An Extended ISM for Globally Multimodal Function Optimization by Genetic Algorithms

5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009 284-289 頁 2009-11 発行
アクセス数 : 631
ダウンロード数 : 100

今月のアクセス数 : 3
今月のダウンロード数 : 0
ファイル情報(添付)
A1206.pdf 747 KB 種類 : 全文
タイトル ( eng )
An Extended ISM for Globally Multimodal Function Optimization by Genetic Algorithms
作成者
Karatsu Naoya
Nagata Yuichi
Ono Isao
Kobayashi Shigenobu
収録物名
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
開始ページ 284
終了ページ 289
抄録
When attempting to optimize a function where exists several big-valley structures, conventional GAs often fail to find the global optimum. Innately Split Model (ISM) is a framework of GAs, which is designed to avoid this phenomenon called UV -Phenomenon. However, ISM doesn't care about previouslysearched areas by the past populations. Thus, it is possible that populations of ISM waste evaluation cost for redundant searches reaching previously-found optima. In this paper, we introduce Extended ISM (EISM) that uses search information of past populations as trap to suppress overlapping searches. To show performance of EISM, we apply it to some test functions, and analyze the behavior.
NDC分類
技術・工学 [ 500 ]
言語
英語
資源タイプ 会議発表論文
出版者
IEEE SMC Hiroshima Chapter
発行日 2009-11
権利情報
(c) Copyright by IEEE SMC Hiroshima Chapter.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1883-3977
[URI] http://www.hil.hiroshima-u.ac.jp/iwcia/2009/