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Abstract—When attempting to optimize a function where exists information at some of their generationsistory, and finally
several big-valley structures, conventional GAs often fail to find registers them to search space as traps. The traps are shared
the global optimum. Innately Split Model (ISM) is a framework \yith all groups to find redundant searches. This action helps

of GAs, which is designed to avoid this phenomenon calledt til ffici for finding the alobal ooti
UV-Phenomenon. However, ISM doesn’t care about previously- 0 utilize resource einiciency for finding the global opumum.

searched areas by the past populations. Thus, it is possible that The following section describes the background of this
populations of ISM waste evaluation cost for redundant searches work and motivation of us. In section 3, we propose EISM,

reaching previously-found optima. In this paper, we introduce which extends ISM, aiming to suppress redundant search. In

Extended ISM (EISM) that uses search information of past gection 4, to demonstrate performance, we apply EISM to test
populations astrap to suppress overlapping searches. To show functions

performance of EISM, we apply it to some test functions, and

analyze the behaviar. Il. MOTIVATION AND BACKGROUND

I. INTRODUCTION In this section, we briefly review a background of our

In engineering, continuous function optimization is one diroposal and clarify motivation.
the important problems, and it is known that Real-Coded Ge-

. . . UV-Structures
netic Algorithms (RCGASs) have a good performance on suc
problem. However, most of RCGAs are designed on the as-keda et al. suggest that searches of GA fail to find the
sumption that objective function hasay-valley[1] structure. global optimum if objective functions have some big-valleys
Therefore, when attempting to optimize functions which havhich have certain characteristics. The phenomenon are called
landscape callediobally multimodal, where exist several UV-Phenomenon and such functions have landscapes called
big-valleys, RCGAs often fail to find the global optimumUV-Structures. In UV-Phenomenon Hypothesis, a big-valley
lkeda et al. called this phenomendf - Phenomenon and which includes the global optimum is called thgt-valley,
classify causative structures into 3 classes by characteristRdd & big-valley which includes the local optimum is called
Furthermore they exp|ained how expk)ration fail and prdocal-valleys. The UV-Structures are described as follows.
posed Innately Split Model (ISM)[2] aiming to avoid UV- 1. The average quality of the opt-valley is worse than of
Phenomenon. local-valleys.

Populations in ISM calledgroups are initialized within 2. The opt-valley is very narrow compared to local-valleys.
small area, and then they search independently. Moreove8. The complicity of the opt-valley is higher than local-
converged groups are initialized to a random point. This pre- valleys.
vents the groups from deceiving into local optimum. However, |n these structures, a population of conventional GAs is
if the function has big-valleys which are larger than othergeceived into a local-valley. We pick up UV-Structure class
most of the groups search the large big-valleys. It means tipaind process of them represent to Figure 1.
the evaluation cost are wasted for the redundant searches. .

Although Ikeda et al. introduce the feature callegtion, it B- Innately Split Model

can be used in the limited situation and doesn’t care about pasOn the UV-Phenomenon Hypothesis, if a population of GA
searches. It occurs that the groups search previously-searcteebrs area that includes several big-valleys, it would fail to
area and converge to previously-found optimum. In real worfihd the global optimum. To overcome this phenomenon, ISM
problems, cost for evaluate is very large and saving themssarches by populations initialized within limited small area.
important task. Hence it is desirable to suppress the redund&hey are calledyroups and ISM performs as Algorithm 1.
searches of ISM and utilize resources efficiently. In Algorithm 1, eachg; is group of ISM which hasV

This work introduces Extended-ISM (EISM) which usedividuals, andy;.u is the mean of the groug,. Line 1 (and
distribution information of groups asrap to represent 7,9) is the most important for ISM. The groups are initialized
previously-searched area. Each group saves their distributemound random point and it makes searches successful. A
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'”;E;arlc'ﬁea‘;’zgle Se%(r)gh feg% therll (l)bg‘l’ ];;l)g(ijmum cannot use the option. However, assuming we need high
«cZZZZzZ%> cost for evaluations, it is considered that it is efficient that
\v using ISM in parallel by the individual.
» « option cannot deal with ill-scaled landscapes Because
of option uses euclidean distance, option cannot deal with
a function where exists ill-scaled landscape. If we apply

ISM with option to such function, it could prevent groups

from finding the global optimum.
Fig. 1. Example of UV-Phenomenon: At first, a population of conventional o .
GA is initialized whole search space (left). Then, in the course of the search To solve these prOblemS’ it is desirable that new method

a difference of search speed between individuals which exist in the opt—valIA&hiCh is extending of option.
and in the local-valley arise (middle). Finally all of individuals get pulled over

to the local-valley (right). I1l. PROPOSAL

1ISM In this section, we present Extended-ISM (EISM) which
1. initialize g;(i = 1, ..., G) within small area uses past search informqtior_1 tq suppress redqndant searches.
2: while not satisfy end conditiodo Groups of EISM save their distribution information at several
for i:=1:G do generation ashistory. Then, when the groups converge,

Ssaull}
ssaulll
Ssaull}

search space search space search space

i g; « next generation of; fchey reg_ister history to sea_rch space. We call each registered
5 if g; convergeghen |nformaF|ontrap. Groups which search after them handlg traps
6: save the optimum found by; as previously-searched area. EISM performs as algorithm 2.
7 initialize g; within small area

& elseifany;(j # i) satisfies||g;.u—g;.u|| <rthen 2EISM _

9: initialize g; within small area 1: initialize g;(i =1, ..., G) within small area

10: end if 2: while not satisfy end conditionlo

11:  end for 3 fori:=1:Gdo

12: end while : gi < next generation of;

4

5 if g; convergeghen

6: register the history of g; to trap_list

7 save the optimum found by;
initialize g; within small area

else if capture_checking(g;) then
initialize g; within small area

group of ISM focuses on its search to the big-valley nearest”
from initialized position. Hence, initialize area should have®
similar or smaller size than the opt-valley. 9

The group which searches sufficiently is initialized at rant®

dom position of search space. We call thisinitialize. 11 end if
12: add_history(g;)
C. Motivation of our proposal 13:  end for

If an objective function has landscape that belongs intdt: €nd while
UV-Structure class 2, most of groups are initialized in big-
valley which has large volume, and then they converges toMost of the lines in Algorithm 2 are same with the lines
same optima. Furthermore, since ISM doesn’t consider abautAlgorithm 1. The traplist is shared with all of the groups
previously-searched area, it occurs that the initialized groapd it keeps traps. After performing the generation alterna-
searches the area where is searched by past groups. This retiahis g; is compared with the traps (line 9). The function
that most of resources are wasted for the redundant searclapture checkingg;) returns TRUE ifg; is determined to be
One of the way to resolve this problem is to use talwe-initialized or FALSE if it isn't. If it is conclude thay; is
search[3]. However it finds the redundant search by tl@aptured by trapg; is initialized without registering history
individual. Hence it is difficult to apply to RCGAs. (line 10). Thery; adds its distribution information to history as
To suppress the redundant search, Ikeda et al. introducetlags by the function addhistory(g). The function is depicted
feature namedption that if the distance between two mean@ Algorithm 3.
of groups is shorter than thresholdre-initialize one of them.  Figure 2 shows the search process of EISM.

However, the situation when the option can be used is limited
because of following reason. A. Using a hyperellipsoid as a distribution information

« finding feasible value of r» is difficult : Intuitively, Assuming that each population of RCGAs follows normal
r requires shorter than the distance between the gloltidtribution, we can represent its distribution by a hyperellip-
optimum and nearest optimum from it.sifis unfeasible, soid using a covariance matrix as a coefficient matrix and a
groups become to impossible to find certain optima. mean vector of it. If we use this hyperellipsoid as the trap,

« option can be used for groups searching in parallel it can deal with ill-scaled landscape and dependence between
. If ISM is not performed in parallel by the group, wevariables.
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Search as ISM and Re-initialize to Suppress

out some traps " andon point redundant. search way, the group saves distribution information to history when

the mean of the group is out of previous-saved history.

| i Then, the converged group registers the history as traps.

‘ 'I The traps are put on as tracing search pathway of the group.
@A When following groups encroach on any trdp we define

| the group is captured by T. Then the captured groups are

search space search space search space re-initialized in probability P ,;;.

As this way, suppressing redundant search effect of each

Fig. 2. Search process of EISM: The broken lines represents the search nﬁﬁ‘p is not so h|gh However, as we can observe in nght
ways of groups, and the mean of each group moves along the broken li

Group of ISM are initialized within small area and search independently, araf.':igure 2, a group, which searches along past search path

then put the traps(left). The groups which converge are re-initialized(middigyay, must be captured by a lot of traps, and re-initialized

A group which search similar area with past groups is captured by traps(riglmgh probability. In contrast, if a group which searches local-
valley makes some traps near by opt-valley. We call these traps
infeasible traps. Groups searches the opt-valley is captured

When there exists a trap using the meaand the coefficient ' fo\y of traps, and re-initialized low probability. This makes
matrix 33, and a vecto, we check whethexk is included by EISM performance robust.

trap or not using following functions:

I)ﬂq()(;/L7 E]) _ \//()( — ft)qn§:471()( — ft)'

) o

ssaul Iy
ssaul iy

(@)

C. Capture checking
(1) Each group is compared with all traps registered in search

f C i tri " space to check captured or not. When more than half individ-
IS m X matrixas uals of the group are in the trap, the group is captured by trap.
ctc=x71, (2) Check of capture is performed as following function.

we can calculate mahalanobis distance as

o |1 DpxTp,T.Y)<a
\/(x — )Ty (x—p) = \/(X —)TCTC(x — p)(3) FaT) = { 0 otherwise )
106 = [ (4) _ XL fgroupxi; T)

coverage(group; T) = N (6)

In the function (4),||C(x — u)||* ~ x? and expected value of e

it follows n. Thl(JS) |f|un(ctionu2!) is r>1<ormalizeclj3 by. groupx; is ith indiidual of group andT.%,T.u are
If Dy, (x;p,%) < «, we conclude thak exists in the trap.

distribution information which are kept by a trgp If there is

TxeT ={t|t e trap_list, t ¢ encounter_list} satisfies

B. Putting traps on search space coverage(group; T+) > 0.5, group is captured by traff.
Because of EISM aims suppress redundant searches fBEN the group is initialized in probabiliti;; (the function

large local-valley in UV-Structure class 2, it is required t§@Pturecheckingg) in Algorithm 2 returns TRUE) or add the

put a lot of traps in such valley. It is intuitive that the mean df@P 10 encounter_list (the function capturechecking(g in

a group moves frequently. On the other hand, it can be thouﬁ{gonthm 2 retums FALSE). In the later situation, we call

that making several traps at same place is not so importafigtthe group avoids the trap T', and the trap can't capture

From the view point, a group of EISM adds its distributiofin® 9roup again. If remove this process and permit trap to

information to its history as follows: capture the group again, a group which improves slow speed
is captured many times by the same trap, and EISM lacks the
3 add history(q) robustness.
1. ¥ < the covariance matrix of IV. EXPERIMENTS
2: u « the mean vector of In this section, we perform experiments comparing ISM
3: if Spre = nil then with EISM to present performance of EISM.
4 Spre — {%, p} A. Test functions
5: else if Dy, (1t; Spre-ft, Spre.X) > a then _ ) _
60 T —{X u} We use 4 functions for this experiment. We call 3 of
7. g.history_list «— g.history_list UT the functions, Double-Sphere, Double-Rastrigin and Double-
8 Spe—T Rosenbrock, and we call theouble-Valley functions.
o end if Furthermore, another function is Fletcher and Powell function,

and it is more complex than Double-Valley functions.
Double-Sphere is introduced in paper [4], and we adjust the

position and the size of valleys for this experiment. Given real

valued vectorx € R™ Double-Sphere is defined as follows:

In Algorithm 3, g is a group of EISM andy.history_list
is a list which keeps distribution information gt S,,. and
T are variables that keep information of hyperellipspid>:
and we can get them &§,,...;. and Sp,...2 respectivelyo is a
given parameter that determines expand ratio of traps. In thiBouble-Sphere(x) := min(fspn(Xs), fspn (%) +1.0)  (7)
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x; =x — (2.56,...,2.56)T (8)
X, 1= 2(x — (-2.56,...,-2.56)7) 9)
fsph(x) = ZI? (10)

i=1
x € [-5.12,5.12]" (112)

Double-Sphere has the local optimum (@56, .. .,2.56)
and the global optimum &t2.56, . ..,-2.56) respectively. The
volume of the local-valley is approximately5™ times smaller
than the opt-valley.

Double-Rastrigin is introduced in paper [4], and we adjust
the position and the size of valleys for this experiment.

Double-Rastrigin is defined as follows:

Double-Rastrigin(x) := min(frqs(Xs), fras(x1) + 1.0) (12)

n

E (@i sinx; + b;jcosx;)
Jj=1

B;(x) :

(24)

a;; and b;; are integer random numbers in the range
[-100, 100], and o; are random numbers in the range, ).
We use these values as introduced in paper[6]. On dimension
12, it is known that this function has 4 global-optima and
some local-optima. TABLE | shows the names corresponding
to all of the global-optima and top 3 local-optima of fitness,
size and coordinate of them. Here, let size of optimum A is
1.0 and size of others are volume in relation of optimum A.
We approximately measure the volume using 40,000 uniformly
oint and search the correspondences between them and the
optima by conjugate gradient method.

TABLE |
PRIMARY OPTIMA OF FLETCHER AND POWELL FUNCTION : THE SIZE OF
EACH OPTIMA IN RELATION TO OPTIMUM A, AND FITNESS AND
COORDINATE OF THEM

X =X — (2.56,...,2.56)" (13)
. . i T optimum || fitness| size | coordinate
Xs 1= 2(x = (-2.56,...,-2.56)") (14) A 0 | L.00 | (0.44,055,...
n B 0 1.47 | (0.34,0.47,...)
Fras(x) == fopn(x) =10 (1 = cos(2m(x; — (-2.56)))) (15) C 0 | 163 | (1.22,038,...)
k=1 D 0 1.52 | (0.41,0.39,...)
x € [-5.12,5.12]" (16) a 0.813 | 3.96 | (0.35,-1.59,...)
b 10.62 | 2.83 | (1.48,0.70,...)
Double-Rastrigin  has the global optimum at c 13.28 | 10.4 | (-0.15,-1.29,...)
(-2.56,...,-2.56) and a lot of local optima. The volume of

the local-valley is approximatel§.5™ times smaller than the

opt-valley.

TABLE | indicates that size of optimum c is most large than
others. Thus we can predict that the big-valley which includes

Double-Rosenbrock is introduced in paper [5], and Wgptimum c is causes UV-Phenomenon and the landscape is
adjust the position and the size of valleys for this experimentategorized to UV-Structure class 2.

Double-Rosenbrock is defined as follows:

Double-Rosenbrock(x) := min(fros(Xs), fros(x:) + 0.1) (17)

x;:=x—(0.5,...,0.5)T (18)

X, = —2(x — (-1.0,...,-1.0)7) (29)

Fros(x) 1= (100(z; — 27)* + (1 — z;)?) (20)
i=1

x € [-2.048,2.048]" (21)

Double-Rastrigin has the local optimum @t.5,...,-1.5)

and the global optimum 4&tl.5,. .., 1.5) respectively. Groups
searching the opt-valley once go (0.5,...,0.5) and groups
searching the opt-valley once go(td.o, . ..,-1.0), then move
along ridge structure.

B. Operators of GA

We use REX'"(U,n + 1)[7] as crossover operator and
JGG[8] as selection.

Given dimensiom, REX $'%" (U, n+1) selects+1 parents
and drives a globally gradient orientation, that represent the
gradient of underlying structure. Then, lgtis the point which
shifted toward a globally gradient orientation from mean of
parents. The offsprings are produced aroundatheFrom this
way, because of population move to more feasible area, it
prevents population from primary convergence. On the other
hand, JGG selects the parents from population and puts them
to decent individuals of offsprings. Since population of ISM,
which is initialized in limited area, almost can’'t cover the
optima and need to move toward better area, we verified that
this combination was efficient on preliminary experiments.

Fletcher and Powell function is introduced in paper [6] and
it has complicated landscape than Double-Valley functions. Settings

Fletcher and Powell function is defined as follows:

n

F(x):= Z(Ai — B)? for n=12 (22)

i=1

A; = Z(aijsinaj + b;;cosa;)

Jj=1

(23)
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On Double-Valley functions, dimension of functien= 10
and setting of operators are determined by preliminary exper-
iments as follows:

« On Double-Sphere, number of individuals in groipis
3 x n = 30, number of children i2 x n = 20, step size
parameter ofREX %" is 8.
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Fig. 3. 2 dimensional Double-Sphere Fig. 4. 2 dimensional Double-Rastrigin Fig. 5. 2 dimensional Double-Rosenbrock
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« On Double-Rastrigin, number of individuals in groi Double-Rosenbrock It indicates that the effect suppressing
is 20 x n. = 200, number of children i$ x n = 30, step redundant search of EISM is better than that on other func-
size parameter oRE X 5%%" is 2. tions. It spends approximately 10% evaluations. On the other

« On Double-Rosenbrock, number of individuals in groupand, it is observed that the standard deviatio®,at;, = 0.9
N is 5 x n = 50, number of children i8 x n = 30, step in this function becomes very high value.

size parameter oREX 51" is 4. Fletcher and Powell function: EISM finds all of primary
During the experiments, fitness of children that exist out sig®tima faster than ISM, and the number of evaluations is
of the boundary region is infinity. approximately 25%. Thus we can say that standard deviation

On Fletcher and Powell function, dimension of functio®f them are low values against number of evaluations of them.
n = 12 and setting of operators are determined by preliminafyowever it is observed that standard deviationPgf;; = 0.9

experiments as follows: in this function becomes high.
o The number of individuals in groupV is 8 x n = 96, TABLE Il
number of children i x n = 96, step size parameter of  RESULTS OF EXPERIMENTS THE NUMBER OF EVALUATIONS AND
REXSste is 4. STANDARD DEVIATION OF IT FORISM AND EISM.
We handle search space as torus in the rdnager]. Double-Sphere
Thus on all of the test functions, one side of initialized area method ISM EISM
is 0.3 times smaller than one side of boundary space on ISM Pinit - 03] 05 ] 0709
and EISM commonly. It is sufficiently small to avoid the UV- avg. (x10%) [ 33.3 1 9.51 [ 9.58 | 8.83 | 7.94
Phenomenon, and we confirmed by the preliminary experiment _s.d.(x10") || 33.2 || 6.76 | 7.88 | 6.95 | 6.48
that this setting is most efficient for ISM. In this experiment, -,
the number of group&y is 1. This is determined from the T IS,\Dﬂouble-RastnngISM
view pqlnt of efficiency as we suggest in se_ctlon I_I. If ISM is Do - 03 ] 05 | 07 [ 09
parallelized by group, we can use EISM with option of ISM, &g (<100 | 223 [ 989 | 7.95 | 7.37 | 7.57
however we don'’t deal it in this paper. s.d.(x10%) || 223 || 6.62 | 5.68 | 5.19 | 12.8
The parameters of EISMy, which determines expand
ratio of traps, is 1.5,P;,;;, which determines re-initialize Double-Rosenbrock
probability, is 0.3, 0.5, 0.7, 0.9 for all functions. Each group is method ISM EISM
initialized when fitness gain of it is less than~7 for fifteen Pinit - 03[ 05 ] 07 [ 09
generations, because of the group converges. Each trial is until &9 (x10% [ 11.9 ][ 1.10 [ 0.92 | 0.96 | 1.01
find the global optimum on Double-Valley functions, and until s.d.(x10% || 115 || 0.83 | 0.66 | 0.79 | 1.17
find the aI_I of primar_y optima on Fletcher apd Powell function. Fletcherand Powell function
We examine 300 trials for each test function. method ISM EISM
D. Results Pinit - 03] 05 07 ] 09
avg. (x10%) [[ 7.96 [ 1.42 1.60 [ 1.90 [ 2.01
TABLE Il shows avg. and s.d. on all of the test function. s.d.(x10% || 4.96 || 0.63 | 0.91 | 1.52 | 1.74
Double-Sphere EISM finds global optima faster than ISM,
and the number of evaluation is approximately 25%. Further-
more the evaluation cost and the standard deviation are most TABLE 11l
|OW at ]Dinit — 09 THE NUMBER OF REDUNID:ANT SEARCHES ONDOUBLE-VALLEY
Double-Rastrigin: EISM finds global optima faster than UNETIONS:
ISM, and the number of evaluation is approximately 30%. Double-Sphere| Double-Rastrigin| Double-Rosenbrock
One characteristic point is that whé®,,;; = 0.9, the number ISM 48.6 35.9 178
of evaluation and the standard deviation are larger than othersE'SM 2.00 4.39 1.78
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TABLE IV . .
THE NUMBER OF REDUNDANT SEARCHES ONFLETCHER AND PoweLL  Tesult with Py,;; = 0.7 on Double-Rastrigin and Double-

FUNCTION BY ISM AND EISM. Rosenbrock. It implies that there are something interrupt the
searches to find the global optima. We can estimate that
AL Bl C D | alDb | ¢ infeasibl his result, though th le-Vall
SV 112031 264 1641 05911509 260 217 in ea§|be traps cause this result, though t e'Doub e-Valley
EISM 029 0461 0.16 | 0.16 || 0.68 | 055 | 1.30 functions have simple landscape. Moreover It is observed on
Fletcher and Powell function in TABLE Il that the standard
deviation of EISM of with a highP;,;; is higher than that
E. Discussion of others. If groups which captured by infeasible traps are

1) Suppressing redundant search by trapsrom the result re-initialized with high probability, it is difficult to find the
of experiments, it is observed that EISM makes searches mgRimum. Hence it is important for EISM to lef;,;; low
efficient. To examine effect to suppress redundant searched@f'¢; and we recommend to &,;; = 0.5. In this way,
EISM, we count groups which converge to the local optimwlﬁlswI can _deal more cgmphcated problems.
on Double-Valley functions. Table Il shows the results of Performing EISM with the lowF;,;, makes the effect
300 trial average. We can observe that many groups fouRfysuppressing redundant searches lower. There is trade-off
local-optima by 1SM, and we can say that they are redund tween the effect and the robustness. It is our future works
searches. On the other hand, few groups of EISM found tfat to improve the effect of EISM with left the robustness.

local-optima. These results indicate that EISM can suppress V. CONCLUSIONS
search for previously-find optima with high probability. Espe- In this paper, we noted the waste of resources of ISM.

cially, effect on Double-Rosenbrock is very well. X
On Double-Rosenbrock. it is known that arouns whicgo address these concerns, we proposed EISM which uses
X ' group -Information of areas where were previously-searched by past
converge to same optimum follow same pathway. In such situy-

ation, a group of EISM, which converge first to the optimu roups, and suppresses redundant searches. We applied it to

. est functions which have UV-Structure class 2 and Fletcher
put several traps on the pathway, and following groups ai

captured by the traps with high probability. It is known tha fid Powell function that has complex landscape than them,

function where exists a rid tructure needs hiah evaluati Hd showed that EISM can find objective optimum with the
unctio ere exists a ndge structure needs high evaiua ginaller number of evaluations than ISM and EISM have
cost and the waste of redundant search is prominence. Wrﬂé

. . . igh performance especially on functions that have a ridge
our proposal is particularly efficient to such landscape, we ca -
. . Structure. Furthermore we can appeal that EISM can be applied
say that it is a strong point of our proposal.

TABLE IV shows number of groups which converge t(;co various functions without adjusting parameters.

each optimum of Fletcher and Powell function. By ISM, it REFERENCES
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of Japanese Society for Artificial Intelligenceol. 24, no. 1, pp. 147 —
TABLE V 162, 2009.(In Japanese)
THE NUMBER OF GROUPS RENITIALIZED BY TRAPS AND RATIO OF [8] Y. Akimoto, R. Hasada, J. Sakuma, I. Ono, and S. Kobayashi, “Generation
SUPPRESSED GENERATIONS Alternation Model for Real-Coded GA Using Multi-parent Proposal and
Evaluation of Just Generation Gap(JGG)."ImProceedings of the 19th
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resinit || 1.61 | 1.95 | 0.37 | 2.00 || 4.08 | 2.30 | 20.7 346.(In Japanese)

suppress|| 84% | 80% | 89% | 79% || 89% | 86% | 96%

2) Effect of probabilistic re-initialize Now focus on the
results with P;,,;; = 0.9 on TABLE Il. We can find that
number of evaluations and standard deviation is larger than
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