Symmetricity of the Whitehead element

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

Mitsunori IMAOKA* and Yusuke KAWAMOTO

(Received February 14, 1996)

ABSTRACT. We study the symmetricity of the Whitehead element $w_n \in \pi_{2np-3}(S^{2n-1})$ for an odd prime *p*. It is shown that w_n considered as a map $S^{2np-3} \rightarrow S^{2n-1}$ factors through the *p*-fold covering map $\sigma: S^{2np-3} \rightarrow L^{2np-3}$ only when *n* is a power of *p*, and that w_{p^i} actually factors through σ if $0 \le i \le 4$. This is some of an odd prime version of the results of Randall and Lin for the projectivity of the Whitehead product $[t_{2n-1}, t_{2n-1}] \in \pi_{4n-3}(S^{2n-1}).$

1. Introduction

Let p be a prime, and $\sigma: S^{2n+1} \to L^{2n+1}$ denote the p-fold covering, where $L^{2n+1} = S^{2n+1}/\mathbb{Z}_p$ is the standard lens space. For any space X, an element $\alpha \in \pi_{2n+1}(X)$ is defined to be symmetric, if α considered as a map $S^{2n+1} \to X$ factors through $\sigma: S^{2n+1} \to L^{2n+1}$, that is, there exists a map $g: L^{2n+1} \to X$ with $\alpha = [g\sigma]$. Mimura-Mukai-Nishida [8] have shown that all elements in the positive dimensional stable homotopy groups of spheres are symmetric.

In this paper, we study the symmetricity of the Whitehead element $w_n \in \pi_{2np-3}(S^{2n-1})$ for an odd prime p. Hence, all spaces are assumed to be localized at an odd prime p. We recall the definition of w_n (cf. [3], [4]). Let $\varepsilon: C(n) \to S^{2n-1}$ be the homotopy fiber of the double suspension map $\Sigma^2: S^{2n-1} \to \Omega^2 S^{2n+1}$. It is known that C(n) is (2np-4)-connected and $\pi_{2np-3}(C(n)) \cong \mathbb{Z}_p$. For a generator $z \in \pi_{2np-3}(C(n))$, w_n is given by $w_n = \varepsilon_*(z) \in \pi_{2np-3}(S^{2n-1})$. Then, our results are stated as follows:

THEOREM A. If the Whitehead element $w_n \in \pi_{2np-3}(S^{2n-1})$ is symmetric, then $n = p^i$ for some $i \ge 0$.

THEOREM B. The Whitehead element $w_{p^i} \in \pi_{2p^{i+1}-3}(S^{2p^{i-1}})$ is symmetric for $0 \le i \le 4$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55Q15, secondary 55S10 Key words and phrases. Whitehead element, symmetric, lens space

^{*}Bartially supported by Crant Aid for Scientific Bassardh No. 07404

^{*}Partially supported by Grant-Aid for Scientific Research, No. 07404002

Theorem A corresponds to the result of Randall [9], who shows that the Whitehead product $[i_n, i_n] \in \pi_{2n-1}(S^n)$ is symmetric, for the prime 2, only when n or n + 1 is a power of 2. In this case, the symmetric is refered to as the projective. Milgram-Zvengrowski [7] have shown that $[i_{2i}, i_{2i}]$ is projective iff i = 0, 1, 2, and Lin [6] has concluded that $[i_{2i-1}, i_{2i-1}]$ is actually projective for any i > 0. Theorem B corresponds to such solutions, but the whole analogy with the methods in [6] does not hold in the case of odd primes. We shall show that the cases as in Theorem B are obtainable applying the results of Cohen [1].

We prove Theorem A in §2, Theorem B in §3, and §4 is devoted to establish a key lemma for the proof of Theorem B. Throughout the paper, Z_p denotes the cyclic group of order p and also the additive group of the mod p integers.

The authors wish to express their thanks to Professor Takao Matumoto for his valuable suggestions.

2. Proof of Theorem A

We shall apply the following proposition in the case that X is a stunted lens space, and the proposition is crucial also in the proof of Theorem B.

PROPOSITION 1 [4; Prop. C]. Suppose that a CW-complex X is (2n - 1)connected and dim $X \leq 2np - 3$. Then, for any map $\eta: S^{2np-3} \to X$ with $\eta_* = 0: H_{2np-3}(S^{2np-3}; \mathbb{Z}_p) \to H_{2np-3}(X; \mathbb{Z}_p)$, the following conditions (1) and (2) are
equivalent:

(1) There exists a map $\kappa: X \to S^{2n-1}$ with $w_n = [\kappa \eta]$;

(2) There exists a map $\omega: \Sigma^2 C_\eta \to S^{2n+1}$ with $\mathscr{P}^n \neq 0$ on $H^{2n+1}(C_\omega; \mathbb{Z}_p)$, where C_α is the cofiber of $\alpha = \eta$ or ω and $\mathscr{P}^n \in \mathscr{A}$ is the Steenrod operation over \mathbb{Z}_p .

Let $L = S^{\infty}/Z_p$ be the infinite dimensional lens space, and L^a for $a \ge 0$ denote the *a*-skeleton of *L*. Then, $L_l^k = K^k/L^{l-1}$ for $0 < l \le k$ is the stunted lens space, and the composition of the double covering map $\sigma : S^{2k-1} \to L^{2k-1}$ with the collapsing map $L^{2k-1} \to L_l^{2k-1}$ is the attaching map $\sigma : S^{2k-1} \to L_l^{2k-1}$ of the top cell in L_l^{2k} . Recall that $H^*(L; Z_p) = \Lambda_{Z_p}(x) \otimes Z_p[y]$ with $\beta x = y$, where the degrees of x and y are 1 and 2 respectively and β is the Bockstein operation. Then, we remark

LEMMA 2. w_n is symmetric if and only if there exists a map $\kappa: L_{2n}^{2np-3} \to S^{2n-1}$ with $w_n = [\kappa\sigma]$ for the attaching map $\sigma: S^{2np-3} \to L_{2n}^{2np-3}$.

PROOF. The if part is clear, so we assume that w_n is symmetric. Then, by the dimensional reason, there exists a map $g: L_{2n-1}^{2np-3} \to S^{2n-1}$ with $w_n =$

 $[g\sigma]$. For the inclusion $i: S^{2n-1} \to L_{2n-1}^{2np-3}$, we have $p[gi] = 0 \in \pi_{2n-1}(S^{2n-1})$, because L_{2n-1}^{2n} is the cofiber of a map $S^{2n-1} \to S^{2n-1}$ of degree p. Hence, [gi] = 0 and we have a required map κ with $w_n = [\kappa\sigma]$. \Box

Now, put $n = p^t + u$ for $0 < u < p^t(p-1)$, and assume that the Whitehead element $w_n \in \pi_{2np-3}(S^{2n-1})$ is symmetric. We shall verify Theorem A by inducing a contradiction from this assumption.

By applying Proposition 1 in the case of $X = L_{2n}^{2np-3}$ and using Lemma 2, we have a map $\omega: \Sigma^2 L_{2n}^{2np-2} \to S^{2n+1}$ with $\mathscr{P}^n \neq 0: H^{2n+1}(C_{\omega}; \mathbb{Z}_p) \to H^{2np+1}(C_{\omega}; \mathbb{Z}_p)$. Then, by the cofiber sequence $S^{2n+1} \to C_{\omega} \to \Sigma^3 L_{2n}^{2np-2}$, we have isomorphisms $H^{2n+1}(C_{\omega}; \mathbb{Z}_p) \cong \mathbb{Z}_p$ and $H^i(C_{\omega}; \mathbb{Z}_p) \cong H^{i-3}(L_{2n}^{2np-2}; \mathbb{Z}_p)$ for $i \ge 2n+3$. We denote the generator of $H^{2n+1}(C_{\omega}; \mathbb{Z}_p) \cong \mathbb{Z}_p$ by a, and identify the generator of $H^{2k+3}(C_{\omega}; \mathbb{Z}_p)$ for $n \le k \le np-1$ with $y^k \in H^{2k}(L_{2n}^{2np-2}; \mathbb{Z}_p) \cong \mathbb{Z}_p$. Then, $\mathscr{P}^n(a) \equiv y^{np-1}$ up to unit.

Let $u = u_1 p^{t_1} + \cdots + u_l p^{t_l}$ be the *p*-adic expansion of *u*. Thus, $0 < u_i \le p - 1$, $t \ge t_1 > \cdots > t_l \ge 0$, and $0 < u_1 \le p - 2$ if $t_1 = t$. The Adem relation gives

(2.1)
$$\mathscr{P}^{u}\mathscr{P}^{p^{t}}(a) = \sum_{i=0}^{\lfloor u/p \rfloor} (-1)^{u+i} c_{i} \mathscr{P}^{n-i} \mathscr{P}^{i}(a) \quad \text{for } c_{i} = \binom{(p-1)(p^{t}-i)-1}{u-pi}.$$

Then,

$$c_{0} = \binom{(p-1)p^{t}-1}{u}$$
$$= \binom{(p-2)p^{t}+(p-1)p^{t-1}+\dots+(p-1)p+(p-1)}{u_{1}p^{t_{1}}+\dots+u_{l}p^{t_{l}}} \neq 0 \mod p,$$

and thus

On the other hand, $\mathscr{P}^{p^t}(a) = a_{p^t} y^{p^{t+1}+u-1}$ for some $a_{p^t} \in \mathbb{Z}_p$, and $\mathscr{P}^u(y^{p^{t+1}+u-1}) = \begin{pmatrix} p^{t+1} + u - 1 \\ u \end{pmatrix} y^{np-1} = 0$. Hence, (2.3) $\mathscr{P}^u \mathscr{P}^{p^t}(a) = 0$.

For $1 \le i \le \lfloor u/p \rfloor$ and some $a_i \in \mathbb{Z}_p$, we have $\mathscr{P}^i(a) = a_i y^{n-1+i(p-1)}$ and $\mathscr{P}^{n-i}(y^{n-1+i(p-1)}) = b_i y^{np-1}$ for $b_i = \binom{n-i+ip-1}{n-i}$. Then, $b_i \ne 0 \mod p$ if and only if $\alpha_p(n-i) + \alpha_p(ip-1) = \alpha_p(n-i+ip-1)$, where $\alpha_p(k) = \sum_{j=0}^h k_j$ for the p-adic expansion of an integer $k = \sum_{j=0}^h k_j p^j$. If we put $i = i_1 p^{j_1} + \cdots + i_m p^{j_m}$ for $j_1 > \cdots > j_m$ as the p-adic expansion of *i*, then we have the following:

$$ip - 1 = i_1 p^{j_1 + 1} + \dots + i_{m-1} p^{j_{m-1} + 1} + (i_m - 1) p^{j_m + 1} + (p - 1) p^{j_m} + \dots + (p - 1);$$

$$n - i = (p^t + u_1 p^{t_1} + \dots + u_l p^{t_l}) - (i_1 p^{j_1} + \dots + i_m p^{j_m}).$$

Hence, if $\alpha_p(n-i) + \alpha_p(ip-1) = \alpha_p(n-i+ip-1)$, then $t_l = j_m$ and $u_l = i_m$, and we can set $u = vp^{b+1} + dp^b$ and $i = jp^{b+1} + dp^b$ in this case for some v, j > 0 and $0 < d \le p - 1$, where $b = t_l = j_m$. Then, we have

$$c_i \equiv \begin{pmatrix} ep^{b+1} + (d-1)p^b + (p-1)p^{b-1} + \dots + (p-1) \\ fp^{b+1} + dp^b \end{pmatrix} \equiv 0 \mod p$$

for some e, f > 0. Thus, for $1 \le i \le \lfloor u/p \rfloor$, we have

(2.4)
$$c_i \mathscr{P}^{n-i} \mathscr{P}^i(a) = 0.$$

(2.2)-(2.4) contradict (2.1), and we have completed the proof of Theorem A.

3. Proof of Theorem B

First, we remark that $w_1 = 0$ and that, by [10; Th. 7.1], $w_p \in \pi_{2p^2-3}(S^{2p-1})$ is divisible by p. If $w_p = pw$, then $w_p = w[q\sigma]$ for the collapsing map $q: L^{2p^2-3} \to S^{2p^2-3}$, and thus Theorem B trivially holds for w_1 and w_p .

We shall show that w_i for $2 \le i \le 4$ is symmetric, by applying a method due to Lin [6] and some results of Cohen [1]. For $m \ge 1$, let $B(p^m)$ be a spectrum whose cohomology is given by

$$H^*(B(p^m); \mathbb{Z}_p) \cong \mathscr{A}/\mathscr{A}\{\chi(\beta^{\varepsilon}\mathscr{P}^j)|\varepsilon+j > p^{m-1}\}$$

as \mathscr{A} -modules, where χ is the canonical anti-automorphism of \mathscr{A} . We may call $B(p^m)$ the Brown-Gitler spectrum, although it is slightly different from the original one. The existence of the spectrum $B(p^m)$ is established in [1], and also the following is shown in [1; Ch. 4, Th. 2.1]:

PROPOSITION 3. For $m \ge 2$, there exists a stable map $\zeta_m : \Sigma^{2p^{m-1}(p^2-p-1)} B(p^{m-1}) \to S^0$ with $\mathscr{P}^{p^m} \neq 0 : H^0(C_{\zeta_m}; \mathbb{Z}_p) \to H^{2p^m(p-1)}(C_{\zeta_m}; \mathbb{Z}_p).$

Henceforce, we assume that, for a given integer i > 0, the integers t and s always denote

(3.1)
$$t = 2p^{i+1} - 2$$
 and $s = 2p^{i+1} - 2p^{i-1} - 1$.

By Proposition 1, if we show that there exists a map $\xi: \Sigma^2 L_s^i \to S^{2p^{i+1}}$ for $2 \le i \le 4$ with $\mathscr{P}^{p^i} \ne 0: H^{2p^{i+1}}(C_{\xi}; \mathbb{Z}_p) \to H^{2p^{i+1}+1}(C_{\xi}; \mathbb{Z}_p)$, then we get a map $\kappa: L_s^{2p^{i+1}-3} \to S^{2p^{i-1}}$ with $w_{p^i} = [\kappa\sigma]$, which establishes Theorem B. Here, we remark that it is enough to find the map ξ as is a stable map

(3.2)
$$\xi: L_s^t \to S^{2p^{i-1}}$$
 with $\mathscr{P}^{p^i} \neq 0: H^{2p^{i-1}}(C_{\xi}; \mathbb{Z}_p) \to H^{2p^{i+1}-1}(C_{\xi}; \mathbb{Z}_p).$

In fact, the suspension homomorphism $[\Sigma^2 L_s^t, S^{2p^{i+1}}] \rightarrow [\Sigma^{2N} L_s^t, S^{2N+2p^{i-1}}]$ is bijective for any $N \ge 1$, because $C(p^i + m)$ is $(2(p^i + m)p - 4)$ -connected for any $m \ge 1$.

Thus, Theorem B follows from the following proposition, in which ζ_i is the stable map of Proposition 3.

PROPOSITION 4. For $2 \le i \le 4$, there exists a stable map $\psi: L_s^t \to \Sigma^s B(p^{i-1})$ such that a stable map ξ of (3.2) is taken as the composition $(\Sigma^{2p^{i-1}}\zeta_i)\psi$.

We prepare some lemmas concerning the stunted lens spaces before the proof of Proposition 4. When a < 0 and $a \le b$, the stunted lens space L_a^b means a spectrum $\Sigma^{-2p^N} L_{2p^N+a}^{2p^N+b}$ for sufficiently large N > 0 using the James periodicity. Indeed, since the J-order of the canonical complex line bundle over L^{b-a} is $p^{[(b-a)/(p-1)]}$ by [5], we have only to take N satisfying $N \ge [(b-a)/(p-1)]$ and $2p^N + a > 0$.

For a given i > 0 and $0 < a < b \le 2p^{i+1}$, we define \overline{L}_a^b to be the spectrum $\Sigma^{2p^{i+1}}L_{-2p^{i+1}+a}^{-2p^{i+1}+b}$. Then, by taking $M = p^{2(p^{i+1}-1)/(p-1)-(i+1)} - 1$, it is also represented $\overline{L}_a^b = \Sigma^{-2Mp^{i+1}}L_{2Mp^{i+1}+a}^{2Mp^{i+1}+b}$. We put $\overline{y}^j = y^{Mp^{i+1}+j} \in H^{2j}(\overline{L}_a^b; Z_p)$ for $a \le 2j \le b$. Define a map $\Phi: H^*(L_a^b; Z_p) \to H^*(\overline{L}_a^b; Z_p)$ by $\Phi(x^e y^j) = x^e \overline{y}^j$ for $a \le e + 2j \le b$ and $\varepsilon = 0$ or 1. Then, it is easy to show the following lemma, by which $H^*(\overline{L}_a^b; Z_p)$ is an unstable \mathscr{A} -module:

LEMMA 5. For any i > 0 and $0 < a < b \leq 2p^{i+1}$, $\Phi: H^*(L^b_a; \mathbb{Z}_p) \to H^*(\overline{L^b_a}; \mathbb{Z}_p)$ is an isomorphism of \mathscr{A} -modules.

The following is the key lemma for the proof of Proposition 4, and Lemma 5 is used in the proof of the lemma.

LEMMA 6. For $2 \le i \le 4$, there exists a stable map $\varphi: S^{2p^{i-1}} \to B(p^{i-1}) \land \overline{L}_1^{2p^{i-1}}$ such that $\varphi^*(1 \otimes \overline{y}^{p^{i-1}}) \ne 0$.

We postpone the proof of Lemma 6 until the next section, and complete the proof of Proposition 4 by assuming Lemma 6.

PROOF OF PROPOSITION 4. Since there is a Spainer-Whitehead duality $D: S^0 \to \overline{L}_1^{2p^{i-1}} \wedge \Sigma^{-2p^{i+1+1}} L_s^t$, we have an isomorphism $\{L_s^t, \Sigma^s B(p^{i-1})\} \cong \pi_{2p^{i-1}}^S(B(p^{i-1}) \wedge \overline{L}_1^{2p^{i-1}})$, where t and s are the integers of (3.1). Hence, corresponding to φ of Lemma 6, there exists a stable map $\psi: L_s^t \to \Sigma^s B(p^{i-1})$ which satisfies

$$\psi^* \neq 0: H^s(\Sigma^s B(p^{i-1}); \mathbb{Z}_p) \to H^s(L_s^t, \mathbb{Z}_p).$$

Thus, $\psi^{*}(1) \equiv x y^{p^{i+1}-p^{i-1}-1}$ up to unit. Then, it also holds that

(3.3)
$$\psi^* \neq 0: H^t(\Sigma^s B(p^{i-1}); \mathbb{Z}_p) \to H^t(L^t_s; \mathbb{Z}_p).$$

In fact, by Davis [2], the equality $\chi(\mathcal{P}^{p^j}\cdots\mathcal{P}^p\mathcal{P}^1) = \mathcal{P}^{p^{j+\dots+p+1}}$ holds for any $j \ge 0$. Then, $\psi^*(\chi(\mathcal{P}^{p^{i-2}}\cdots\mathcal{P}^p\mathcal{P}^1\beta)) = \beta\mathcal{P}^{p^{i-2}+\dots+p+1}\psi^*(1) \equiv y^{(t/2)}$ up to unit, and thus (3.3) follows. Now, we can show that ψ is the required map.

Let $\xi: L_s^t \to S^{2p^{i-1}}$ be the composition of $\psi: L_s^t \to \Sigma^s B(p^{i-1})$ and $\Sigma^{2p^{i-1}}\zeta_i: \Sigma^s B(p^{i-1}) \to S^{2p^{i-1}}$, where ζ_i is the stable map of Proposition 3. Then, we have the following commutative diagram:

where all cohomology groups are taken with Z_p -coefficients. Since $H^i(\Sigma^s B(p^{i-1}); Z_p) \cong Z_p$ is generated by $\chi(\mathscr{P}^{p^{i-2}} \cdots \mathscr{P}^p \mathscr{P}^1 \beta)$, Proposition 3 and (3.3) yield $\mathscr{P}^{p^i} \neq 0: H^{2p^{i-1}}(C_{\xi}; Z_p) \to H^{2p^{i+1}-1}(C_{\xi}; Z_p)$, and we have completed the proof.

4. An Adams spectral sequence

In this section, we stablish Lemma 6. Let $\{E_r^{q,u}(p^k, X)\} \Rightarrow \pi_*^S(B(p^k) \land X)$, for a spectrum X, be an Adams spectral sequence given as in [1]. In [1] the spectral sequence is used in the case of X = L the infinite dimensional lens space, but we shall apply the spectral sequence for the stunted lens spaces.

More precisely, the E_1 -term of it is given by

$$E_1^{q,u}(p^k, X) = \sum_{j\geq 0} \Lambda^q_{u-q-j}(p^k) \otimes H_j(X; \mathbb{Z}_p).$$

Here, $\Lambda_a^b(p^k)$ is an algebra given as follows: Let Λ be the Λ -algebra, that is, Λ is an associative graded algebra over \mathbb{Z}_p with generators λ_m of degree 2m(p-1)-1 for $m \ge 1$; μ_n of degree 2n(p-1) for $n \ge 0$; subject to the so-called Adem relations (see [1; Ch. 1, §1]), where we have changed the notations and the gradings from those in [1] (λ_m and μ_n are denoted in [1] by λ_{m-1} and μ_{n-1} of degrees -2m(p-1)+1 and -2n(p-1) respectively). Let I(k) be the left ideal generated by $\{\lambda_m, \mu_n | m \le p^{k-1}, n \le p^{k-1} - 1\}$. Then, $(\Lambda/I(k))^b$ denotes the submodule of $\Lambda/I(k)$ generated by the monomials of λ_m or μ_n with length b, and $\Lambda_a^b(p^k)$ is the component of degree a in $(\Lambda/I(k))^b$.

As a \mathbb{Z}_p -vector space, $\Lambda_a^b(p^k)$ has a basis formed by some admissible monomials. Let $v_m = \lambda_m$ or μ_m . Then, the monomial $v_{m_1} \cdots v_{m_b}$ of $(\Lambda/I(k))^b$ is admissible if, for each j with $1 \le j \le b - 1$, $pm_j \ge m_{j+1} + 1$ or $pm_j \ge m_{j+1}$ holds according as $v_{m_j} = \lambda_{m_j}$ or $v_{m_j} = \mu_{m_j}$ ([1; Ch. I, §1]). Then, a basis of $\Lambda_a^b(p^k)$ consists of the admissible monomials $v_{m_1} \cdots v_{m_b}$ of degree a with $m_b \ge p^{k-1} + 1$ or p^{k-1} according as $v_{m_b} = \lambda_{m_b}$ or μ_{m_b} by [1; Ch. III, Lemma 3.1]. As

a result, the element which has the lowest degree in $(\Lambda/I(k))^b$ is $\mu_{p^{k-b}}\mu_{p^{k-b+1}}\cdots$ $\mu_{p^{k-2}}\mu_{p^{k-1}}$. Thus, we have the following:

LEMMA 7. $\Lambda_a^b(p^k) = 0$ if $a < 2(p^k - p^{k-b})$.

Now, for a fixed $l \ge 0$, we put $L(l, k) = \sum^{-2Mp^{l+1}} L_{2Mp^{l+1}+1}^{2Mp^{l+1}+2p^k}$ for $0 \le k \le l$, where $M = p^{2(p^{l+1}-1)/(p-1)-(l+1)} - 1$, and consider the spectral sequence

$$E_r^{q,u}(n,k) = E_r^{q,u}(p^n, L(l,k)) \Rightarrow \pi_*^S(B(p^n) \wedge L(l,k)).$$

Let $(y^{p^m})^* \in H_{2p^m}(L(l, k); \mathbb{Z}_p)$ be the element dual to \overline{y}^{p^m} for $0 \le m \le k$. Then, by [1; Ch. III, Lemma 3.5], we see that

(3.4)
$$d_1(1 \otimes (y^{p^m})^*) = 0$$
 in $E_1^{1, 2p^m}(m, m)$.

By [1; Ch. III, Th. 4.1], there exists a stable map $f_k: B(p^k) \to \Sigma^{2p^{k-1}(p-1)}$ $B(p^{k-1})$ for $k \ge 2$ such that $(f_k)^*: H^*(B(p^{k-1}); \mathbb{Z}_p) \to H^{*+2p^{k-1}(p-1)}(B(p^k); \mathbb{Z}_p)$ is multiplication on the right by $\chi(\mathscr{P}^{p^{k-1}})$. Put $h_k = f_k \land 1: B(p^k) \land L(l, k) \to \Sigma^{2p^{k-1}(p-1)}B(p^{k-1}) \land L(l, k)$. Then, by [1; Ch. III, Lemma 3.8] and using Lemma 5, we have

$$(3.5) (h_k)_* (1 \otimes (y^{p^k})^*) = (1 \otimes (y^{p^{k-1}})^*).$$

Also, by [1; Ch. III, Cor. 3.7], if $q \ge 1$ and $u < q + 2p^k$, then

$$(3.6) (h_k)_* = 0: E_1^{q,u}(k,k) \to E_1^{q,u-2p^{k-1}(p-1)}(k-1,k).$$

We remark that the inclusion $i: L(k-1, k-1) \rightarrow L(k-1, k)$ induces a cohomology isomorphism up to dimension $2p^{k-1}$, and thus $i_*: E_r^{q,u-2p^{k-1}(p-1)}(k-1, k-1) \rightarrow E_r^{q,u-2p^{k-1}(p-1)}(k-1, k)$ is an isomorphism if $u < q + 2p^k$ and $q \ge 1$ or if $(q, u) = (0, 2p^k)$. Hence, by the identification through i_* for these q and u, $(h_k)_*$ can be regarded as $(h_k)_*: E_r^{q,u}(k, k) \rightarrow E_r^{q,u-2p^{k-1}(p-1)}(k-1, k-1)$. Then, applying (3.4)-(3.6), we have

LEMMA 8. $1 \otimes (y^{p^k})^* \in E^{0, 2p^k}_{l-k+2}(k, k)$ for $1 \le k \le l$.

PROOF. Let k be fixed. By (3.4), $1 \otimes (y^{p^m})^* \in E_2^{0,2p^m}(m,m)$ for any m with $k \le m \le l$. Inductively, assume that, for some r with $2 \le r \le l-k$, $1 \otimes (y^{p^m})^* \in E_r^{0,2p^m}(m,m)$ holds for any m with $k \le m \le l+2-r$. Then, for any n with $k \le n \le l+2-(r+1)$, $d_r(1 \otimes (y^{p^n})^*) = (h_{n+1})_*(d_r(1 \otimes (y^{p^{n+1}})^*)) = 0$ by (3.5) and (3.6), and hence $1 \otimes (y^{p^n})^* \in E_{r+1}^{0,2p^n}(n,n)$. Therefore, as for $1 \otimes (y^{p^k})^*$, we have $d_r(1 \otimes (y^{p^k})^*) = 0$ for $1 \le r \le l-k+1$, which establishes the required result. \Box

Now, we can complete the proof of Lemma 6. Let $2 \le i \le 4$, and $(y^{p^{i-1}})^*$ denote the dual of $\overline{y}^{p^{i-1}} \in H^{2p^{i-1}}(\overline{L}_1^{2p^{i-1}}; \mathbb{Z}_p)$. Then, applying Lemma 8 in the case of l = i + 1 and k = i - 1, we obtain that $1 \otimes (y^{p^{i-1}})^* \in E_4^{0, 2p^{i-1}}(p^{i-1}, \overline{L}_1^{2p^{i-1}})$.

However, for $2 \le i \le 4$ and any $r \ge 4$, $E_1^{r, 2p^{i-1}+r-1}(p^{i-1}, \overline{L}_1^{2p^{i-1}}) = 0$ by Lemma 7, and hence $d_r(1 \otimes (y^{p^{i-1}})^*) \in E_r^{r, 2p^{i-1}+r-1}(p^{i-1}, \overline{L}_1^{2p^{i-1}}) = 0$. Therefore, $1 \otimes (y^{p^{i-1}})^*$ for $2 \le i \le 4$ is a permanent cycle, and represents an element $[\varphi] \in \pi_{2p^{i-1}}^{S}(B(p^{i-1}) \wedge \overline{L}_1^{2p^{i-1}})$. Then, we have $\varphi^*(1 \otimes \overline{y}^{p^{i-1}}) \ne 0$. Thus we have completed the proof.

REMARK. In our proof of Theorem B, the condition $i \le 4$ is necessary only to show that $d_r(1 \otimes (y^{p^{i-1}})^*) = 0$ for any $r \ge 4$. However, it seems not so easy to deduce whether such differentials still vanish for $i \ge 5$ or not. Also, some formulas like those in [6; Prop. 2.4, 2.5] which are useful in the case of p = 2 do not have straightforward analogy for odd primes.

References

- [1] R. L. Cohen, Odd primary infinite families in stable homotopy theory, Memoirs. A. M. S. 242 (1981).
- [2] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 135-228.
- [3] B. Gray, Unstable families related to the image of J, Cambridge Philos. Soc. Proc. 96 (1984), 95-113.
- [4] Y. Hemmi and Y. Kawamoto, Decomposability of the mod p-Whitehead element, Hiroshima. Math. J. 26 (1996), 623-633.
- [5] T. Kambe, H. Matsunaga and H. Toda, A note on stunted lens space, J. Math. Kyoto Univ. 5 (1966), 143-149.
- [6] W. H. Lin, The Whitehead squares $[t_{2^{i}-1}, t_{2^{i}-1}] \in \pi_{2^{i+1}-3}(S^{2^{i}-1})$ are projective, Topology 34 (1995), 411-422.
- [7] R. J. Milgram and P. Zvengrowski, Even Whitehead squares are not projective, Can J. Math. 29 (1977), 957-962.
- [8] M. Mimura, J. Mukai and G. Nishida, Representing elements of stable homotopy groups by symmetric maps, Osaka. J. Math. 11 (1974), 105-111.
- [9] D. Randall, Projectivity of the Whitehead squares, Proc. Amer. Math. Soc. 40 (1973), 606-611.
- [10] H. Toda, On iterated suspensions I, J. Math. Kyoto Univ., 5 (1965), 87-142.

Department of Mathematics Education Faculty of Education Hiroshima University, Higashi-Hiroshima 739, Japan e-mail: imaoka@ipc.hiroshima-u.ac.jp

Department of Mathematics Faculty of Science Hiroshima University, Higashi-Hiroshima 739, Japan e-mail: r7m05@math.sci.hiroshima-u.ac.jp