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ABSTRACT. We study the symmetricity of the Whitehead element w, € m,,,_5(S*"™)
for an odd prime p. It is shown that w, considered as a map $2"7~3 — §2"~! factors
through the p-fold covering map o:S%*?73 - L?"*~3 only when n is a power of p,
and that w, actually factors through o if 0 <i<4. This is some of an odd prime
version of the results of Randall and Lin for the projectivity of the Whitehead product

[r2n-ts 22n-1] € Tun3(S*"71).

1. Introduction

Let p be a prime, and o:S2"*! — L2"*! denote the p-fold covering, where
L#*1 = §2"*1/Z  is the standard lens space. For any space X, an element
« € Ty,44(X) is defined to be symmetric, if o considered as a map S§>"*!' - X
factors through ¢ : §?"*! - L2"*!, that is, there exists a map g: L?"*! - X with
o = [go]. Mimura-Mukai-Nishida [8] have shown that all elements in the
positive dimensional stable homotopy groups of spheres are symmetric.

In this paper, we study the symmetricity of the Whitehead element w, €
Tanp-3(8*"') for an odd prime p. Hence, all spaces are assumed to be
localized at an odd prime p. We recall the definition of w, (cf. [3], [4]).
Let ¢:C(n)— S*"! be the homotopy fiber of the double suspension map
X2:8271 5, Q2821 It is known that C(n) is (2np — 4)-connected and
Tonp-3(C(n)) = Z,. For a generator ze€m,,,_3(C(n), w, is given by w,=
£,(2) € M3,,-3(S*"!). Then, our results are stated as follows:

THEOREM A. If the Whitehead element w, € m,,,_5(S*"™!) is symmetric,
then n = p' for some i > 0.

THEOREM B. The Whitehead element w: € Ty i _3(S*P'™) is symmetric for
0<i<4.
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Theorem A corresponds to the result of Randall [9], who shows that
the Whitehead product [1,,1,] € ,,-,(S") is symmetric, for the prime 2, only
when n or n+ 1 is a power of 2. In this case, the symmetric is refered to
as the projective. Milgram-Zvengrowski [7] have shown that [1,1,1,] is pro-
jective iff i=0, 1, 2, and Lin [6] has concluded that [i5:_q, 5:—,] is actually
projective for any i > 0. Theorem B corresponds to such solutions, but the
whole analogy with the methods in [6] does not hold in the case of odd
primes. We shall show that the cases as in Theorem B are obtainable ap-
plying the results of Cohen [1].

We prove Theorem A in §2, Theorem B in §3, and §4 is devoted to
establish a key lemma for the proof of Theorem B. Throughout the paper,
Z, denotes the cyclic group of order p and also the additive group of the
mod p integers.

The authors wish to express their thanks to Professor Takao Matumoto
for his valuable suggestions.

2. Proof of Theorem A

We shall apply the following proposition in the case that X is a stunted
lens space, and the proposition is crucial also in the proof of Theorem B.

ProrosiTioN 1 [4; Prop. C]. Suppose that a CW-complex X is (2n — 1)-
connected and dim X < 2np — 3. Then, for any map n:S*""3 > X with n, =
0: H,,,—3(8*""73; Z,) > H,,,_3(X; Z,), the following conditions (1) and (2) are
equivalent:

(1) There exists a map x:X — S with w, = [kn];

(2) There exists a map w:X2*C,— S***! with 2" #0 on H**(C,; Z,),
where C, is the cofiber of a =n or @ and P" € of is the Steenrod operation
over Z,.

Let L = S§*/Z, be the infinite dimensional lens space, and L* for a > 0
denote the a-skeleton of L. Then, L¥ = K¥/L'! for 0 <[ <k is the stunted
lens space, and the composition of the double covering map o:S*™t — L2¥!
with the collapsing map L?*~! — L?*7! is the attaching map o:S*™! —» L1
of the top cell in L{*. Recall that H¥(L; Z,) = Az (x) ® Z,[y] with fx =y,
where the degrees of x and y are 1 and 2 respectively and f is the Bockstein
operation. Then, we remark '

LEMMA 2. w, is symmetric if and only if there exists a map x:L3"?73 -
St with w, = [ko] for the attaching map o :S*"P~3 — L2np~3,

Proor. The if part is clear, so we assume that w, is symmetric. Then,
by the dimensional reason, there exists a map g:L3"73 - 82" with w, =
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[go]. For the inclusion i:82" ' — L2"773, we have p[gi] = 0¢€ n,,_1(S*"Y),
because L3"_, is the cofiber of a map S$2"! - §2"! of degree p. Hence,
[gi] =0 and we have a required map x with w, =[xs]. O

Now, put n = p* + u for 0 < u < p'(p — 1), and assume that the Whitehead
element w, € 7,,,-3(S*"™!) is symmetric. We shall verify Theorem A by
inducing a contradiction from this assumption.

By applying Proposition 1 in the case of X = L33 and using Lemma
2, we have a map w:Z2LIP"%28§¥*1 with 2"#£0:H>™'(C,; Z,)~
H*"*YC,; Z,). Then, by the cofiber sequence $***!'—C,—Z3L}P"2, we
have isomorphisms H?***!(C,;Z,))~Z, and H'C,; Z,))~ H" 3 (LI * Z,)
for i>2n+3. We denote the generator of H*"*(C,;Z,)~Z, by a,
and identify the generator of H**3(C,;Z,) for n<k<np—1 with y*e
H*(L%P"%,Z,)= Z,. Then, #"(a)=y"™" up to unit.

Let u = u,p" + -+ + uy;p" be the p-adic expansion of u. Thus, 0 <y; <
p—Lt>t;>>4>0,and O<u, <p—-2if t; =t The Adem relation
gives

2.1) 2"P"(a) = [“‘/5] (— )+ PiPa)  for ¢; = <(P e 1)'
i=0

u — pi

Then,

o= ((p - lip' - 1)

—Dpt —Dpt 4. -1 _
=<(p p' + (p )1: + +(1: P+ (p 1))%‘0 mod p,
ulp 1 + e + ulp t
and thus
(2.2) coP"(a) # 0.

On the other hand, 2% (a) = a,.y*"'**™! for some a, € Z,, and P*(y?"** 1) =

t+1 _ 1
(p +uu ) y"P~! = 0. Hence,

2.3) PP (a) = 0.
For 1<i<[u/p] and some a;eZ, we have P(a)=a,y" " and

' _ o idip—1
Proi(yrmIHie=D) = pymet for b = (" 'n+ "i’ ) Then, b;%0modp if
and only if o) (n — i) + a,(ip — 1) = o, (n — i + ip — 1), where o, (k) = Y "_, k; for
the p-adic expansion of an integer k=Y 4o k;p’. If we put i =i;p/t +--- +
i,,pi for j, > -+ > j, as the p-adic expansion of i, then we have the following:
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ip—1=1dpl* 4o i pm 4 (@ — DM+ (p— Dpim oo+ (p— 1)
n—i=(p"+up" + - +wup") — ({(1p" + - + inp’).

Hence, if a,(n — i)+ a,iip—1)=0a,n—i+ip—1), then t,=j, and u; =i,

and we can set u = vp®*! + dp® and i = jp®*! + dp® in this case for some v,

j>0and 0<d<p—1, where b=t,=j,. Then, we have

e (AP (- DT (p— )
i = fpb+1 + dpb

for some ¢, f>0. Thus, for 1 <i<{[u/p], we have

);o mod p

24 PP (a) = 0.
(2.2)~(2.4) contradict (2.1), and we have completed the proof of Theorem A.

3. Proof of Theorem B

First, we remark that w; = 0 and that, by [10; Th. 7.1], w, € 7,,2_3(S**7})
is divisible by p. If w,=pw, then w,=w[qo] for the collapsing map
q:L**73 - §?7"~3, and thus Theorem B trivially holds for w, and w,.

We shall show that w; for 2 <i <4 is symmetric, by applying a method
due to Lin [6] and some results of Cohen [1]. For m>1, let B(p™) be a
spectrum whose cohomology is given by

H*B(p™); Z,) = o | {1(B*P)|e +j > p™ ™}

as &/-modules, where y is the canonical anti-automorphism of /. We may
call B(p™) the Brown-Gitler spectrum, although it is slightly different from
the original one. The existence of the spectrum B(p™) is established in [1],
and also the following is shown in [1; Ch. 4, Th. 2.1]:

PROPOSITION 3. For m > 2, there exists a stable map (,: X" '(®*=p~1)
B(p™~t) = §° with #*" #0: HY(C, ; Z,) » H*"*™(C, ; Z,).

Henceforce, we assume that, for a given integer i > 0, the integers ¢ and
s always denote

(3.1 t=2p""* -2 and s=2p"1—-2p"' 1.

By Proposition 1, if we show that there exists a map &:X2L!— §27'*! for
2<i<4 with 27 #0: H¥*(C,; Z,) > H*"'*!(Cy; Z,), then we get a map
Kk: L2735 §2'~1 with w, = [ko], which establishes Theorem B. Here, we
remark that it is enough to find the map ¢ as is a stable map

(32) &:Li—>S¥"1  with 29 £0:H*"Y(C,; Z,) > H?¥"'"Y(Cy; Z,).
&> “p & “p
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In fact, the suspension homomorphism [Z2L!, §2P'*1] o [Z2V L, §2N+20-17 g
bijective for any N > 1, because C(p' + m) is (2(p' + m)p — 4)-connected for
any m> 1. _ :

Thus, Theorem B follows from the following proposition, in which {; is
the stable map of Proposition 3.

PROPOSITION 4. For 2 <i < 4, there exists a stable map  : L — 2*B(p*™")
such that a stable map ¢ of (3.2) is taken as the composition (Z3*'~'(,)y.

We prepare some lemmas concerning the stunted lens spaces before the
proof of Proposition 4. When a <0 and a < b, the stunted lens space Lt
means a spectrum X 2P ngﬁjf; for sufficiently large N > 0 using the James
periodicity. Indeed, since the J-order of the canonical complex line bundle
over L'7® jig pl®=a/r~1] by [5] we have only to take N satisfying N >
[(b—a)(p—1)] and 2p" +a>0.

For a given i >0 and 0 < a < b < 2p'*?, we define L2 to be the spectrum
EZP'”L:iﬁ:::x. Then, by taking M = p#**'~D/e=D=G+1) _ 1 it is also repre-
sented L) =X 2MPUILIMPNYE We put 3/ = yMP"'Y e H¥(LL Z,) for a<
2j <b. Define a map @: H¥L:; Z,) » H*(L:; Z,) by ®(x*y’) = x*y’ for a <
e+2j<band ¢e=0 or 1. Then, it is easy to show the following lemma,

by which H*(L!; Z,) is an unstable s/-module:

LEMMA 5. For anyi > Oand 0 < a < b < 2p™*, @:H¥LY Z,)~>
H*(L}; Z,) is an isomorphism of s/-modules.

The following is the key lemma for the proof of Proposition 4, and
Lemma 5 is used in the proof of the lemma.

LEMMA 6. For 2 <i <4, there exists a stable map ¢ :8%*"" - B(p'™) A
L2*"" such that p*(1 ® 7 ") #£0.

We postpone the proof of Lemma 6 until the next section, and complete
the proof of Proposition 4 by assuming Lemma 6.

PrOOF OF PROPOSITION 4. Since there is a Spainer-Whitehead duality
D:S°— L3P A Z™%W"HLE we have an isomorphism {L!, Z*B(p'!)} =
n3,-(B(p*™') A L3*"™"), where t and s are the integers of (3.1). Hence,
corresponding to ¢ of Lemma 6, there exists a stable map : L. — Z*B(p'™!)
which satisfies

y* #0: H(Z*B(p' '), Z,) » H(L;, Z,,).
Thus, y*(1) = xy?""'"?"'~! up to unit. Then, it also holds that

(3.3) Y* # 0: H'(Z*B(p'™*), Z,) » H'(L,; Z,).



226 Mitsunori IMAOKA and Yusuke KAwaMOTO

In fact, by Davis [2], the equality y(#? - P#?P!) = PP+ *+P*1 holds for any
j=0. Then, y*(x(P*" - PPP'f))= P27+ *7*yY*(1) = y*® up to unit,
and thus (3.3) follows. Now, we can show that i is the required map.

Let £: L — "' be the composition of ¥ : L, - Z*B(p'™") and Z?*'7{;:
ZSB(p'™') - §?7'71, where {; is the stable map of Proposition 3. Then, we
have the following commutative diagram;

H2p‘-—1(22p‘—1C§i) 2P , HZP‘“-I(ZZPLIC(‘) . H’(Z’B(pi_l))
= y*

H¥(C) - HPUTNG)  —— H'(LY,
where all cohomology groups are taken with Z,-coefficients. Since H'(Z*B(p'™');
Z,)~Z, is generated by y(#*---P*P'p), Proposition 3 and (3.3) yield
P* #0: H*?Y(Cy; Z,) > H*"'"Y(Cy; Z,), and we have completed the proof.
O

4. An Adams spectral sequence

In this section, we stablish Lemma 6. Let {E**(p*, X)} = n3(B(p*) A X),
for a spectrum X, be an Adams spectral sequence given as in [1]. In [1]
the spectral sequence is used in the case of X = L the infinite dimensional
lens space, but we shall apply the spectral sequence for the stunted lens spaces.
More precisely, the E;-term of ‘it is given by

Ef“(p", X) = ;0 A (p") ® Hi(X; Z,).
J

Here, A%(p*) is an algebra given as follows: Let A be the A-algebra, that
is, 4 is an associative graded algebra over Z, with generators 4, of degree
2m(p—1)—1 for m>1; p, of degree 2n(p — 1) for n > 0; subject to the
so-called Adem relations (see [1; Ch. 1, §1]), where we have changed the
notations and the gradings from those in [1] (4, and g, are denoted in [1]
by 4,-; and p,_, of degrees —2m(p—1)+ 1 and —2n(p — 1) respective-
ly). Let I(k) be the left ideal generated by {i,, p.lm <p* ', n<p* ' -1}
Then, (A4/I(k))® denotes the submodule of A/I(k) generated by the monomials
of 4, or u, with length b, and A5(p*) is the component of degree a in (A/I(k))".
As a Z,vector space, A5(p*) has a basis formed by some admissible
monomials. Let v, =4, or p,. Then, the monomial v, -**v,, of (4/I(k))’
is admissible if, for each j with 1 <j<b—1, pm;>m;; +1 or pm;>my,,
holds according as Vi, = Amy OF Vp = tm, ([1; Ch. I, §1]). Then, a basis of
A3(p*) consists of the admissible monomials v, v, of degree a with m, >

mp

p*™' + 1 or p*~* according as v, = A, or , by [1; Ch. III, Lemma 3.1]. As
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a result, the element which has the lowest degree in (A/I(k))® is Mp-vflpe-per "
Hp-2pt-1.  Thus, we have the following:

LEMMA 7. A2(p¥) =0 if a <2(p* — p*7?).

Now, for a fixed I >0, we put L(l, k) = T 2MP" L2MPN 2P for 0 < k <],
where M = p¥®'"'~D/e=D-0+1) _ { and consider the spectral sequence

E}“(n, k) = EX*(p", L(l, k) = n3(B(p") A L(, k).

Let (y?")* € H,,(L(l, k); Z,) be the element dual to y*” for 0 <m < k. Then,
by [1; Ch. III, Lemma 3.5], we see that

(3.4) d(1®u"™* =0 in E}*"(m m).

By [1; Ch. III, Th. 4.1], there exists a stable map f, : B(p¥) » X2 '¢¢-D
B(p*!) for k > 2 such that (fi,)*: H*B(p*™'); Z,) » H**2*'e~)(B(p*); Z,) is
multiplication on the right by x(#7"). Put h, = f, A 1:B(p*) A L(l, k) >
T2PHeUB(p* 1y A L(l, k). Then, by [1; Ch. III, Lemma 3.8] and using
Lemma 5, we have

3.5) (1), (1 ® (37)¥) =1 ® (Y7 ).
Also, by [1; Ch. III, Cor. 3.7], if g>1 and u < q + 2p*, then
(3.6) (), = 0: E¥¥(k, k) —> EL*~2P' 0~ Dk — 1 k).

We remark that the inclusion i: L(k — 1,k — 1) » L(k — 1, k) induces a coho-
mology isomorphism up to dimension 2p*~%, and thus i, : E&* 2P "¢~k —
1,k —1) - E#*"2P'@=D(k — 1, k) is an isomorphism if u < g + 2p* and ¢ > 1
or if (q,u)=(0,2p*). Hence, by the identification through i, for these g
and u, (h,), can be regarded as (k), : E**(k, k) » E®*" 2P0~k — 1 k — 1).
Then, applying (3.4)-(3.6), we have

LemMa 8. 1 ® (yP)*e EQ205(k, k) for 1<k <.

Proor. Let k be fixed. By (34), 1 ®(y*")* € E3?""(m,m) for any m
with k <m <l Inductively, assume that, for some r with 2 <r<I[-k,
1 ® (yP")* € E>2P"(m, m) holds for any m with k<m <1+ 2 —r. Then, for
any n with k<n<l+2—(+1), (1 Q") = (1) [d.(1 (7)) =0
by (3.5) and (3.6), and hence 1 ® (y*")* € E%37"(n,n). Therefore, as for 1 ®
(y7)*, we have d. (1 ® (y*)*)=0 for 1 <r<!—k+ 1, which establishes the
required result. [J

Now, we can complete the proof of Lemma 6. Let 2 <i <4, and (y?"')*
denote the dual of 37" € H**"'(L#""; Z,). Then, applying Lemma 8 in the
case of I =i+ 1 and k =i — 1, we obtain that 1 ® (y*"')* € E>-?#"'(pi~!, L3P™").
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However, for 2 <i <4 and any r >4, E32P7'*1(p"~1 L2¢"') = 0 by Lemma
7, and hence d,(1®(y? ')*)e Er2PT*r1(pi~! [2¢°"")=0. Therefore, 1®
(y?'y* for 2<i<4 is a permanent cycle, and represents an element
[e]lens,-«(B(p'™*) A LI'™"). Then, we have ¢*1®5"")#0. Thus we
have completed the proof.

REMARK. In our proof of Theorem B, the condition i <4 is necessary
only to show that d,(1® (y* ')*) =0 for any r > 4. However, it seems not
so easy to deduce whether such differentials still vanish for i > 5 or not. Also,
some formulas like those in [6; Prop. 2.4, 2.5] which are useful in the case
of p=2 do not have straightforward analogy for odd primes.
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