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ABSTRACf. We study the symmetricity of the Whitehead element Wn E 1t2np_ 3(S2n-l) 

for an odd prime p. It is shown that Wo considered as a map S20p-3 -+ S20-1 factors 
through the p-fold covering map (]: S20p-3 -+ L 20p-3 only when n is a power of p, 

and that wp' actually factors through (] if 0 :::;; i :::;; 4. This is some of an odd prime 
version of the results of Randall and Lin for the projectivity of the Whitehead product 

['20-1, '20-1] E 1t40_3(S20-1). 

1. Introduction 

Let p be a prime, and a: s2n+l -+ L 2n+l denote the p-fold covering, where 
L 2n+1 = S2n+1/Zp is the standard lens space. For any space X, an element 
IX E 1t2n+l (X) is defined to be symmetric, if IX considered as a map s2n+l -+ X 
factors through a: s2n+1 -+ L 2n+l, that is, there exists a map g : L 2n+l -+ X with 
IX = [ga]. Mimura-Mukai-Nishida [8] have shown that all elements in the 
positive dimensional stable homotopy groups of spheres are symmetric. 

In this paper, we study the symmetricity of the Whitehead element Wn E 

7t2np _ 3 (S2n-l) for an odd prime p. Hence, all spaces are assumed to be 
localized at an odd prime p. We recall the definition of Wn (cf. [3], [4]). 
Let G: C(n) -+ s2n-l be the homotopy fiber of the double suspension map 
E2 : s2n-l -+ Q2 s2n+l. It is known that C(n) is (2np - 4)-connected and 

7t2np- 3(C(n)) ~ Zp. For a generator Z E 1t2np-3(C(n)), Wn is given by Wn = 
G*(z) E 7t2np_3(S2n-l). Then, our results are stated as follows: 

THEOREM A. If the Whitehead element Wn E 7t2np_3(s2n-l) is symmetric, 
then n = pi for some i ~ O. 

THEOREM B. The Whitehead element Wpi E 7t2pi+l_3(S2 pi-l) is symmetric for 
0;:5;; i;:5;; 4. 
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Theorem A corresponds to the result of Randall [9], who shows that 
the Whitehead product [In, In] E 1[2n-1 (sn) is symmetric, for the prime 2, only 
when n or n + 1 is a power of 2. In this case, the symmetric is refered to 
as the projective. Milgram-Zvengrowski [7] have shown that [12,,12,] is pro­
jective iff i = 0, 1, 2, and Lin [6] has concluded that [12'-1' '2'-1] is actually 
projective for any i > O. Theorem B corresponds to such solutions, but the 
whole analogy with the methods in [6] does not hold in the case of odd 
primes. We shall show that the cases as in Theorem B are obtainable ap­
plying the results of Cohen [1]. 

We prove Theorem A in § 2, Theorem B in § 3, and § 4 is devoted to 
establish a key lemma for the proof of Theorem B. Throughout the paper, 
Zp denotes the cyclic group of order p and also the additive group of the 
mod p integers. 

The authors wish to express their thanks to Professor Takao Matumoto 
for his valuable suggestions. 

2. Proof of Theorem A 

We shall apply the following proposition in the case that X is a st!lnted 
lens space, and the proposition is crucial also in the proof of Theorem B. 

PROPOSITION 1 [4; Prop. C]. Suppose that a CW-complex X is (2n - 1)­
connected and dim X::;; 2np - 3. Then, for any map 1]: s2np-3 --+ X with 1]* = 

0: H2np_3(S2np-3; Zp) --+ H2np- 3(X; Zp), the following conditions (1) and (2) are 
equivalent: 

(1) There exists a map K: X --+ s2n-1 with Wn = [KI]]; 
(2) There exists a map w: .E2C~ --+ s2n+1 with f!Jn '" 0 on H2n+1(C",; Zp), 

where Ca is the co fiber of C( = I] or wand f!Jn E.s1 is the Steenrod operation 
over Zp. 

Let L = soo / Zp be the infinite dimensional lens space, and U for a ~ 0 
denote the a-skeleton of L. Then, Lf = Kk/L'-1 for 0 < I ::;; k is the stunted 
lens space, and the composition of the double covering map (J: S2k-1 --+ L 2k-1 
with the collapsing map L2k- 1 --+ L[k-1 is the attaching map (J: S2k-1 --+ Llk-1 

of the top cell in Llk. Recall that H*(L; Zp) = Azp(x) ® Zp[Y] with px = y, 
where the degrees of x and yare 1 and 2 respectively and P is the Bockstein 
operation. Then, we remark 

LEMMA 2. Wn is symmetric if and only if there exists a map K: L~~p-3 --+ 

s2n-1 with Wn = [K(J] for the attaching map (J: s2np-3 --+ L~~p-3. 

PROOF. The if part is clear, so we assume that Wn is symmetric. Then, 
by the dimensional reason, there exists a map g: L~~~13 --+ s2n-1 with Wn = 
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[go]. For the inclusion i: s2n-1 -+ L~:~13, we have p[gi] = 0 E 1t2n-1 (s2n-1), 

because L~:-l is the cofiber of a map s2n-1 -+ s2n-1 of degree p. Hence, 
[gi] = 0 and we have a required map K with Wn = [KU]. 0 

Now, put n = pt + u for 0 < u < pt(p - 1), and assume that the Whitehead 
element Wn E 1t2np_3(s2n-1) is symmetric. We shall verify Theorem A by 
inducing a contradiction from this assumption. 

By applying Proposition 1 in the case of X = L~:p-3 and using Lemma 
2, we have a map (J):};2 L~:P-2 -+ s2n+1 with f!jJn # 0: H 2n+1(C",; Zp)-+ 
H 2np+1(C . Z) Then by the cofiber sequence s2n+1 -+ C -+};3 L 2np-2 we co' p. , OJ 2n' 
have isomorphisms H2n+1(C· Z ) ~ Z and Hi(C· Z ) ~ H i- 3(L2nP-2. Z ) "', p - p "', p - 2n, p 
for i;;::: 2n + 3. We denote the generator of H2n+1(C",; Zp) ~ Zp by a, 
and identify the generator of H 2k+3(C",; Zp) for n::s; k ::s; np - 1 with yk E 

H2k(L~:p-2; Zp) ~ Zp- Then, f!jJn(a) == ynp-1 up to unit. 
Let u = U1pt l + ... + u,P'1 be the p-adic expansion of u. Thus, 0 < Ui ::s; 

P - 1, t;;::: t1 > ... > t, ;;::: 0, and 0 < U1 ::s; p - 2 if t1 = t. The Adem relation 
gives 

[u/p] 
(2.1) f!jJuf!jJP'(a) = 2: (_I)u+icif!jJn-if!jJi(a) 

i=O 
(

P - l)(pt - i) - 1) 
for Ci = .. 

u- pi 

Then, 

_ (P - l)pt - 1) 
Co -

U 

(
P - 2)pt + (p - l)pt-l + ... + (p - l)p + (p - 1)) 

= ¢O U1ptl + ... + u,ptl 
modp, 

and thus 

(2.2) 

On the other hand, f!jJP'(a) = ap,yP'+1+U- 1 for some ap' E Zp, and ,gi'U(yP'+I+u-1) = 

(pt+1 +u u - 1) ynp-1 = O. Hence, 

(2.3) 

For 1::s; i::s; [ujp] and some ai E Zp, we have f!jJi(a) = aiYn-1+i(P-1) and 

. . (n - i + ip - 1) f!jJn-l(yn-1 +1(p-1») = biynp-1 for bi = .. Then, bi ¢ 0 mod p if 
n-I 

and only if (Xp(n - i) + (Xp(ip - 1) = (Xp(n - i + ip - 1), where (Xp(k) = 2:1=0 kj for 
the p-adic expansion of an integer k = 2:1=0 kjpj. If we put i = i1pil + ... + 
impj~ for j1 > ... > jm as the p-adic expansion of i, then we have the following: 
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ip - 1 = ilpit+l + ... + im_lpim-l +1 + (im - l)pim+l + (p - l)pim + ... + (p - 1); 

n - i = (pI + Ulpll + ... + Ulpll) - (ilpi, + ... + impim). 

Hence, if C(p(n - i) + C(p(ip - 1) = C(p(n - i + ip - 1), then tl = jm and Ul = im, 
and we can set U = Vpb+1 + dpb and i = jpb+l + dpb in this case for some v, 
j > 0 and 0 < d ::s; p - 1, where b = tl = jm. Then, we have 

_ (epb+l + (d - l)pb + (p - l)pb-l + ... + (p - 1)) _ 
Ci = fpb+l + dpb = 0 mod p 

for some e, f> O. Thus, for 1 ::s; i::S; [u/pJ, we have 

(2.4) 

(2.2)-(2.4) contradict (2.1), and we have completed the proof of Theorem A. 

3. Proof of Theorem B 

First, we remark that Wl = 0 and that, by [10; Th. 7.1J, wp E 1t2pZ_3(S2P-l) 
is divisible by p. If wp = pw, then wp = w[qITJ for the collapsing map 
q: L 2 p z-3 ~ S2

pL
3, and thus Theorem B trivially holds for Wl and wp-

We shall show that Wi for 2 ::s; i ::s; 4 is symmetric, by applying a method 
due to Lin [6J and some results of Cohen [lJ. For m ~ 1, let B(pm) be a 
spectrum whose cohomology is given by 

as d-modules, where X is the canonical anti-automorphism of d. We may 
call B(pm) the Brown-Gitler spectrum, although it is slightly different from 
the original one. The existence of the spectrum B(pm) is established in [lJ, 
and also the following is shown in [1; Ch. 4, Th. 2.1J: 

PROPOSITION 3. For m ~ 2, there exists a stable map (m: 172pm-l(pZ_p-l) 
B(pm-l) ~ SO with r!Jpm # 0: HO(C'm; Zp) ~ H2pm(p-ll(C'm; Zp). 

Henceforce, we assume that, for a given integer i > 0, the integers t and 
s always denote 

(3.1) t = 2pl+l - 2 and s = 2pi+l - 2pi-l - 1. 

By Proposition 1, if we show that there exists a map ~: 172 L~ ~ S2pl+l for 
2::s; i ::s; 4 with f!Jpi # 0: H2P'+1(C~; Zp) --+ H2Pi+l+1(C~; Zp), then we get a map 
K: L;pi+1-3 ~ S2pi_l with Wpi = [KITJ, which establishes Theorem B. Here, we 
remark that it is enough to find the map ~ as is a stable map 

(3.2) ~: L~ ~ S2pi_l with f!Jpi # 0: H2pi_l(C~; Zp) ~ H2Pi+'I_l(C~; Zp). 
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In fact, the suspension homomorphism [E2 L~, S2p'+1] -+ [E2N L~, S2N+2p'-1] is 
bijective for any N ~ 1, because C(pi + m) is (2(pi + m)p - 4)-connected for 
any m ~ 1. 

Thus, Theorem B follows from the following proposition, in which (i is 
the stable map of Proposition 3. 

PROPOSITION 4. For 2 ~ i ~ 4, there exists a stable map 1/1 : L~ -+ ES B(pi-l) 
such that a stable map ~ of (3.2) is taken as the composition (E2P'-1(i)I/I. 

We prepare some lemmas concerning the stunted lens spaces before the 
proof of Proposition 4. When a < 0 and a ~ b, the stunted lens space L: 
means a spectrum E- 2

p1' L;~:: for sufficiently large N > 0 using the James 
periodicity. Indeed, since the J-order of the canonical complex line bundle 
over Lb-a is p[(b-al/(p-l)] by [5], we have only to take N satisfying N ~ 

[(b - a)/(p - 1)] and 2pN + a > O. 
For a given i > 0 and 0 < a < b ~ 2pi+1, we define L: to be the spectrum 

E 2 p i+· L:::;~::: ::. Then, by taking M = p2(pi+'- ll/(P-1l-(i+l l - 1, it is also repre­
sented Lb = E-2Mpi+· L2Mpi+'+b We put y-i = yMpi+'+i E H2J(p. Z) for a < a 2Mpi+'+a· a' p -
2j ~ b. Define a map rp: H*(L:; Zp) -+ H*(L:; Zp) by rp(x'yi) = x'yi for a ~ 
e + 2j ~ band e = 0 or 1. Then, it is easy to show the following lemma, 
by which H*(L:; Zp) is an unstable d-module: 

LEMMA 5. For any i > 0 and 0 < a < b ~ 2pi+1, rp: H*(L:; Zp)-+ 
H*(L:; Zp) is an isomorphism of d-modules. 

The following is the key lemma for the proof of Proposition 4, and 
Lemma 5 is used in the proof of the lemma. 

LEMMA 6. For 2 ~ i ~ 4, there exists a stable map qJ: S2pi-l -+ B(pi-l) A 

Lipi-l such that qJ*(1 ® yP'·') =I- o. 

We postpone the proof of Lemma 6 until the next section, and complete 
the proof of Proposition 4 by assuming Lemma 6. 

PROOF OF PROPOSITION 4. Since there is a Spainer-Whitehead duality 
D : SO -+ Lip'·' A E-2pi+'+1 L~, we have an isomorphism {L~, E S B(pi-l)} ~ 
1t~pi .• (B(pi-l) A Lip'·'), where t and s are the integers of (3.1). Hence, 
corresponding to qJ of Lemma 6, there exists a stable map 1/1: L~ -+ E S B(pi-l) 
which satisfies 

1/1* =I- 0: W(ES B(pi-l); Zp) -+ W(L~, Zp). 

Thus, 1/1*(1) == xyP'+'-pi-l-1 up to unit. Then, it also holds that 

(3.3) 
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In fact, by Davis [2J, the equality X{flJpi··· flJPflJl) = g'lpj+"'+p+l holds for any 
j 2! O. Then, IjJ*{X{flJpl-2 

••• 9I'Pg'll 13» = PflJp'-2 +"'+P+11jJ*(1) == y(t/2) up to unit, 

and thus (3.3) follows. Now, we can show that IjJ is the required map. 
Let ~: L~ -+ S2pl

-l be the composition of IjJ : L~ -+ I;' B{pi-l) and I;2pl
-l(i: 

I;S B{pi-l) -+ S2pl
-l, where (i is the stable map of Proposition 3. Then, we 

have the following commutative diagram: 

- Ht{I;S B{pi-l» 

'·1 - Ht{L~), 

where all cohomology groups are taken with Zp-coefficients. Since If{I;' B{pi-l); 
Zp) ~ Zp is generated by X{flJp1-2··· flJPg'll 13), Proposition 3 and (3.3) yield 

flJpl #- 0: H2P'-1{C~; Zp) -+ H2Pi+I-l{C~; Zp), and we have completed the proof. 

D 

4. An Adams spectral sequence 

In this section, we stablish Lemma 6. Let {E~'"(pk, X)} :;. n!{B{pk) /\ X), 
for a spectrum X, be an Adams spectral sequence given as in [lJ. In [lJ 
the spectral sequence is used in the case of X = L the infinite dimensional 
lens space, but we shall apply the spectral sequence for the stunted lens spaces. 

More precisely, the Ecterm of it is given by 

Ei'"{pk, X) = L A~_q_j{pk) ® Hj{X; Zp). 
j;;,O 

Here, A~{pk) is an algebra given as follows: Let A be the A-algebra, that 
is, A is an associative graded algebra over Zp with generators Am of degree 
2m{p - 1) - 1 for m 2! 1; J1.n of degree 2n{p - 1) for n 2! 0; subject to the 
so-called Adem relations (see [1; Ch. 1, § 1J), where we have changed the 
notations and the gradings from those in [lJ (Am and J1.n are denoted in [lJ 
by Am-l and J1.n-l of degrees - 2m{p - 1) + 1 and - 2n{p - 1) respective­
ly). Let /(k) be the left ideal generated by {Am' J1.nlm ~ pk-t, n ~ pk-l - 1}. 
Then, (A//{k»b denotes the submodule of A//{k) generated by the monomials 
of Am or J1.n with length b, and A~{pk) is the component of degree a in (A//{k»b. 

As a Zp-vector space, A~{pk) has a basis formed by some admissible 
monomials. Let Vm = Am or J1.m' Then, the monomial vml '" vmb of {A//{k»b 
is admissible if, for each j with 1 ~ j ~ b - 1, pmj 2! mj+1 + 1 or pmj 2! mj+l 
holds according as vmj = Amj or vmj = J1.mj ([1; Ch. I, § 1J). Then, a basis of 
A~{pk) consists of the admissible monomials vml '" vmb of degree a with mb 2! 

pk-l + 1 or pk-l according as vmb = Amb or J1.mb by [1; Ch. III, Lemma 3.1]. As 
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a result, the element which has the lowest degree in (A/I(k))b is Jlpk-bJl.pk-b+l '" 
!lpk-2!lpk-l. Thus, we have the following: 

LEMMA 7. A:(pk) = 0 if a < 2(pk _ pk-b). 

-2M 1+1 2Mpl+l+2pk Now, for a fixed 1 ;;::: 0, we put L(I, k) = ;; p L 2Mpl+l+l for 0 ~ k ~ 1, 
where M = p2(pl+l-l)/(P-l)-0+1) - 1, and consider the spectral sequence 

E~,U(n, k) = E~·u(pn, L(l, k)) => n!(B(pn) /\ L(I, k)). 

Let (ypm)* E H 2pm(L(l, k); Zp) be the element dual to ypm for 0 ~ m ~ k. Then, 
by [1; Ch. III, Lemma 3.5J, we see that 

(3.4) 

By [1; Ch. III, Th. 4.1J, there exists a stable map he: B(pk) -+ ;;2pk-l(p-l) 

B(pk-l) for k ;;::: 2 sUch that (he)*: H*(B(pk-l); Zp) -+ HH2pk-l(p-1)(B(pk); Zp) is 
multiplication on the right by X(&,pk-I). Put hk = he /\ 1: B(pk) /\ L(l, k)-+ 
;;2pk-l(p-l) B(pk-l) /\ L(l, k). Then, by [1; Ch. III, Lemma 3.8J and using 

Lemma 5, we have 

(3.5) 

Also, by [1; Ch. III, Cor. 3.7J, if q;;::: 1 and u < q + 2pk, then 

(3.6) 

We remark that the inclusion i: L(k - 1, k - 1) -+ L(k - 1, k) induces a coho­
mology isomorphism up to dimension 2pk-l, and thus i*: E~·U-2pk-I(P-l)(k -
1, k - 1) -+ E~·u-2pk-I(P-l)(k - 1, k) is an isomorphism if u < q + 2pk and q ;;::: 1 

or if (q, u) = (0, 2pk). Hence, by the identification through i* for these q 
and u (h) can be regarded as (h) . Eq,U(k k) -+ Eq·u-2pk-I(P-l)(k - 1 k - 1) , k* k.· r' r ,. 

Then, applying (3.4)-(3.6), we have 

LEMMA 8. 1 @ (ypk)* E E?.:~f'2(k, k) for 1 ~ k ~ 1. 

PROOF. Let k be fixed. By (3.4), 1 @ (ypm)* E E~·2pm(m, m) for any m 
with k ~ m ~ 1. Inductively, assume that, for some r with 2 ~ r ~ 1- k, 
1 @ (ypm)* E E?·2pm(m, m) holds for any m with k ~ m ~ 1 + 2 - r. Then, for 
any n with k ~ n ~ 1 + 2 - (r + 1), d,(1 @ (yP")*) = (hn+1)*(d,(1 @ (yP"+I)*» = 0 
by (3.5) and (3.6), and hence 1 @ (yP")* E E?.;.~P"(n, n). Therefore, as for 1 @ 

(ypk)*, we have d,(1 @ (ypk)*) = 0 for 1 ~ r ~ 1 - k + 1, which establishes the 
required result. D 

Now, we can complete the proof of Lemma 6. Let 2 ~ i ~ 4, and (ypl-I)* 

denote the dual of ypl-I E H2p'-I(Lipl-1; Zp). Then, applying Lemma 8 in the 
case of 1 = i + 1 and k = i - 1, we obtain that 1 @(ypl-l)* E E~·2pl-l(pi-1, Lipl-l). 
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However, for 2:::;; i :::;; 4 and any r ~ 4, E;,2pH +,-1(pi-1, Lipi
-

I
) = 0 by Lemma 

7, and hence d,(l ® (ypi-I)*) E E~,2Pi-I+'-1(pi-1, Lipi
-

I
) = O. Therefore, 1 ® 

(ypi-I)* for 2:::;; i :::;; 4 is a permanent cycle, and represents an element 
[<p] E lt~pi_I(B(pi-l) /\ Lipi

-
I
). Then, we have <p*(l ® ypi-I) =I- O. Thus we 

have completed the proof. 

REMARK. In our proof of Theorem B, the condition i:::;; 4 is necessary 
only to show that d,(l ® (ypi-l)*) = 0 for any r ~ 4. However, it seems not 
so easy to deduce whether such differentials still vanish for i ~ 5 or not. Also, 
some formulas like those in [6; Prop. 2.4, 2.5] which are useful in the case 
of p = 2 do not have straightforward analogy for odd primes. 
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