Stable extendibility of the tangent bundles over the lens spaces
Hiroshima mathematical journal Volume 36 Issue 3
Page 339-351
published_at 2006-11
アクセス数 : 532 件
ダウンロード数 : 166 件
今月のアクセス数 : 0 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00029833
File |
HiroshimaMathJ_36_339.pdf
384 KB
種類 :
fulltext
|
Title ( eng ) |
Stable extendibility of the tangent bundles over the lens spaces
|
Creator | |
Source Title |
Hiroshima mathematical journal
|
Volume | 36 |
Issue | 3 |
Start Page | 339 |
End Page | 351 |
Abstract |
The purpose of this paper is to study the stable extendibility of the tangent bundle τ_n(p) of the (2n+1)-dimensional standard lens space L^n(p) for odd prime p. We investigate the value of integer m for which τ_n(p) is stably extendible to L^m(p) but not stably extendible to L^<m+1>(p), and in particular we completely determine m for p=5 or 7. A stable splitting of τ_n(p) and the stable extendibility of a Whitney sum of τ_n(p) are also discussed.
|
Keywords |
tangent bundle
lens space
stably extendible
KO-theory
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | departmental bulletin paper |
Publisher |
Department of Mathematics, Graduate School of Science, Hiroshima University
|
Date of Issued | 2006-11 |
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 0018-2079
[NCID] AA00664323
|