Extendiblity of negative vector bundles over the complex projective spaces
Hiroshima Mathematical Journal Volume 36 Issue 1
Page 49-60
published_at 2006-04
アクセス数 : 580 件
ダウンロード数 : 77 件
今月のアクセス数 : 1 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00029832
File |
HiroshimaMathJ_36_49.pdf
361 KB
種類 :
fulltext
|
Title ( eng ) |
Extendiblity of negative vector bundles over the complex projective spaces
|
Creator | |
Source Title |
Hiroshima Mathematical Journal
|
Volume | 36 |
Issue | 1 |
Start Page | 49 |
End Page | 60 |
Abstract |
By Schwarzenberger's property, a complex vector bundle of dimension t over the complex projective space CP^n is extendible to CP^<n+k> for any k ≥ 0 if and only if it is stably equivalent to a Whitney sum of t complex line bundles. In this paper, we show some conditions for a negative multiple of a complex line bundle over CP^n to be extendible to CP^<n+1> or CP^<n+2>, and its application to unextendibility of a normal bundle of CP^n.
|
Keywords |
extendible
vector bundle
complex projective space
Chern class
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | departmental bulletin paper |
Publisher |
Department of Mathematics, Graduate School of Science, Hiroshima University
|
Date of Issued | 2006-04 |
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 0018-2079
[NCID] AA00664323
|