Degree of triangle centers and a generalization of the Euler line

Beiträge zur Algebra und Geometrie Volume 51 Issue 1 Page 63-89 published_at 2010
アクセス数 : 838
ダウンロード数 : 580

今月のアクセス数 : 3
今月のダウンロード数 : 0
File
agaoka_DegreeofTriangleCenters.pdf 277 KB 種類 : fulltext
Title ( eng )
Degree of triangle centers and a generalization of the Euler line
Creator
Source Title
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometryrie
Volume 51
Issue 1
Start Page 63
End Page 89
Abstract
We introduce a concept “degree of triangle centers", and give a formula expressing the degree of triangle centers on generalized Euler lines. This generalizes the well known 2 : 1 point configuration on the Euler line. We also introduce a natural family of triangle centers based on the Ceva conjugate and the isotomic conjugate. This family contains many famous triangle centers, and we conjecture that the degree of triangle centers in this family always takes the form (-2)k for some k ∈ Z.
Keywords
triangle center
degree of triangle center
Euler line
Nagel line
Ceva conjugate
isotomic conjugate
NDC
Mathematics [ 410 ]
Language
eng
Resource Type journal article
Publisher
Springer Verlag
Date of Issued 2010
Rights
© 2010 Heldermann Verlag
This is a post-peer-review, pre-copyedit version of an article published in Beiträge zur Algebra und Geometrie. The final authenticated version is available online at: http://eudml.org/doc/223783
Publish Type Author’s Original
Access Rights open access
Source Identifier
[ISSN] 0138-4821
[ISSN] 2191-0383
[NCID] AA00558880
[URI] http://eudml.org/doc/223783