Stable unextendibility of vector bundles over the quaternionic projective spaces
Hiroshima Mathematical Journal Volume 33 Issue 3
Page 343-357
published_at 2003-11
アクセス数 : 524 件
ダウンロード数 : 169 件
今月のアクセス数 : 3 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00029831
File |
HiroshimaMathJ_33_343.pdf
494 KB
種類 :
fulltext
|
Title ( eng ) |
Stable unextendibility of vector bundles over the quaternionic projective spaces
|
Creator | |
Source Title |
Hiroshima Mathematical Journal
|
Volume | 33 |
Issue | 3 |
Start Page | 343 |
End Page | 357 |
Abstract |
We study the stable unextendibility of vector bundles over the quaternionic projective space HP^n by making use of combinatorial properties of the Stiefel-Whitney classes and the Pontrjagin classes. First, we show that the tangent bundle of HP^n is not stably extendible to HP^<n+1> for n ≥ 2, and also induce such a result for the normal bundle associated to an immersion of HP^n into R^<4n+k>. Secondly, we show a sufficient condition for a quaternionic r-dimensional vector bundle over HP^n not to be stably extendible to HP^<n+l> for r ≤ n and l > 0, which is also a necessary condition when r = n and l = 1.
|
Keywords |
vector bundle
extendible
quaternionic projective space
Pontrjagin class
Stiefel-Whitney class
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | departmental bulletin paper |
Publisher |
Department of Mathematics, Graduate School of Science, Hiroshima University
|
Date of Issued | 2003-11 |
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 0018-2079
[NCID] AA00664323
|