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Abstract—When attempting to optimize a function where exists
several big-valley structures, conventional GAs often fail to find
the global optimum. Innately Split Model (ISM) is a framework
of GAs, which is designed to avoid this phenomenon called
UV -Phenomenon. However, ISM doesn’t care about previously-
searched areas by the past populations. Thus, it is possible that
populations of ISM waste evaluation cost for redundant searches
reaching previously-found optima. In this paper, we introduce
Extended ISM (EISM) that uses search information of past
populations as trap to suppress overlapping searches. To show
performance of EISM, we apply it to some test functions, and
analyze the behavior.

I. INTRODUCTION

In engineering, continuous function optimization is one of
the important problems, and it is known that Real-Coded Ge-
netic Algorithms (RCGAs) have a good performance on such
problem. However, most of RCGAs are designed on the as-
sumption that objective function has abig-valley[1] structure.
Therefore, when attempting to optimize functions which have
landscape calledglobally multimodal, where exist several
big-valleys, RCGAs often fail to find the global optimum.
Ikeda et al. called this phenomenonUV -Phenomenon and
classify causative structures into 3 classes by characteristics.
Furthermore they explained how exploration fail and pro-
posed Innately Split Model (ISM)[2] aiming to avoid UV-
Phenomenon.

Populations in ISM calledgroups are initialized within
small area, and then they search independently. Moreover,
converged groups are initialized to a random point. This pre-
vents the groups from deceiving into local optimum. However,
if the function has big-valleys which are larger than others,
most of the groups search the large big-valleys. It means that
the evaluation cost are wasted for the redundant searches.
Although Ikeda et al. introduce the feature calledoption, it
can be used in the limited situation and doesn’t care about past
searches. It occurs that the groups search previously-searched
area and converge to previously-found optimum. In real world
problems, cost for evaluate is very large and saving them is
important task. Hence it is desirable to suppress the redundant
searches of ISM and utilize resources efficiently.

This work introduces Extended-ISM (EISM) which uses
distribution information of groups astrap to represent
previously-searched area. Each group saves their distribution

information at some of their generations tohistory, and finally
registers them to search space as traps. The traps are shared
with all groups to find redundant searches. This action helps
to utilize resource efficiency for finding the global optimum.

The following section describes the background of this
work and motivation of us. In section 3, we propose EISM,
which extends ISM, aiming to suppress redundant search. In
section 4, to demonstrate performance, we apply EISM to test
functions.

II. MOTIVATION AND BACKGROUND

In this section, we briefly review a background of our
proposal and clarify motivation.

A. UV-Structures

Ikeda et al. suggest that searches of GA fail to find the
global optimum if objective functions have some big-valleys
which have certain characteristics. The phenomenon are called
UV-Phenomenon and such functions have landscapes called
UV -Structures. In UV-Phenomenon Hypothesis, a big-valley
which includes the global optimum is called theopt-valley,
and a big-valley which includes the local optimum is called
local-valleys. The UV-Structures are described as follows.

1. The average quality of the opt-valley is worse than of
local-valleys.

2. The opt-valley is very narrow compared to local-valleys.
3. The complicity of the opt-valley is higher than local-

valleys.

In these structures, a population of conventional GAs is
deceived into a local-valley. We pick up UV-Structure class
2 and process of them represent to Figure 1.

B. Innately Split Model

On the UV-Phenomenon Hypothesis, if a population of GA
covers area that includes several big-valleys, it would fail to
find the global optimum. To overcome this phenomenon, ISM
searches by populations initialized within limited small area.
They are calledgroups and ISM performs as Algorithm 1.

In Algorithm 1, eachgi is group of ISM which hasN
individuals, andgi.µ is the mean of the groupgi. Line 1 (and
7,9) is the most important for ISM. The groups are initialized
around random point and it makes searches successful. A
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Fig. 1. Example of UV-Phenomenon: At first, a population of conventional
GA is initialized whole search space (left). Then, in the course of the search,
a difference of search speed between individuals which exist in the opt-valley
and in the local-valley arise (middle). Finally all of individuals get pulled over
to the local-valley (right).

1 ISM
1: initialize gi(i = 1, . . . , G) within small area
2: while not satisfy end conditiondo
3: for i := 1 : G do
4: gi ← next generation ofgi

5: if gi convergesthen
6: save the optimum found bygi

7: initialize gi within small area
8: else ifany j(j ̸= i) satisfies||gi.µ−gj .µ|| ≤ r then
9: initialize gi within small area

10: end if
11: end for
12: end while

group of ISM focuses on its search to the big-valley nearest
from initialized position. Hence, initialize area should have
similar or smaller size than the opt-valley.

The group which searches sufficiently is initialized at ran-
dom position of search space. We call thisre-initialize.

C. Motivation of our proposal

If an objective function has landscape that belongs into
UV-Structure class 2, most of groups are initialized in big-
valley which has large volume, and then they converges to
same optima. Furthermore, since ISM doesn’t consider about
previously-searched area, it occurs that the initialized group
searches the area where is searched by past groups. This results
that most of resources are wasted for the redundant searches.

One of the way to resolve this problem is to use tabu
search[3]. However it finds the redundant search by the
individual. Hence it is difficult to apply to RCGAs.

To suppress the redundant search, Ikeda et al. introduced a
feature namedoption that if the distance between two means
of groups is shorter than thresholdr, re-initialize one of them.
However, the situation when the option can be used is limited
because of following reason.

• finding feasible value of r is difficult : Intuitively,
r requires shorter than the distance between the global
optimum and nearest optimum from it. Ifr is unfeasible,
groups become to impossible to find certain optima.

• option can be used for groups searching in parallel
: If ISM is not performed in parallel by the group, we

cannot use the option. However, assuming we need high
cost for evaluations, it is considered that it is efficient that
using ISM in parallel by the individual.

• option cannot deal with ill-scaled landscapes :Because
of option uses euclidean distance, option cannot deal with
a function where exists ill-scaled landscape. If we apply
ISM with option to such function, it could prevent groups
from finding the global optimum.

To solve these problems, it is desirable that new method
which is extending of option.

III. PROPOSAL

In this section, we present Extended-ISM (EISM) which
uses past search information to suppress redundant searches.
Groups of EISM save their distribution information at several
generation ashistory. Then, when the groups converge,
they register history to search space. We call each registered
informationtrap. Groups which search after them handle traps
as previously-searched area. EISM performs as algorithm 2.

2 EISM
1: initialize gi(i = 1, . . . , G) within small area
2: while not satisfy end conditiondo
3: for i := 1 : G do
4: gi ← next generation ofgi

5: if gi convergesthen
6: register the history of gi to trap list
7: save the optimum found bygi

8: initialize gi within small area
9: else if capture checking(gi) then

10: initialize gi within small area
11: end if
12: add history(gi)
13: end for
14: end while

Most of the lines in Algorithm 2 are same with the lines
in Algorithm 1. The traplist is shared with all of the groups
and it keeps traps. After performing the generation alterna-
tion, gi is compared with the traps (line 9). The function
capturechecking(gi) returns TRUE ifgi is determined to be
re-initialized or FALSE if it isn’t. If it is conclude thatgi is
captured by trap,gi is initialized without registering history
(line 10). Thengi adds its distribution information to history as
traps by the function addhistory(gi). The function is depicted
in Algorithm 3.

Figure 2 shows the search process of EISM.

A. Using a hyperellipsoid as a distribution information

Assuming that each population of RCGAs follows normal
distribution, we can represent its distribution by a hyperellip-
soid using a covariance matrix as a coefficient matrix and a
mean vector of it. If we use this hyperellipsoid as the trap,
it can deal with ill-scaled landscape and dependence between
variables.
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Fig. 2. Search process of EISM: The broken lines represents the search path
ways of groups, and the mean of each group moves along the broken line.
Group of ISM are initialized within small area and search independently, and
then put the traps(left). The groups which converge are re-initialized(middle).
A group which search similar area with past groups is captured by traps(right).

When there exists a trap using the meanµ and the coefficient
matrix Σ, and a vectorx, we check whetherx is included by
trap or not using following functions:

Dm(x; µ,Σ) =

√
(x− µ)T Σ−1(x− µ)

n
. (1)

If C is n× n matrix as

CT C = Σ−1, (2)

we can calculate mahalanobis distance as√
(x− µ)T Σ−1(x− µ) =

√
(x− µ)T CT C(x− µ)(3)

=
√
||C(x− µ)||2. (4)

In the function (4),||C(x−µ)||2 ∼ χ2 and expected value of
it follows n. Thus, function (1) is normalized byn.

If Dm(x; µ,Σ) < α, we conclude thatx exists in the trap.

B. Putting traps on search space

Because of EISM aims suppress redundant searches for
large local-valley in UV-Structure class 2, it is required to
put a lot of traps in such valley. It is intuitive that the mean of
a group moves frequently. On the other hand, it can be thought
that making several traps at same place is not so important.
From the view point, a group of EISM adds its distribution
information to its history as follows:

3 add history(g)
1: Σ← the covariance matrix ofg
2: µ← the mean vector ofg
3: if Spre = nil then
4: Spre ← {Σ, µ}
5: else if Dm(µ; Spre.µ, Spre.Σ) > α then
6: T ← {Σ, µ}
7: g.history list ← g.history list ∪ T
8: Spre ← T
9: end if

In Algorithm 3, g is a group of EISM andg.history list
is a list which keeps distribution information ofg. Spre and
T are variables that keep information of hyperellipsoidµ, Σ
and we can get them asSpre.µ andSpre.Σ respectively.α is a
given parameter that determines expand ratio of traps. In this

way, the group saves distribution information to history when
the mean of the group is out of previous-saved history.

Then, the converged group registers the history as traps.
The traps are put on as tracing search pathway of the group.
When following groups encroach on any trapT , we define
the group is captured by T . Then the captured groups are
re-initialized in probabilityPinit.

As this way, suppressing redundant search effect of each
trap is not so high. However, as we can observe in right
of Figure 2, a group, which searches along past search path
way, must be captured by a lot of traps, and re-initialized
high probability. In contrast, if a group which searches local-
valley makes some traps near by opt-valley. We call these traps
infeasible traps. Groups searches the opt-valley is captured
by a few of traps, and re-initialized low probability. This makes
EISM performance robust.

C. Capture checking

Each group is compared with all traps registered in search
space to check captured or not. When more than half individ-
uals of the group are in the trap, the group is captured by trap.
Check of capture is performed as following function.

f(x; T ) =
{

1 Dm(x; T.µ, T.Σ) ≤ α
0 otherwise

(5)

coverage(group; T ) =
∑N

i=1 f(group.xi; T )
N

(6)

group.xi is ith individual of group andT.Σ, T.µ are
distribution information which are kept by a trapT . If there is
T∗ ∈ T = { t | t ∈ trap list, t /∈ encounter list} satisfies
coverage(group; T∗) ≥ 0.5, group is captured by trapT∗.
Then the group is initialized in probabilityPinit (the function
capturechecking(g) in Algorithm 2 returns TRUE) or add the
trap to encounter list (the function capturechecking(g) in
Algorithm 2 returns FALSE). In the later situation, we call
that the group avoids the trap T , and the trap can’t capture
the group again. If remove this process and permit trap to
capture the group again, a group which improves slow speed
is captured many times by the same trap, and EISM lacks the
robustness.

IV. EXPERIMENTS

In this section, we perform experiments comparing ISM
with EISM to present performance of EISM.

A. Test functions

We use 4 functions for this experiment. We call 3 of
the functions, Double-Sphere, Double-Rastrigin and Double-
Rosenbrock, and we call themDouble-V alley functions.
Furthermore, another function is Fletcher and Powell function,
and it is more complex than Double-Valley functions.

Double-Sphere is introduced in paper [4], and we adjust the
position and the size of valleys for this experiment. Given real
valued vectorx ∈ Rn Double-Sphere is defined as follows:

Double-Sphere(x) := min(fsph(xs), fsph(xl) + 1.0) (7)
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xl := x− (2.56, . . . , 2.56)T (8)

xs := 2(x− (-2.56, . . . , -2.56)T ) (9)

fsph(x) :=
n∑

i=1

x2
i (10)

x ∈ [−5.12, 5.12]n (11)

Double-Sphere has the local optimum at(2.56, . . . , 2.56)
and the global optimum at(-2.56, . . . , -2.56) respectively. The
volume of the local-valley is approximately0.5n times smaller
than the opt-valley.

Double-Rastrigin is introduced in paper [4], and we adjust
the position and the size of valleys for this experiment.
Double-Rastrigin is defined as follows:

Double-Rastrigin(x) := min(fras(xs), fras(xl) + 1.0) (12)

xl := x− (2.56, . . . , 2.56)T (13)

xs := 2(x− (-2.56, . . . , -2.56)T ) (14)

fras(x) := fsph(x)− 10
n∑

k=1

(1− cos(2π(xi − (-2.56)))) (15)

x ∈ [-5.12, 5.12]n (16)

Double-Rastrigin has the global optimum at
(-2.56, . . . , -2.56) and a lot of local optima. The volume of
the local-valley is approximately0.5n times smaller than the
opt-valley.

Double-Rosenbrock is introduced in paper [5], and we
adjust the position and the size of valleys for this experiment.
Double-Rosenbrock is defined as follows:

Double-Rosenbrock(x) := min(fros(xs), fros(xl) + 0.1) (17)

xl := x− (0.5, . . . , 0.5)T (18)

xs := −2(x− (-1.0, . . . , -1.0)T ) (19)

fros(x) :=
n∑

i=1

(100(x1 − x2
i )

2 + (1− xi)2) (20)

x ∈ [-2.048, 2.048]n (21)

Double-Rastrigin has the local optimum at(-1.5, . . . , -1.5)
and the global optimum at(1.5, . . . , 1.5) respectively. Groups
searching the opt-valley once go to(0.5, . . . , 0.5) and groups
searching the opt-valley once go to(-1.0, . . . , -1.0), then move
along ridge structure.

Fletcher and Powell function is introduced in paper [6] and
it has complicated landscape than Double-Valley functions.
Fletcher and Powell function is defined as follows:

F (x) :=
n∑

i=1

(Ai −Bi)2 for n = 12 (22)

Ai :=
n∑

j=1

(aijsinαj + bijcosαj) (23)

Bi(x) :=
n∑

j=1

(aijsinxj + bijcosxj) (24)

aij and bij are integer random numbers in the range
[-100, 100], andαi are random numbers in the range[-π, π].
We use these values as introduced in paper[6]. On dimension
12, it is known that this function has 4 global-optima and
some local-optima. TABLE I shows the names corresponding
to all of the global-optima and top 3 local-optima of fitness,
size and coordinate of them. Here, let size of optimum A is
1.0 and size of others are volume in relation of optimum A.
We approximately measure the volume using 40,000 uniformly
point and search the correspondences between them and the
optima by conjugate gradient method.

TABLE I
PRIMARY OPTIMA OF FLETCHER AND POWELL FUNCTION : THE SIZE OF

EACH OPTIMA IN RELATION TO OPTIMUM A, AND FITNESS AND

COORDINATE OF THEM

optimum fitness size coordinate
A 0 1.00 (0.44, 0.55, . . .)
B 0 1.47 (0.34, 0.47, . . .)
C 0 1.63 (1.22, 0.38, . . .)
D 0 1.52 (0.41, 0.39, . . .)

a 0.813 3.96 (0.35, -1.59, . . .)
b 10.62 2.83 (1.48, 0.70, . . .)
c 13.28 10.4 (-0.15, -1.29, . . .)

TABLE I indicates that size of optimum c is most large than
others. Thus we can predict that the big-valley which includes
optimum c is causes UV-Phenomenon and the landscape is
categorized to UV-Structure class 2.

B. Operators of GA

We useREXstar(U, n + 1)[7] as crossover operator and
JGG[8] as selection.

Given dimensionn, REXstar(U, n+1) selectsn+1 parents
and drives a globally gradient orientation, that represent the
gradient of underlying structure. Then, letxb is the point which
shifted toward a globally gradient orientation from mean of
parents. The offsprings are produced around thexb. From this
way, because of population move to more feasible area, it
prevents population from primary convergence. On the other
hand, JGG selects the parents from population and puts them
to decent individuals of offsprings. Since population of ISM,
which is initialized in limited area, almost can’t cover the
optima and need to move toward better area, we verified that
this combination was efficient on preliminary experiments.

C. Settings

On Double-Valley functions, dimension of functionn = 10
and setting of operators are determined by preliminary exper-
iments as follows:

• On Double-Sphere, number of individuals in groupN is
3× n = 30, number of children is2× n = 20, step size
parameter ofREXstar is 8.
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Fig. 4. 2 dimensional Double-Rastrigin
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Fig. 5. 2 dimensional Double-Rosenbrock

• On Double-Rastrigin, number of individuals in groupN
is 20× n = 200, number of children is3× n = 30, step
size parameter ofREXstar is 2.

• On Double-Rosenbrock, number of individuals in group
N is 5×n = 50, number of children is3×n = 30, step
size parameter ofREXstar is 4.

During the experiments, fitness of children that exist out side
of the boundary region is infinity.

On Fletcher and Powell function, dimension of function
n = 12 and setting of operators are determined by preliminary
experiments as follows:

• The number of individuals in groupN is 8 × n = 96,
number of children is8×n = 96, step size parameter of
REXstar is 4.

We handle search space as torus in the range[π,−π].
Thus on all of the test functions, one side of initialized area

is 0.3 times smaller than one side of boundary space on ISM
and EISM commonly. It is sufficiently small to avoid the UV-
Phenomenon, and we confirmed by the preliminary experiment
that this setting is most efficient for ISM. In this experiment,
the number of groupsG is 1. This is determined from the
view point of efficiency as we suggest in section II. If ISM is
parallelized by group, we can use EISM with option of ISM,
however we don’t deal it in this paper.

The parameters of EISMα, which determines expand
ratio of traps, is 1.5,Pinit, which determines re-initialize
probability, is 0.3, 0.5, 0.7, 0.9 for all functions. Each group is
initialized when fitness gain of it is less than10−7 for fifteen
generations, because of the group converges. Each trial is until
find the global optimum on Double-Valley functions, and until
find the all of primary optima on Fletcher and Powell function.
We examine 300 trials for each test function.

D. Results

TABLE II shows avg. and s.d. on all of the test function.
Double-Sphere: EISM finds global optima faster than ISM,

and the number of evaluation is approximately 25%. Further-
more the evaluation cost and the standard deviation are most
low at Pinit = 0.9.

Double-Rastrigin: EISM finds global optima faster than
ISM, and the number of evaluation is approximately 30%.
One characteristic point is that whenPinit = 0.9, the number
of evaluation and the standard deviation are larger than others.

Double-Rosenbrock: It indicates that the effect suppressing
redundant search of EISM is better than that on other func-
tions. It spends approximately 10% evaluations. On the other
hand, it is observed that the standard deviation atPinit = 0.9
in this function becomes very high value.

Fletcher and Powell function: EISM finds all of primary
optima faster than ISM, and the number of evaluations is
approximately 25%. Thus we can say that standard deviation
of them are low values against number of evaluations of them.
However it is observed that standard deviation atPinit = 0.9
in this function becomes high.

TABLE II
RESULTS OF EXPERIMENTS: THE NUMBER OF EVALUATIONS AND

STANDARD DEVIATION OF IT FOR ISM AND EISM.

Double-Sphere
method ISM EISM
Pinit - 0.3 0.5 0.7 0.9

avg. (×104) 33.3 9.51 9.58 8.83 7.94
s.d. (×104) 33.2 6.76 7.88 6.95 6.48

Double-Rastrigin
method ISM EISM
Pinit - 0.3 0.5 0.7 0.9

avg. (×105) 22.3 9.39 7.95 7.37 7.87
s.d. (×105) 22.3 6.62 5.68 5.19 12.8

Double-Rosenbrock
method ISM EISM
Pinit - 0.3 0.5 0.7 0.9

avg. (×106) 11.9 1.10 0.92 0.96 1.01
s.d. (×106) 11.5 0.83 0.66 0.79 1.17

Fletcherand Powell function
method ISM EISM
Pinit - 0.3 0.5 0.7 0.9

avg. (×106) 7.96 1.42 1.60 1.90 2.01
s.d. (×106) 4.96 0.63 0.91 1.52 1.74

TABLE III
THE NUMBER OF REDUNDANT SEARCHES ONDOUBLE-VALLEY

FUNCTIONS.

Double-Sphere Double-Rastrigin Double-Rosenbrock
ISM 48.6 35.9 178

EISM 2.00 4.39 1.78
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TABLE IV
THE NUMBER OF REDUNDANT SEARCHES ONFLETCHER AND POWELL

FUNCTION BY ISM AND EISM.

A B C D a b c
ISM 2.03 2.64 1.64 0.59 5.09 2.60 21.7

EISM 0.29 0.46 0.16 0.16 0.68 0.55 1.30

E. Discussion

1) Suppressing redundant search by traps: From the result
of experiments, it is observed that EISM makes searches more
efficient. To examine effect to suppress redundant searches of
EISM, we count groups which converge to the local optimum
on Double-Valley functions. Table III shows the results of
300 trial average. We can observe that many groups found
local-optima by ISM, and we can say that they are redundant
searches. On the other hand, few groups of EISM found the
local-optima. These results indicate that EISM can suppress
search for previously-find optima with high probability. Espe-
cially, effect on Double-Rosenbrock is very well.

On Double-Rosenbrock, it is known that groups which
converge to same optimum follow same pathway. In such situ-
ation, a group of EISM, which converge first to the optimum,
put several traps on the pathway, and following groups are
captured by the traps with high probability. It is known that
function where exists a ridge structure needs high evaluation
cost and the waste of redundant search is prominence. While
our proposal is particularly efficient to such landscape, we can
say that it is a strong point of our proposal.

TABLE IV shows number of groups which converge to
each optimum of Fletcher and Powell function. By ISM, it
can be observed that optimum c is found more than 22 times.
It indicates that most of groups search to local-valley where
exists optimum c. On the other hand, EISM finds optimum c
approximately 2 times and find others approximately once.

Furthermore we examine the big-valleys where is searched
by groups which are re-initialized by traps on Fletcher and
Powell function. It is examined by the way that the groups
determined to be re-initialized continue to search until con-
verge, and we count evaluation costs which spent for the search
interrupted by the trap. TABLE V shows the number of groups
which searched on each big-valley and suppressed generations
of them on Fletcher and Powell function. The groups that
searched for optimum c is most re-initialized by traps. Because
of optimum c is largest size of all of the primary optima, the
result is suitable for our motivation.

TABLE V
THE NUMBER OF GROUPS RE-INITIALIZED BY TRAPS AND RATIO OF

SUPPRESSED GENERATIONS.

A B C D a b c
re-init 1.61 1.95 0.37 2.00 4.08 2.30 20.7

suppress 84% 80% 89% 79% 89% 86% 96%

2) Effect of probabilistic re-initialize: Now focus on the
results with Pinit = 0.9 on TABLE II. We can find that
number of evaluations and standard deviation is larger than

result with Pinit = 0.7 on Double-Rastrigin and Double-
Rosenbrock. It implies that there are something interrupt the
searches to find the global optima. We can estimate that
infeasible traps cause this result, though the Double-Valley
functions have simple landscape. Moreover It is observed on
Fletcher and Powell function in TABLE II that the standard
deviation of EISM of with a highPinit is higher than that
of others. If groups which captured by infeasible traps are
re-initialized with high probability, it is difficult to find the
optimum. Hence it is important for EISM to letPinit low
value, and we recommend to bePinit = 0.5. In this way,
EISM can deal more complicated problems.

Performing EISM with the lowPinit makes the effect
of suppressing redundant searches lower. There is trade-off
between the effect and the robustness. It is our future works
that to improve the effect of EISM with left the robustness.

V. CONCLUSIONS

In this paper, we noted the waste of resources of ISM.
To address these concerns, we proposed EISM which uses
information of areas where were previously-searched by past
groups, and suppresses redundant searches. We applied it to
test functions which have UV-Structure class 2 and Fletcher
and Powell function that has complex landscape than them,
and showed that EISM can find objective optimum with the
smaller number of evaluations than ISM and EISM have
high performance especially on functions that have a ridge
structure. Furthermore we can appeal that EISM can be applied
to various functions without adjusting parameters.
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