Extendiblity of negative vector bundles over the complex projective spaces

Hiroshima Mathematical Journal Volume 36 Issue 1 Page 49-60 published_at 2006-04
アクセス数 : 580
ダウンロード数 : 77

今月のアクセス数 : 1
今月のダウンロード数 : 0
File
HiroshimaMathJ_36_49.pdf 361 KB 種類 : fulltext
Title ( eng )
Extendiblity of negative vector bundles over the complex projective spaces
Creator
Source Title
Hiroshima Mathematical Journal
Volume 36
Issue 1
Start Page 49
End Page 60
Abstract
By Schwarzenberger's property, a complex vector bundle of dimension t over the complex projective space CP^n is extendible to CP^<n+k> for any k ≥ 0 if and only if it is stably equivalent to a Whitney sum of t complex line bundles. In this paper, we show some conditions for a negative multiple of a complex line bundle over CP^n to be extendible to CP^<n+1> or CP^<n+2>, and its application to unextendibility of a normal bundle of CP^n.
Keywords
extendible
vector bundle
complex projective space
Chern class
NDC
Mathematics [ 410 ]
Language
eng
Resource Type departmental bulletin paper
Publisher
Department of Mathematics, Graduate School of Science, Hiroshima University
Date of Issued 2006-04
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 0018-2079
[NCID] AA00664323