1 = 2
[p/2]−2∑

i=0

r(η
[p2]−i

p−3 ) + 1.

Since r(ηn), r(η2
n), · · · , r(η

[p2]−1
n ) are extendible to Lm(p) for every m ≥ n, we

have s(τp−2(p)) = ∞ and s(τp−3(p)) = ∞, as is required.
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In order to show Theorem 1.3(2), we must develop some properties of vector
bundles over orbit spaces. For an R–vector bundle ζ over a space X , we denote
the i-th Pontrjagin class of ζ by pi(ζ) ∈ H4i(X ; Z), which also denotes its mod
p reduction pi(ζ) ∈ H4i(X ; Z /p). Let M be an orbit manifold by a free action
of a finite group G on a sphere Sm. Then, Sjerve [15] has shown the following
theorem.

Theorem 4.3. [15, Theorem (1.8)] Let ζ be a (2r + 1)–dimensional R–vector
bundle over M = Sm/G. If an integer s satisfies the Condition 4.4 below, there
exists a 2s–dimensional R–vector bundle γ which satisfies γ+(2r+1−2s) = ζ.

Condition 4.4. [15, (1.4) and (1.8)]

(1) For any prime divisor r of |G|, r > max([m/2] − s + 1, s + 1) holds.
(2) ps+1(ζ) ≡ ps+2(ζ) ≡ · · · ≡ pr(ζ) ≡ 0 mod 2–torsions.
(3) There exists u ∈ H2s(M ; Z) satisfying u2 = ps(ζ).
(4) There exists a 2s–dimensional vector bundle β over Sm which satisfies

β + (2r + 1 − 2s) = π∗ζ for the projection π : Sm → M .

Now,we prove Theorem 1.3(2).

Proof of Theorem 1.3(2). We apply Theorem 4.3 in the case M = S5/(Z /p) =
L2(p) and ζ = 3r(η2) + 1, under the assumption that p is an odd prime with
p ≡ ±1 mod 12. Thus, taking m = 5 and r = 3, we shall prove that

Condition 4.4 is satisfied for s = 1 in our case. (4.1)

Then, by Theorem 4.3, there exists a 2–dimensional R–vector bundle γ which
satisfies γ + 5 = 3r(η2) + 1. Since τ2(p) + 1 = 3r(η2), it turns out that τ2(p) is
stably equivalent to γ+3. Since any 2–dimensional vector bundle over Ln(p) is
extendible to Lm(p) for every m ≥ n in general (cf. [8]), we have s(τ2(p)) = ∞
if p ≡ ±1 mod 12, as is required.

Now, we prove (4.1). First, the condition (1) is satisfied obviously, and also the
condition (2) since pi(3r(η2)+1) ∈ H4i(L2(p); Z) = 0 for i ≥ 2. The condition
(4) holds because π∗(3r(η2) + 1) is a trivial vector bundle over S5 for the
projection π : S5 → L2(p). Thus, it remains to ascertain the condition (3).
Since p1(3r(η2) + 1) = 3x2 ∈ H4(L2(p); Z) ∼= Z /p, where x = p1(r(η2)), it is
required to show that there exists an element u ∈ H2(L2(p); Z) which satisfies
u2 ≡ 3x2 mod p. Since H2(L2(p); Z) ∼= Z /p generated by x, we put u = ax
using an integer a. Then, u2 ≡ 3x2 mod p holds if and only if a2 ≡ 3 mod p.
Using the quadratic residue, we see that there exists an integer a satisfying
a2 ≡ 3 mod p if and only if p = ±1 mod 12 (cf. [16, p.80]). In fact, using the

Legendre notation

(
q

p

)
, a2 ≡ 3 mod p holds for some integer a if and only if

11



(
3

p

)
= +1. By the law of reciprocity, we have

(
3

p

)
= (−1)(p−1)/2

(
p

3

)
. Also,

using the first complementary law,
(

p

3

)
= +1 or −1 according as p ≡ 1 or −1

mod 3. Hence, we have

(
3

p

)
= +1 if and only if p ≡ ±1 mod 12. Thus, we

have the required result.

We remark that the condition p ≡ ±1 mod 12 in Theorem 1.3(2) is satisfied
by an infinite number of primes p by the following theorem due to Dirichlet
(cf. [13, p.25]), and thus s(τ2(p)) = ∞ holds for infinitely many primes p.

Theorem 4.5 (Dirichlet). If integers m and k are prime each other, that is,
the greatest common divisor (m, k) = 1, then there is an infinite number of
primes p which satisfy p ≡ k mod m.

5 Proof of Lemma 1.4

First, we remark the following.

Lemma 5.1. For any j ≥ 1, there is the following stable equivalence over
Ln(p) :

r(ηn)j =
[(j−1)/2]∑

k=0

(
j

k

)
r(ηj−2k

n ).

Proof. We recall that the complexification homomorphism z : K̃O(Ln+1
0 (p)) →

K̃ (Ln+1
0 (p)) is a monomorphism by Lemma 2.2. Then, as an element of K̃ (Ln+1

0 (p)),

z(r(ηn+1)
j − 2j) = (ηn+1 + η̄n+1)

j − 2j =
[(j−1)/2]∑

k=0

(
j

k

)
(ηj−2k

n+1 + η̄j−2k
n+1 − 2)

= z

[(j−1)/2]∑
k=0

(
j

k

)
(r(ηj−2k

n+1 ) − 2)


= z

[(j−1)/2]∑
k=0

(
j

k

)
r(ηj−2k

n+1 ) −
(

2j + εj

(
j

[j/2]

)) ,

where εj = 1 or 0 according as j is an even or odd integer. Thus, the required
stable equivalence holds over Ln+1

0 (p). Then, applying the homomorphism j∗ :
K̃O(Ln+1

0 (p)) → K̃O(Ln(p)) induced by the inclusion j : Ln(p) → Ln+1
0 (p), we

have the required stable equivalence over Ln(p).
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Using Lemma 5.1, the element σ̄i ∈ K̃O(Ln(p)) as in Theorem 2.1 is repre-
sented using r(ηj

n) for 0 ≤ j ≤ i as follows:

σ̄i = (r(ηn)−2)i =
i∑

j=0

(
i

j

)
(−2)i−jr(ηn)j =

i∑
j=0

(
i

j

)
(−2)i−j

[(j−1)/2]∑
k=0

(
j

k

)
r(ηj−2k

n ).

Thus, we have the following.

Corollary 5.2. As elements of K̃O(Ln(p)),

σ̄6 = r(η6
n) − 12r(η5

n) + 66r(η4
n) − 220r(η3

n) + 495r(η2
n) − 792r(ηn) + 924,

σ̄5 = r(η5
n) − 10r(η4

n) + 45r(η3
n) − 120r(η2

n) + 210r(ηn) − 252,

σ̄4 = r(η4
n) − 8r(η3

n) + 28r(η2
n) − 56r(ηn) + 70,

σ̄3 = r(η3
n) − 6r(η2

n) + 15r(ηn) − 20,

σ̄2 = r(η2
n) − 4r(ηn) + 6.

Proof of Lemma 1.4. First, we consider the case of p = 11, and let n = 4, 5.
Then, by Theorem 2.1,

K̃O(Ln
0 (11)) = Z /11{σ̄} ⊕ Z /11{σ̄2}

with the relation σ̄3 = 0. Thus, we have 11σ̄ = 11σ̄2 = 0 and σ̄i = 0 for
i ≥ 3. Thus, substituting the relations in Corollary 5.2 into the equation
σ̄4 + 10σ̄3 + 3(11σ̄2) + 3(11σ̄) = 0, we have

r(η4
n) + 2r(η3

n) + r(η2
n) − 5r(ηn) + 2 = 0.

Hence, it follows

τ4(11) = 5r(η4) − 1 = r(η4
4) + 2r(η3

4) + r(η2
4) + 1,

τ5(11) = 6r(η5) − 1 = r(η4
5) + 2r(η3

5) + r(η2
5) + r(η5) + 1.

Since r(ηi
n) for any i ≥ 0 over Ln(11) is stably extendible to Lm(11) for any

m ≥ n, we have the required result s(τn(11)) = ∞ for n = 4, 5.

We can proceed similarly to prove the remaining statements. In the case of
p = 13 and n = 5, doing the same way as above, by substituting the relations
in Corollary 5.2 into the equation σ̄5 + 11σ̄4 + 44σ̄3 + 6(13σ̄2) + 4(13σ̄2) = 0,
we have

r(η5
5) + r(η4

5) + r(η3
5) + 2r(η2

5) − 6r(η5) + 2 = 0.

Thus, we have

τ5(13) = 6r(η5) − 1 = r(η5
5) + r(η4

5) + r(η3
5) + 2r(η2

5) + 1,
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and obtain the required result.

Let p = 13 and n = 6 or 7. Then, by Theorem 2.1,

K̃O(Ln(13)) = Z /13{σ̄} ⊕ Z /13{σ̄2} ⊕ Z /13{σ̄3}

with the relation σ̄4 = 0. Thus, substituting the relations in Corollary 5.2 to
the equation σ̄6 + 14σ̄5 + 74σ̄4 + 14(13σ̄3) + 16(13σ̄2) + 7(13σ̄) = 0, we have

r(η6
n) + 2r(η5

n) + 3r(η2
n) − 7r(ηn) + 2 = 0.

Hence, it follows

τ6(13) = 7r(η6) − 1 = r(η6
6) + 2r(η5

6) + 3r(η2
6) + 1,

τ7(13) = 8r(η7) − 1 = r(η6
7) + 2r(η5

7) + 3r(η2
7) + r(η7) + 1,

and thus we obtain the required result s(τn(13)) = ∞ for n = 6, 7.

As for the case of p = 17 and n = 2,

K̃O(L2(17)) = Z /17{σ̄}

with the relation σ̄2 = 0. Then, substituting the relations in Corollary 5.2 to
the equation σ̄4 + 8σ̄3 + 21σ̄2 + 17σ̄ = 0, we obtain

r(η4
2) + r(η2

2) − 3r(η2) + 2 = 0.

Hence, it follows

τ2(17) = 3r(η2) − 1 = r(η4
2) + r(η2

2) + 1,

and thus we have s(τ2(17)) = ∞, and we have completed the proof.
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