Symmetricity of the Whitehead element
Hiroshima Mathematical Journal Volume 27 Issue 2
Page 221-228
published_at 1997-07
アクセス数 : 663 件
ダウンロード数 : 188 件
今月のアクセス数 : 5 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00029828
File |
HiroshimaMathJ_27_221.pdf
292 KB
種類 :
fulltext
|
Title ( eng ) |
Symmetricity of the Whitehead element
|
Creator |
Kawamoto Yusuke
|
Source Title |
Hiroshima Mathematical Journal
|
Volume | 27 |
Issue | 2 |
Start Page | 221 |
End Page | 228 |
Abstract |
We study the symmetricity of the Whitehead element w_n ∊ π_<2np-3> (S^<2n-1>) for an odd prime p. It is shown that w_n considered as a map S^<2np-3> → S^<2n-1> factors through the p-fold covering map σ : S^<2np-3> → L^<2np-3> only when n is a power of p, and that w_<p^i>, actually factors through σ if 0 ≤ i ≤ 4. This is some of an odd prime version of the results of Randall and Lin for the projectivity of the Whitehead product [l_<2n-1>, l_<2n-1>] ∊ π_<4n-3>(S^<2n-1>).
|
Keywords |
Whitehead element
symmetric
lens space
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | departmental bulletin paper |
Publisher |
Department of Mathematics, Faculty of Science, Hiroshima University
|
Date of Issued | 1997-07 |
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 0018-2079
[NCID] AA00664323
|