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Abstract

We introduce a concept “degree of triangle centers”, and give a formula expressing
the degree of triangle centers on generalized Euler lines. This generalizes the well
known 2 : 1 point configuration on the Euler line. We also introduce a natural family
of triangle centers based on the Ceva conjugate and the isotomic conjugate. This
family contains many famous triangle centers, and we conjecture that the degree of
triangle centers in this family always takes the form (−2)k for some k ∈ Z.

Introduction

In this paper we present a new method to study triangle centers in a systematic way.
Concerning triangle centers, there already exist tremendous amount of studies and data,
among others Kimberling’s excellent book and homepage [32], [36]. In this paper we
introduce a concept “degree of triangle centers”, and by using it, we clarify the mutual
relation of centers on generalized Euler lines (Proposition 1, Theorem 2). Here the term
“generalized Euler line” means a line connecting the centroid G and the given triangle
center P , and on this line an infinite number of centers lie in a fixed order, which are
successively constructed from the initial center P (for precise definition, see §3). This
generalizes the well known 2 : 1 point configuration on the Euler line, concerning centroid,
orthocenter, circumcenter, nine-point center, etc. In addition we exhibit a new class of
triangle centers PC based on the Ceva conjugate and the isotomic conjugate, which contains
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many famous centers and possesses an intimate relationship to the concept “degree of
triangle centers”.

Now we state the contents of this paper. In §1 we define the concept “triangle centers”
in terms of barycentric coordinate. In this paper we only treat triangle centers whose
barycentric coordinates f(a, b, c) are expressed as a quotient of polynomials of edge lengths
a, b, c. In §2 we give a definition of degree of triangle centers d(f). We remark that for most
famous centers the value d(f) takes the form (−2)k (k ∈ Z). In §3 we generalize the notion
of the Euler line by using barycentric coordinates, and state the relation between centers
on generalized Euler lines and the sequence of infinite homothetic triangles constructed
successively by taking the medians of edges (Proposition 1). This result is more or less
well known for many situations. For example we already know that the circumcenter of
∆ABC is equal to the orthocenter of the medial triangle of ∆ABC, which is also equal
to the nine-point center of the anticomplementary triangle of ∆ABC (see Figure 4).

In §4 we give a formula on the degree d(f) of centers on generalized Euler lines (The-
orem 2), which is the principal result of the present paper. By this formula, in case
deg f 6≡ 0 (mod 3), we can read the relative position of centers on the generalized Euler
line from the value d(f). On the other hand, in case deg f ≡ 0 (mod 3), the degree d(f)
gives an invariant of the generalized Euler line. In §5 we give three other invariants of
generalized Euler lines. In §6 we introduce a new class of triangle centers PC based on
two conjugates: the Ceva conjugate and the isotomic conjugate. This family contains
many famous triangle centers, including centers on the generalized Euler line, and is quite
naturally adapted to the concept degree d(f). But unfortunately its explicit form is not de-
termined yet. In the final section §7, we give several conjectures on the family PC. Among
others we conjecture that for centers f(a, b, c) in the family PC we have d(f) = (−2)k

(Conjecture 2). The number −2 appears in several places in elementary geometry, and we
believe that this conjecture gives one basepoint of our approach to the new understanding
of elementary geometry, after it is settled affirmatively. In Appendix we give the data on
f(a, b, c), d(f), etc., for triangle centers Xk (k ≤ 100), following the list in Kimberling’s
book [32]. By this data the readers can examine several statements and conjectures given
in this paper.

§ 1. Triangle centers

We denote by ∆ the set of triangles in the plane R2. Remark that vertices and edges
of triangles are unnamed at this stage. A triangle center is a map

ϕ : ∆ −→ R2,

satisfying the following condition: The map ϕ commutes with the action of homothety g,
i.e., the following diagram is commutative:

∆
ϕ−−−→ R2

g̃

y yg

∆ −−−→
ϕ

R2
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Here, g : R2 −→ R2 is a map defined by

g

(
x
y

)
= kA

(
x
y

)
+

(
p
q

)
,

where k > 0, A ∈ O(2),

(
p
q

)
∈ R2, and g̃ : ∆ −→ ∆ is a map naturally induced from g.

This condition means that triangle centers do not depend on the choice of a coordinate of
R2, and also not on scaling.

Note that in some special cases we must restrict the domain of ϕ to a subset of ∆. For
example to define the Feuerbach point, we must exclude equilateral triangles from ∆.

For later use we put names to vertices and edges of triangles, and reformulate the above
definition of triangle centers. Let ∆ABC be a triangle in the plane with vertices A, B, C,
and we denote by a, b, c the edge lengths of ∆ABC, i.e., a = BC, b = CA, c = AB.
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�
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��
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B Ca

bc

Figure 1

Then any point P of the plane can be uniquely expressed as

P = xA + yB + zC (x + y + z = 1).

The triple (x, y, z) is called the barycentric coordinate of P .

Since the shape of a triangle is determined by its edge lengths a, b, c and the position of
a triangle center depends only on the shape of the triangle, we know that the barycentric
coordinate (x, y, z) of a triangle center ϕ(∆ABC) is expressed as functions of a, b, c, i.e.,
ϕ(∆ABC) = f(a, b, c)A + g(a, b, c)B + h(a, b, c)C.

Next, since the position of a triangle center ϕ(∆ABC) does not depend on the naming
of vertices A, B, C (for example, ϕ(∆ABC) = ϕ(∆ACB) etc.), we obtain the equalities
such as

f(a, b, c)A + g(a, b, c)B + h(a, b, c)C = f(a, c, b)A + g(a, c, b)C + h(a, c, b)B.

From these conditions it is easy to see that the map ϕ(∆ABC) = f(a, b, c)A+g(a, b, c)B+
h(a, b, c)C gives a triangle center if and only if g(a, b, c) = f(b, c, a), h(a, b, c) = f(c, a, b)
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and

f(a, b, c) + f(b, c, a) + f(c, a, b) = 1,

f(a, b, c) = f(a, c, b),

f(ka, kb, kc) = f(a, b, c) ∀k > 0.

Hence we may say that a triangle center is uniquely determined by a function f(a, b, c)
satisfying the above three conditions. We give some examples. Here Xk means the k-th
triangle center listed in [32], [36].

Example 1.

X1 (I, Incenter) : f(a, b, c) =
a

a + b + c
,

X2 (G, Centroid) : f(a, b, c) =
1

3
,

X3 (O, Circumcenter) : f(a, b, c) =
a2(−a2 + b2 + c2)

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)
,

X4 (H, Orthocenter) : f(a, b, c) =
(a2 − b2 + c2)(a2 + b2 − c2)

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)
,

X5 (N , Nine-point center) : f(a, b, c) =
a2(b2 + c2) − (b2 − c2)2

2(a + b + c)(−a + b + c)(a − b + c)(a + b − c)
,

X8 (Na, Nagel point) : f(a, b, c) =
−a + b + c

a + b + c
,

X10 (S, Spieker center) : f(a, b, c) =
b + c

2(a + b + c)
,

X11 (F , Feuerbach point) : f(a, b, c) =
(b − c)2(−a + b + c)

2{abc − (−a + b + c)(a − b + c)(a + b − c)}
,

X944 (Ho, Hofstadter trapezoid point) :

f(a, b, c) =
−3a4 + 2a3(b + c) + 2a2(b − c)2 − 2a(b − c)2(b + c) + (b2 − c2)2

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)
.

Note that the barycentric coordinates of these centers possess some common algebraic
feature. For example, in spite of their different geometric positions, polynomials −a+b+c,
a − b + c, a + b − c appear repeatedly.

Clearly, the essential part of a function f(a, b, c) is its numerator, since we can re-
cover the denominator of f(a, b, c) by a cyclic sum of its numerator. Two numerators
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f1(a, b, c) and f2(a, b, c) define the same function f(a, b, c) if and only if f2(a, b, c) =
f1(a, b, c)ψ(a, b, c) for some symmetric function ψ(a, b, c).

In the above examples the numerators of f(a, b, c) are polynomials of a, b, c. But for
the Fermat point (= X13 in Kimberling’s list [32]) the numerator of f(a, b, c) is given by

a4 + a2{b2 + c2 +
√

3
√

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)} − 2(b2 − c2)2,

which inevitably contains a square root of a quartic polynomial of a, b, c.
In this paper, for the reason which will be clarified in §2, we only treat triangle centers

f(a, b, c) whose numerators (and also denominators) are expressed as real homogeneous
polynomials of a, b, c. (So the Fermat point is beyond our scope in this paper.)

We reformulate the above setting as follows: Let H be the set of all real homogeneous
polynomials f(a, b, c) satisfying

f(a, b, c) = f(a, c, b),

f(a, b, c) + f(b, c, a) + f(c, a, b) 6= 0.

We say f(a, b, c) and f ′(a, b, c) ∈ H are equivalent if f ′(a, b, c) = f(a, b, c)ψ(a, b, c) for some
symmetric function ψ(a, b, c), and denote it by f(a, b, c) ∼ f ′(a, b, c). Then the quotient
set P = H/ ∼ constitutes a natural subclass of triangle centers. In the following we often
express the representative class of f(a, b, c) by the same symbol. Note that the position
P of a triangle center defined by f(a, b, c) ∈ P is given by

P =
f(a, b, c)A + f(b, c, a)B + f(c, a, b)C

f(a, b, c) + f(b, c, a) + f(c, a, b)
,

and abuse of notations, we often express this point as f(a, b, c), if there is no confusion.
The above formulation on triangle centers seems to be a quite natural one. But actually

it contains many redundant points. For example, a point P on the Euler line with GP :
PO = 1 : 100 does not perhaps possess any geometrical significance. And so some more
restricted class of triangle centers should be considered. We will introduce such a class in
§6 as one attempt.

§ 2. Degree of triangle centers

Now we define the degree d(f) of triangle centers. We assume that the polynomial
f(a, b, c) ∈ P corresponding to a triangle center does not possess a symmetric polynomial
of a, b, c as its factor. This is always possible, because we may divide f(a, b, c) by a
symmetric polynomial of a, b, c in case f(a, b, c) has such a factor. Then after this
modification, the polynomial f(a, b, c) is uniquely determined up to a non-zero constant.

Under this preparation, we define a map d : P −→ R ∪ {∞} by

d(f) =


f(1, ω, ω2)

f(1, 1, 1)
f(1, 1, 1) 6= 0,

∞ f(1, 1, 1) = 0,
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where ω, ω2 = (−1 ±
√

3i)/2. Note that the value d(f) is well defined since f(a, b, c)
is symmetric with respect to b, c and f(a, b, c) is uniquely determined up to a non-zero
constant, as we explained above. Also note that d(f) takes a real value since ω +ω2 = −1
and ω · ω2 = 1. The equality f(1, 1, 1) = 0 holds if and only if the triangle center
corresponding to f(a, b, c) is undefined for equilateral triangles (such as the Feuerbach
point).

Since b and c represent the edge lengths of a triangle, they must be real numbers, and
so the value f(1, ω, ω2) itself does not possess any geometric meaning. But, as we shall
explain later, we can attach a nice geometric meaning to the value d(f), which actually
expresses a “degree of triangle centers” in a sense.

The assumption that a polynomial f(a, b, c) has no symmetric factor is indispensable
in order to obtain the definite value. In fact if we use the expression f(a, b, c) = (a+b)(b+
c)(c + a)(−a + b + c) instead of f(a, b, c) = −a + b + c, we have d(f) = 1

4
, though the

actual value is d(f) = −2.
Interestingly, as the following examples show, the value d(f) takes the form (−2)k

(k ∈ Z) in many (or rather, for most) cases.

Example 2.
X1 (I, Incenter) : f = a, d(f) = 1,

X2 (G, Centroid) : f = 1, d(f) = 1,

X3 (O, Circumcenter) : f = a2(−a2 + b2 + c2), d(f) = −2,

X4 (H, Orthocenter) : f = (a2 − b2 + c2)(a2 + b2 − c2), d(f) = 4,

X5 (N , Nine-point center) : f = a2(b2 + c2) − (b2 − c2)2, d(f) = 1,

X8 (Na, Nagel point) : f = −a + b + c, d(f) = −2,

X10 (S, Spieker center) : f = b + c, d(f) = − 1
2
,

X11 (F , Feuerbach point) : f = (b − c)2(−a + b + c), d(f) = ∞,

X944 (Ho, Hofstadter trapezoid point) : f = −3a4 + 2a3(b + c) + 2a2(b − c)2

−2a(b − c)2(b + c) + (b2 − c2)2, d(f) = −20.

For other examples see Appendix, where the expressions of f(a, b, c) ∈ P and the value
d(f) for Xk (k ≤ 100) are listed according to Kimberling’s numbering [32], [36].

§ 3. A generalization of the Euler line

The Euler line is a fundamental line of a triangle, which passes through many fa-
mous triangle centers such as centroid, circumcenter, orthocenter, nine-point center, de
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Longchamps point, etc. Also the Nagel line passes through the centers such as centroid,
incenter, Nagel point, Spieker center, etc. In this section, by using f(a, b, c) ∈ P, we gen-
eralize these lines and centers lying on it in a unified way (Proposition 1). This result is
a preparation for the next section.

First, for a given f(a, b, c) ∈ P we define a new center fn ∈ P (n ∈ Z) by

fn(a, b, c) = 2n(fa + fb + fc) + (−1)n(2fa − fb − fc),

where fa = f(a, b, c), fb = f(b, c, a) and fc = f(c, a, b). Clearly this definition does not
depend of the choice of representatives f(a, b, c) in P. We can easily see that

f0 = f,

(fm)n = fm+n, m, n ∈ Z.

(Strictly speaking, we have f0 = 3f , and so we should write it as f0 ∼ f . But in the
following, we write f0 = f in such a situation, if there is no danger of confusion.)

Two correspondences f 7−→ f1 and f 7−→ f−1 give mutually the inverse map to each
other. This fact can be easily seen by the identity (f1)−1 = (f−1)1 = f0 = f . Or in terms
of matrices, these two correspondences are expressed in the matrix formfb + fc

fc + fa

fa + fb

 =

0 1 1
1 0 1
1 1 0

fa

fb

fc

 ,

−fa + fb + fc

fa − fb + fc

fa + fb − fc

 =

−1 1 1
1 −1 1
1 1 −1

 fa

fb

fc



in the 3-dimensional space spanned by the polynomials {fa, fb, fc}, and we have clearly0 1 1
1 0 1
1 1 0

−1 1 1
1 −1 1
1 1 −1

 = 2I3.

We should remark that the ratios of the eigenvalues of these two matrices are both given
by −2 : 1.

Example 3. In case f(a, b, c) = a2(−a2 + b2 + c2), then we have f1(a, b, c) = a2(b2 +
c2) − (b2 − c2)2 and f−1(a, b, c) = (a2 − b2 + c2)(a2 + b2 − c2). Note that f corresponds
to the circumcenter and f1, f−1 correspond to the nine-point center and the orthocenter,
respectively.

The center fn(a, b, c) ∈ P constructed above possesses the following geometric meaning.
First we consider an infinite series of triangles ∆n(ABC) (n ∈ Z), whose vertices are given
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by

An =
1

3
{A + B + C +

(
− 1

2

)n
(2A − B − C)},

Bn =
1

3
{A + B + C +

(
− 1

2

)n
(2B − C − A)},

Cn =
1

3
{A + B + C +

(
− 1

2

)n
(2C − A − B)}.

Clearly, the triangle ∆0(ABC) is the initial triangle ∆ABC itself. It is easy to see that
∆1(ABC) is the medial triangle of ∆0(ABC), and ∆2(ABC) is the medial triangle of
∆1(ABC), etc. Also ∆−1(ABC) is the anticomplementary triangle of ∆0(ABC), and
∆−2(ABC) is the anticomplementary triangle of ∆−1(ABC), etc. In general, the triangle
∆n+1(ABC) is the medial triangle of ∆n(ABC), and conversely, ∆n(ABC) is the anticom-
plementary triangle of ∆n+1(ABC). Further, the property ∆m(∆n(ABC)) = ∆m+n(ABC)
holds. We call ∆n(ABC) the n-th iterated triangle of ∆ABC. Note that the centroid of
∆n(ABC) coincides with the centroid of ∆ABC for any n ∈ Z, and the triangle ∆n(ABC)
converges to the centroid as n → ∞.
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B−1C−1

A1

B1C1
A2

B2 C2

Figure 2

Then we have the following proposition.

Proposition 1. Let f(a, b, c) ∈ P and n ∈ Z.
(1) The triangle center of ∆ABC determined by the polynomial fn(a, b, c) ∈ P coincides

with the triangle center of the n-th iterated triangle ∆n(ABC) which is determined by the
initial f(a, b, c). Or more generally, for any k ∈ Z, this point is equal to the center of
∆k(ABC) determined by the polynomial fn−k(a, b, c).

(2) The infinite centers of ∆ABC determined by fn(a, b, c) (n ∈ Z) together with the
centroid G of ∆ABC are collinear. For any n ∈ Z the centroid G is situated between two
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points fn(a, b, c), fn+1(a, b, c), and the ratio fn(a, b, c) G : Gfn+1(a, b, c) is always 2 : 1,

i.e.,
−−→
Gfn = −2

−−−→
Gfn+1. Consequently, lim

n→∞
fn(a, b, c) = G.

u uu
G fn+1fn

2 1

Figure 3

The above fact (1) implies that in spite of their appearances, the centers determined
by the family of polynomials {fn(a, b, c)}n∈Z define essentially “one” geometric concept in
the family of iterated triangles {∆n(ABC)}n∈Z.

For example, from Figure 4, we can easily see that the circumcenter of ∆ABC, the
orthocenter of the medial triangle, and the nine-point center of the anticomplementary
triangle give the same point in the plane.

A

B CA1

B1C1

A−1

B−1C−1

Figure 4

This is the special case of the above proposition. We put n = 1 and f(a, b, c) = (a2 −
b2 + c2)(a2 + b2 − c2), which corresponds to the orthocenter of ∆ABC. Then we have
f1(a, b, c) = a2(−a2 + b2 + c2) and f2(a, b, c) = a2(b2 + c2) − (b2 − c2)2, which correspond
to the circumcenter and the nine-point center of ∆ABC, respectively. And hence, from
Proposition 1 (1), three points determined by f1 in ∆0(ABC), f0 in ∆1(ABC) and f2 in
∆−1(ABC) coincide, which is nothing but the above statement.

Moreover, we may add the de Longchamps point to this family of centers, since the
de Longchamps point is by definition the orthocenter of the anticomplementary triangle.
Actually it corresponds to the polynomial f−1(a, b, c) = 3a4 − 2a2(b2 + c2)− (b2 − c2)2, and
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is the circumcenter of ∆−2(ABC). We can also add the point X140 to this family since it
corresponds to the polynomial f3(a, b, c) = 2a4 − 3a2(b2 + c2) + (b2 − c2)2.

Therefore, the orthocenter, the nine-point center, the de Longchamps point, etc., are
the circumcenters of ∆n(ABC) for some n ∈ Z, and so we may say that they indicate
essentially one concept in the set of triangle centers. Or in other words, we can draw
the Euler line by only plotting circumcenters of triangles ∆n(ABC). This fact is already
stated in many publications.

Similarly, we consider the case f(a, b, c) = a which determines the incenter. Then we
have f1(a, b, c) = b+c, f−1(a, b, c) = −a+b+c, and these linear polynomials correspond to
the Spieker center X10 and the Nagel point X8, respectively. From the above proposition,
we know that the incenter of ∆ABC coincides with the Spieker center of the anticomple-
mentary triangle, and also coincides with the Nagel point of the medial triangle. Or in
other words, the Nagel point of ∆ABC is the incenter of the anticomplementary triangle,
and the Spieker center of ∆ABC is the incenter of the medial triangle, which is nothing
but the definition of the Spieker center. These three points are collinear, including the
centroid G. The ratios of distance of these points keep the value 2 : 1, and this line is
called the Nagel line. The Nagel line also contains the points f2(a, b, c) = 2a + b + c,
f−2(a, b, c) = −3a + b + c, which are X1125 and X145, respectively in Kimberling’s list. In
this case the Nagel line is obtained by only drawing incenters of ∆n(ABC), which is also
a well known fact.

Starting from the Feuerbach point X11 corresponding to the polynomial f = (b −
c)2(−a+b+c), we know that the points X149 (f−2), X100 (f−1 = a(a−b)(a−c)), X11 = F ,
X3035 (f1) and X2 = G are collinear (see [32], [36]).

In this way, the above proposition shows that there are an infinite number of lines
that possess similar property as the Euler line. In the following we call such lines the
generalized Euler lines determined by f(a, b, c) (or fn(a, b, c)).

Perhaps the contents of Proposition 1 are more or less well known, and the proof is not
so difficult. But as far as the author knows, a unified treatment as stated in Proposition
1 cannot be found anywhere, and so we give here its complete proof.

Proof of Proposition 1. First, we state one remark. In considering the center of
∆n(ABC) corresponding to the polynomial f , we must substitute in f the edge lengths
of the triangle ∆n(ABC), instead of a, b, c. But since the edge lengths of ∆n(ABC) are
given by BnCn = a/2n, etc., and since f is a homogeneous polynomial, we may use the
initial edge lengths a, b, c to calculate the position of the center.

(1) We show that the center of ∆k(ABC) determined by fn−k(a, b, c) is independent of
k. This center is represented by

fn−k(a, b, c)Ak + fn−k(b, c, a)Bk + fn−k(c, a, b)Ck

fn−k(a, b, c) + fn−k(b, c, a) + fn−k(c, a, b)
.
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We substitute

fn−k(a, b, c) = 2n−k(fa + fb + fc) + (−1)n−k(2fa − fb − fc),

fn−k(b, c, a) = 2n−k(fa + fb + fc) + (−1)n−k(2fb − fc − fa),

fn−k(c, a, b) = 2n−k(fa + fb + fc) + (−1)n−k(2fc − fa − fb)

and

Ak =
1

3
{A + B + C +

(
− 1

2

)k
(2A − B − C)},

Bk =
1

3
{A + B + C +

(
− 1

2

)k
(2B − C − A)},

Ck =
1

3
{A + B + C +

(
− 1

2

)k
(2C − A − B)}

to the above point. Here fa = f(a, b, c), fb = f(b, c, a), fc = f(c, a, b), as we stated before.
Then after some calculations, it follows that the coefficient of A is equal to

2n(fa + fb + fc) + (−1)n(2fa − fb − fc)

3 · 2n(fa + fb + fc)
=

fn(a, b, c)

fn(a, b, c) + fn(b, c, a) + fn(c, a, b)
.

And thus the integer k disappears. This point corresponds to the center of ∆ABC deter-
mined by fn(a, b, c).

(2) The point determined by fn(a, b, c) is given by

fn(a, b, c)A + fn(b, c, a)B + fn(c, a, b)C

fn(a, b, c) + fn(b, c, a) + fn(c, a, b)

and hence we have

−−→
Gfn =

fn(a, b, c)A + fn(b, c, a)B + fn(c, a, b)C

fn(a, b, c) + fn(b, c, a) + fn(c, a, b)
− 1

3
(A + B + C).

Substituting fn(a, b, c) = 2n(fa + fb + fc) + (−1)n(2fa − fb − fc), etc., into this equality,
we have finally

−−→
Gfn =

(
− 1

2

)n
(2fa − fb − fc)A + (2fb − fc − fa)B + (2fc − fa − fb)C

3(fa + fb + fc)
.

All results follow immediately from this equality. q.e.d.

As we can easily see, the polynomiality assumption on f(a, b, c) is actually unnecessary
to prove this proposition. Also we remark that the contents of Proposition 1 are the
consequence of affine geometric property of triangles, provided we once fix the “symbols”
a, b, c. Of course, to define centers such as the orthocenter, the circumcenter, etc., we
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must use the metric property. But once these points are settled, we need not use metric
property any more in order to define fn(a, b, c) nor ∆n(ABC).

§ 4. Main theorem

In Proposition 1 we showed that the center of ∆ABC defined by the polynomial
fn(a, b, c) coincides with the center of the n-th iterated triangle ∆n(ABC) defined by
the initial f(a, b, c). And so we may say that the absolute value |n| in fn(a, b, c) expresses
a sort of complexity of the center, since the geometric situation of fn(a, b, c) becomes more
complicated as the value |n| becomes large.

The following theorem shows that the degree d(fn) of a center fn(a, b, c), which we
introduced in §2, essentially determines the value n in case deg f 6≡ 0 (mod3), where deg f
means the usual degree of the polynomial f . This implies that a complexity of f(a, b, c)
can be directly read from d(f) in this case.

Theorem 2. Assume that f(a, b, c) ∈ P does not possess a symmetric factor. Then
fn(a, b, c) also does not possess a symmetric factor for any n ∈ Z, and the following
equality holds in case f(1, 1, 1) 6= 0:

d(fn) =


(
− 1

2

)n
d(f) deg f 6≡ 0 (mod 3),

d(f) deg f ≡ 0 (mod 3).

Thus, if deg f 6≡ 0 (mod 3) and f(1, 1, 1) 6= 0, we can read the value n from the data
d(fn)/d(f). This number n indicates the relative position of fn in the generalized Euler
line. If n is sufficiently large, its position is close to the centroid G, and conversely if n is
sufficiently small, it is situated far from G on the generalized Euler line. For example, the
center X60 defined by f(a, b, c) = a2(a + b)2(a + c)2(−a + b + c) is situated near G since
d(f) = (−1/2)3.

Note that if d(f) = (−2)k for some k, then the degree d(fn) is also the power of −2
for any n ∈ Z.

Example 4. On the Euler line, according to the distance from the centroid G, the
nine-point center, the circumcenter, the orthocenter, and the de Longchamps point lie in
this order. The degree of these centers are 1, −2, (−2)2, (−2)3, respectively.

Similarly, on the Nagel line, X1125, the Spieker center, the incenter, the Nagel point,
and X145 lie in this order, and the degree of these centers are given by (−1/2)2, −1/2, 1,
−2 and (−2)2, respectively.

We remark that two different classes {fn(a, b, c)}n∈Z and {f ′
n(a, b, c)}n∈Z may define

geometrically the same line in the plane. For example, the exeter point X22 also lies on
the Euler line. But it is defined by the sextic polynomial a2(−a4 + b4 + c4), and clearly
does not belong to the standard family of centers on the Euler line, which is generated by
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f(a, b, c) = a2(−a2 + b2 + c2). Similarly, the Schiffler point X21 also lies on the Euler line,
and this point corresponds to the quartic polynomial a(−a + b + c)(a + b)(a + c). But it
is easy to see that this point also does not belong to the standard family. It may happen
that the generalized Euler line defined by the Schiffler point has some different geometric
meaning from the usual Euler line.

Proof of Theorem 2. In general, if f ′ is divided by a symmetric polynomial, then
f ′

−n = 2−n(f ′
a +f ′

b +f ′
c)+(−1)−n(2f ′

a−f ′
b−f ′

c) is also divided by the same symmetric
polynomial, where f ′

a = f ′(a, b, c), etc. Now assume that f does not possess a symmetric
factor, but fn admits a symmetric factor. Then by the above reason (fn)−n = f0 =
f possess a symmetric factor, which is a contradiction. Hence fn does not possess a
symmetric factor.

Now we prove the main part. We express f(a, b, c) as

f(a, b, c) =
∑
i,j,k

fijka
i(b + c)j(bc)k,

where deg f = i + j + 2k. Then, since

fn(a, b, c) = 2n{f(a, b, c) + f(b, c, a) + f(c, a, b)}
+ (−1)n{2f(a, b, c) − f(b, c, a) − f(c, a, b)},

we have fn(1, 1, 1) = 3·2nf(1, 1, 1). In particular, f(1, 1, 1) 6= 0 if and only if fn(1, 1, 1) 6= 0.
On the other hand, we have

fn(1, ω, ω2) = 2n{f(1, ω, ω2) + f(ω, ω2, 1) + f(ω2, 1, ω)}
+ (−1)n{2f(1, ω, ω2) − f(ω, ω2, 1) − f(ω2, 1, ω)}.

Here we have

f(1, ω, ω2) =
∑

fijk(−1)j,

f(ω, ω2, 1) =
∑

fijkω
i(−ω)jω2k =

∑
fijk(−1)jωi+j+2k,

f(ω2, 1, ω) =
∑

fijkω
2i(−ω2)jωk =

∑
fijk(−1)jω2i+2j+k

=
∑

fijk(−1)jω2(i+j+2k).

Hence, by putting i + j + 2k = p, we have

fn(1, ω, ω2) = 2n
(∑

fijk(−1)j
)

(1 + ωp + ω2p)

+ (−1)n
(∑

fijk(−1)j
)

(2 − ωp − ω2p).

If p ≡ 0 (mod3), then we have fn(1, ω, ω2) = 3 ·2n
∑

fijk(−1)j = 3 ·2nf(1, ω, ω2). This
implies

d(fn) =
fn(1, ω, ω2)

fn(1, 1, 1)
=

f(1, ω, ω2)

f(1, 1, 1)
= d(f).
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If p 6≡ 0 (mod 3), we have fn(1, ω, ω2) = 3(−1)n
∑

fijk(−1)j = 3(−1)nf(1, ω, ω2).
Hence we have

d(fn) =
fn(1, ω, ω2)

fn(1, 1, 1)
=

(
− 1

2

)n
f(1, ω, ω2)

f(1, 1, 1)
=

(
− 1

2

)n

d(f).

This completes the proof. q.e.d.

§ 5. Invariants of generalized Euler lines

From Theorem 2 we may say that in case deg f ≡ 0 (mod 3), the degree d(fn) gives an
invariant of the generalized Euler line, since the value d(fn) does not depend on n. In this
section we introduce other types of invariants naturally associated with generalized Euler
lines.

We first consider the following quantity q(f), assuming that f(a, b, c) ∈ P does not
possess a symmetric factor:

q(f) =


f(1, α, β)

f(1, 1, 1)
f(1, 1, 1) 6= 0,

∞ f(1, 1, 1) = 0,

where α, β = (−1 ±
√

3)/2. Clearly q(f) is well defined. Then we have the following
proposition.

Proposition 3. Assume deg f = 2 and f does not possess a symmetric factor. Then
the value q(f) gives an invariant of the generalized Euler line determined by f .

Proof. By putting f(a, b, c) = pa2 + qa(b + c) + r(b2 + c2) + sbc, we have easily
fn(1, α, β) = 3·2n(p−q+2r−s/2) = 3·2nf(1, α, β) and fn(1, 1, 1) = 3·2n(p+2q+2r+s) =
3 · 2nf(1, 1, 1), which imply fn(1, α, β)/fn(1, 1, 1) = f(1, α, β)/f(1, 1, 1) for any n ∈ Z.
Here, we use the relation α + β = −1, αβ = −1/2, α2 + β2 = 2 to check this fact. q.e.d.

Curiously, for many triangle centers, the value of this invariant q(f) also takes the
form (−2)k, as in the case of d(f). (See Appendix for explicit examples, with few coun-
terexamples.) But in the case of general degree (deg f 6= 2), the value q(f) does not
give an invariant of the generalized Euler line. For example we have q(fn) = (−1/2)n for
fn = 2n(a + b + c) + (−1)n(2a − b − c).

Next, considering the direction of the generalized Euler line, we can construct another
invariant of the generalized Euler line.

In the proof of Proposition 1, we showed that the vector

(2fa − fb − fc)A + (2fb − fc − fa)B + (2fc − fa − fb)C

3(fa + fb + fc)
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is parallel to the generalized Euler line determined by the family {fn(a, b, c)}n∈Z. Essen-
tially this direction is determined by the coefficient of A

2fa − fb − fc

3(fa + fb + fc)
,

since remaining two coefficients can be obtained by cyclic permutation of a, b, c. But
the above coefficient depends on n, i.e., if we use fn instead of f , then n appears in the
coefficient. Slightly modifying this quantity, we obtain another invariant as follows.

Proposition 4. (1) Two points f(a, b, c) and f ′(a, b, c) lie on the same generalized
Euler line if and only if

2f ′
a − f ′

b − f ′
c = (2fa − fb − fc)ψ(a, b, c)

for some symmetric function ψ(a, b, c).
(2) Assume deg f 6≡ 0 (mod 3), f(1, ω, ω2) 6= 0, and f does not possess a symmetric

factor. Then fn(1, ω, ω2) 6= 0, and the polynomial

2(fn)a − (fn)b − (fn)c

fn(1, ω, ω2)

does not depend on n. Hence the polynomial (2fa − fb − fc)/f(1, ω, ω2) gives an invariant
of the generalized Euler line determined by the family {fn(a, b, c)}n∈Z.

Proof. The statement (1) is clear from the explanation stated above. We show
(2). The property fn(1, ω, ω2) 6= 0 follows immediately from the equality fn(1, ω, ω2) =
3(−1)nf(1, ω, ω2), as we explained in the proof of Theorem 2 in case deg f 6≡ 0 (mod 3).
By the definition of fn(a, b, c), we immediately obtain the equality 2(fn)a− (fn)b− (fn)c =
3(−1)n(2fa − fb − fc). Hence the statement (2) follows. q.e.d.

Remark. The above invariant is related to the direction of the generalized Euler line
as follows. We further assume f(1, 1, 1) 6= 0 in addition to the assumption in Proposition 4
(2). Then we have fn(1, 1, 1) 6= 0, as explained in the proof of Theorem 2, and so the degree
d(fn) has a non-zero finite value. Since deg f 6≡ 0 (mod 3), we have d(fn+1) = − 1

2
d(fn)

from Theorem 2. Then, since
−−−→
Gfn+1 = − 1

2

−−→
Gfn (Proposition 1 (2)), we see that the vector

−−→
Gfn/d(fn) does not depend on n, and it is equal to

{2(fn)a − (fn)b − (fn)c}A + {2(fn)b − (fn)c − (fn)a}B + {2(fn)c − (fn)a − (fn)b}C
3d(fn){(fn)a + (fn)b + (fn)c}

.

The coefficient of A is equal to

2(fn)a − (fn)b − (fn)c

3d(fn){(fn)a + (fn)b + (fn)c}
=

2(fn)a − (fn)b − (fn)c

fn(1, ω, ω2)
· fn(1, 1, 1)

3{(fn)a + (fn)b + (fn)c}

=
2(fn)a − (fn)b − (fn)c

fn(1, ω, ω2)
· f(1, 1, 1)

3(fa + fb + fc)
,
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because fn(1, 1, 1) = 3 · 2nf(1, 1, 1) and (fn)a + (fn)b + (fn)c = 3 · 2n(fa + fb + fc). Since
f(1, 1, 1)/3(fa + fb + fc) does not depend on n, we know once again that {2(fn)a − (fn)b −
(fn)c}/fn(1, ω, ω2) gives an invariant of the generalized Euler line.

In this remark, we show that the symmetric polynomial

(fn)a + (fn)b + (fn)c

fn(1, 1, 1)

is also an invariant of the generalized Euler line. In the following, assuming that f(a, b, c) ∈
P does not possess a symmetric factor, we put

e(f) =


2fa − fb − fc

f(1, ω, ω2)
f(1, ω, ω2) 6= 0,

∞ f(1, ω, ω2) = 0,

s(f) =


fa + fb + fc

f(1, 1, 1)
f(1, 1, 1) 6= 0,

∞ f(1, 1, 1) = 0.

These two quantities are also well defined. As seen above, the direction of the generalized
Euler line is essentially determined by the quotient of two polynomials e(f)/s(f). Remark
that e(f) is not an invariant of the generalized Euler line in case deg f ≡ 0 (mod 3), as we
see in the next example, though for the invariant s(f) such an assumption is unnecessary.

From Proposition 4 (1), we know that two centers determined by f(a, b, c) and f ′(a, b, c)
lie on the same generalized Euler line if and only if e(f) and e(f ′) are equal up to a
symmetric function (under the assumption f(1, ω, ω2), f ′(1, ω, ω2) 6= 0).

Example 5. For the centers on the Euler line determined by the circumcenter, the
orthocenter, the nine-point center, we have the common expression

e(f) =
1

2
{2a4 − a2(b2 + c2) − (b2 − c2)2},

s(f) = (a + b + c)(−a + b + c)(a − b + c)(a + b − c).

For the Schiffler point X21, which also lies on the Euler line, the invariant s(f) takes a
little different form:

e(f) =
1

2
{2a4 − a2(b2 + c2) − (b2 − c2)2},

s(f) =
1

4
(a + b + c){(−a + b + c)(a − b + c)(a + b − c) + 3abc}.

Remark that X21 is not contained in the above family of centers on the Euler line.
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For other points on the Euler line such as X22, X23, X24, we have

X22 :


e(f) =

1

2
(a2 + b2 + c2){2a4 − a2(b2 + c2) − (b2 − c2)2},

s(f) = (−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2) + 2a2b2c2,

X23 :


e(f) =

1

3
(a2 + b2 + c2){2a4 − a2(b2 + c2) − (b2 − c2)2},

s(f) = ∞,

X24 :



e(f) = − 1

8
{(−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2) + 4a2b2c2}

× {2a4 − a2(b2 + c2) − (b2 − c2)2},

s(f) = (a + b + c)(−a + b + c)(a − b + c)(a + b − c)

× {2a2b2c2 − (−a2 + b2 + c2)(a2 − b2 + c2)(a2 + b2 − c2)}.

As for the centers X22 and X23, corresponding to the sextic polynomials f(a, b, c) =
a2(−a4 + b4 + c4) and f(a, b, c) = a2(−a4 + b4 + c4 − b2c2), we have

e(fn) =
1

2

(
− 1

2

)n

(a2 + b2 + c2){2a4 − a2(b2 + c2) − (b2 − c2)2},

e(fn) =
1

3

(
− 1

2

)n

(a2 + b2 + c2){2a4 − a2(b2 + c2) − (b2 − c2)2},

respectively, and these values clearly depend on n.
The values e(f) for these centers imply that X21, X22, X23, X24 all lie geometrically

on the same Euler line, though they do lie on “algebraically different” generalized Euler
lines.

As for the Nagel line, we have

e(fn) = 2a − b − c,

s(fn) = a + b + c

for fn(a, b, c) = 2n(a + b + c) + (−1)n(2a − b − c). For the center X42, corresponding to
f(a, b, c) = a2(b + c), we have

e(f) = −(ab + bc + ca)(2a − b − c),

s(f) =
1

2
{(a + b + c)(ab + bc + ca) − 3abc}.

Hence this point also lies on the Nagel line, though the value e(fn) depends on n. As for
the center X239, corresponding to f(a, b, c) = a2 − bc, we have f(1, 1, 1) = f(1, ω, ω2) = 0
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and so e(f) = s(f) = ∞. But we have 2fa − fb − fc = (a + b + c)(2a − b − c), and hence
this point also lies on the Nagel line.

Finally, we remark that f(a, b, c) has a natural decomposition into three quantities
d(f), e(f), s(f) as follows. Assume f(1, 1, 1), f(1, ω, ω2) 6= 0. Then we have

d(f)e(f) + s(f) =
f(1, ω, ω2)

f(1, 1, 1)
· 2fa − fb − fc

f(1, ω, ω2)
+

fa + fb + fc

f(1, 1, 1)

=
3

f(1, 1, 1)
f(a, b, c)

= f(a, b, c),

since 3/f(1, 1, 1) is a non-zero constant. This equality means that a triangle center in P

is uniquely determined by these three quantities (or invariants).

§ 6. A new family of centers

In this section we introduce a new family of triangle centers PC that is based on
two conjugates: The isotomic conjugate and the Ceva conjugate. This family PC is a
subset of P that was introduced in §1. The family of centers P is a natural one, on
which we can introduce the concept degree d(f). But most centers in P do not possess a
geometric meaning. For example, on the Euler line, the point which divides the centroid
and the circumcenter with ratio 1 : x seems to have no geometric meaning for most
x ∈ R. (Perhaps, geometrically important centers appear discretely, though the term
“geometrically important” has no precise definition here.) So it is desirable to restrict
centers to a subclass of P, all of which possess some definite geometric meaning. The class
PC which we introduce here contains many famous centers. It also contains the family
{fn(a, b, c)}n∈Z on the generalized Euler line if f(a, b, c) ∈ PC.

Definition. PC is a minimum subset of P satisfying the following conditions:
(i) 1, a ∈ PC,
(ii) f, f ′ ∈ PC =⇒ fbf

′
c + f ′

bfc ∈ PC,
(iii) f, f ′ ∈ PC =⇒ f ′

a(−faf
′
a + fbf

′
b + fcf

′
c) ∈ PC.

Here, f ′
b means f ′(b, c, a) etc., as before. Note that the conditions (ii), (iii) do not depend

on the choice of representatives of f and f ′. The subclass PC actually exists. In fact it
is the intersection of all subsets of P satisfying the above conditions (i), (ii), (iii). But
unfortunately, its explicit form is not clear at present (see §7).

Before stating several properties of PC, we must give some explanation on the definition
of PC. The condition (i) clearly means that the centroid G and the incenter I is contained
in PC. To explain the remaining two conditions (ii) and (iii), we review the concept “Ceva
conjugate”.
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Let P and Q be two centers corresponding to f(a, b, c), f ′(a, b, c), respectively. Then
the P -Ceva conjugate of Q, which we denote by CP (Q), is a point defined by

f ′
a

(
−f ′

a

fa

+
f ′

b

fb

+
f ′

c

fc

)
.

We remark that if P , Q ∈ P, then CP (Q) ∈ P, because the above expression is equivalent
to

f ′
a(−f ′

afbfc + faf
′
bfc + fafbf

′
c) ∈ P

up to a symmetric function. The geometric meaning and many examples of CP (Q) are
exhibited in Kimberling’s book [32]. By computation, we can easily check that the property
CP (CP (Q)) = Q holds for any P , Q, i.e., if we put CP (Q) = R, then we have CP (R) = Q.

In this situation, from two points Q and R, we can determine the point P as follows.
We put

f ′′
a = f ′

a

(
−f ′

a

fa

+
f ′

b

fb

+
f ′

c

fc

)
,

which corresponds to the point R. Then we have

f ′′
b = f ′

b

(
f ′

a

fa

− f ′
b

fb

+
f ′

c

fc

)
, f ′′

c = f ′
c

(
f ′

a

fa

+
f ′

b

fb

− f ′
c

fc

)
.

From these equalities we have

2f ′
a

fa

=
f ′′

b

f ′
b

+
f ′′

c

f ′
c

=
f ′

bf
′′
c + f ′′

bf
′
c

f ′
bf ′

c

,

and thus we have

fa =
1

f ′
bf ′′

c + f ′′
bf ′

c

.

(Note that 2f ′
af

′
bf

′
c is a symmetric function, and so we may cut it.) The point P is

usually called the Ceva point of Q and R.
Here we assume that a set of centers is closed under the following three geometric

operations

(a) the isotomic conjugate,
(b) the Ceva conjugate,

(c) the operation (f, f ′) 7−→ 1

fbf ′
c + f ′

bfc

.

Then this set satisfies the conditions (ii) and (iii).
In fact, the condition (a) means that if f is contained in this set of centers, then

1/f = fbfc is also contained in the set. (Remind that in terms of barycentric coordinates,
the isotomic conjugate of f is given by 1/f .) Then from the condition (c), this set satisfies
the condition (ii). Similarly, from the conditions (b) and (a), the condition (iii) follows.

Conversely, assume that a set of centers satisfies the conditions (ii) and (iii). Then it
satisfies (a), (b), (c). First, we put f ′ = f in (ii). Then we know that 2fbfc = 1/f is
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contained in this set, which implies the condition (a). Next, from the conditions (iii) and
(a), we have (b). The condition (c) immediately follows from (ii) and (a).

Thus we see that the conditions (ii) and (iii) in the definition of PC has a quite natural
geometric meaning based on two conjugates. Of course, by only imposing the conditions
(ii), (iii), there exists a trivial set {1}, consisting only one center (the centroid). Thus we
add the condition (i) to exclude this case.

Now we state some properties of PC that can be obtained directly from the definition.

Proposition 5. Let f(a, b, c) ∈ PC. Then:

(1) fn ∈ PC for any n ∈ Z. (We consider f−1 = fbfc, f−2 = (fbfc)
2, etc.)

(2) (fa)
n(fb + fc) ∈ PC for any n ∈ Z.

(3) fa(fb
2 + fc

2) ∈ PC.

(4) fn ∈ PC for any n ∈ Z.

(5) fmfn ∈ PC for any m, n ∈ Z.

Proof. By putting f ′(a, b, c) = 1 in (ii) and (iii), we know that f1(= fb + fc), f−1(=
−fa+fb+fc) ∈ PC if f ∈ PC. Hence, using the property (fm)n = fm+n, we have inductively
fn ∈ PC, which shows (4).

We prove fn, (fbfc)
n(fb +fc) ∈ PC for n ≥ 0 by induction. The case n = 0 is clear. We

assume fn, (fbfc)
n(fb + fc) ∈ PC for some n ≥ 0. Then by putting f = (fbfc)

n(fb + fc),
f ′ = fn in (iii), we obtain fn+1 ∈ PC. Next, by putting f = fn+1, f ′ = (fbfc)

n(fb + fc) in
(iii), we have (fbfc)

n+1(fb +fc) ∈ PC. Hence by induction, we obtain fn, (fbfc)
n(fb +fc) ∈

PC for n ≥ 0. The latter means (fa)
−n(fb + fc) ∈ PC.

We already showed that 1/f = fbfc ∈ PC if f ∈ PC. Hence, (1) immediately follows
from this fact. To prove the remaining part of (2), we show (fa)

n(fb + fc) ∈ PC for n ≥ 0.
Assume (fa)

n(fb+fc) ∈ PC for some n ≥ 0. Then by putting f = (fa)
−n, f ′ = (fa)

n(fb+fc)
in (iii), we have (fa)

n+1(fb + fc) ∈ PC, which completes the proof of (2).
Next, in (ii), we put f ′ = fbfc. Then we have fbf

′
c + f ′

bfc = fa(fb
2 + fc

2) ∈ PC, and
hence (3) follows.

Finally we prove (5). From (1) and (4) we have fn
2 ∈ PC. Next, by putting f = 1 and

f ′ = fn+1 in (iii), the property fnfn+1 ∈ PC holds for any n.
Hence, to complete the proof of (5), we have only to show the following property: If

fnfn+k ∈ PC for any n, then the polynomial fnfn+k+2 is also contained in PC for any n. As-
sume fnfn+k ∈ PC. Then, putting f = fn and f ′ = fnfn+k in (ii), we have (fn)b(fnfn+k)c +
(fnfn+k)b(fn)c = (fn)b(fn)c(fn+k+1)a ∈ PC, after some calculations. Then taking the in-
verse, we have (fn)a(fn+k+1)b(fn+k+1)c ∈ PC. Finally we put f = (fn)a(fn+k+1)b(fn+k+1)c

and f ′ = fn+k+1 in (iii). Then we have (fn+k+1)a
2(fn+k+1)b(fn+k+1)c{−(fn)a + (fn)b +

(fn)c} = fn−1fn+k+1 ∈ PC, which implies fnfn+k+2 ∈ PC for any n. q.e.d.

Starting from 1 and a in PC, we can successively construct famous centers as follows:
First, from Proposition 5 (1), we know a2 ∈ PC, which corresponds to the Lemoine point
X6. Then, since the circumcenter X3 is the X2-Ceva conjugate of X6, we know that X3
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is contained in PC. From this fact it follows that the centers on the Euler line such as
the orthocenter X4, the nine-point center X5, the de Longchamps point X20, etc., are also
contained in PC.

Similarly, since the incenter X1 is contained in PC, the centers on the Nagel line such as
the Nagel point X8, the Spieker center X10, etc., are contained in PC. The Gergonne point
X7 is the isotomic conjugate of X8, and the Mittenpunkt X9 is the X2-Ceva conjugate of
X1, and so these points are also contained in PC.

By developing such procedures, we know that among Kimberling’s list Xk (k = 1 ∼
400) in [32], at least the following 167 points are contained in PC:

k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 19, 20, 21, 22, 25, 27, 28, 29, 31, 32, 33,

34, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58,

63, 65, 66, 69, 71, 72, 73, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 92,

95, 97, 140, 141, 142, 144, 145, 154, 155, 157, 158, 159, 160, 165, 169,

170, 184, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204,

205, 206, 207, 208, 209, 210, 211, 212, 213, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225, 226, 227, 228, 229, 233, 251, 253, 255, 261, 264, 269,

270, 271, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 286, 288,

304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 318, 321, 322,

324, 326, 329, 330, 331, 332, 333, 341, 342, 343, 345, 346, 347, 348, 349,

393, 394.

We may say that the family PC constitutes a network of triangle centers, and this network
is constructed from the initial centers G and I, by applying only two geometric operations
(ii) and (iii).

On the other hand, unfortunately, we have no effective method to show Xk 6∈ PC for
a given center Xk at present. For example, we cannot determine whether X24, X26, X35,
X49, · · · are contained in PC or not, and we conjecture certainly that the Feuerbach point
X11 is not contained in PC (see Conjecture 2 in §7).

§ 7. Conjectures on PC

Explicit determination of the set PC is an important but difficult problem. The essential
difficulty comes from a reduction by a symmetric factor, which suddenly appears during
the operations (ii) and (iii). (See the example after Conjecture 2.) In this section we state
several conjectures concerning PC.

Conjecture 1. The set PC is closed under the multiplication, i.e., the following prop-
erty holds:

f, f ′ ∈ PC =⇒ ff ′ ∈ PC.



22 Y. Agaoka

For example, we conjecture X60 ∈ PC, since it corresponds to the polynomial f(a, b, c) =
a2(a + b)2(a + c)2(−a + b + c) and both X8 (f = −a + b + c), X81 (f = a(a + b)(a + c))
are contained in PC. At present we cannot find a counterexample to Conjecture 1.

The following is the most important conjecture on PC. This gives one necessary con-
dition for a point f(a, b, c) ∈ P to belong to PC.

Conjecture 2. For any f(a, b, c) ∈ PC the degree d(f) takes the form (−2)k (k ∈ Z).

As above, we have no counterexample to this conjecture at present. For all centers Xk ∈ PC

(k ≤ 400) listed at the end of §6, this property holds. (See also Appendix.) The following
“imcomplete proof” partially supports our Conjecture 2.

“Incomplete” proof of Conjecture 2. Let f , f ′ ∈ PC, and we put f ′′ = fbf
′
c +

f ′
bfc, i.e., f ′′(a, b, c) = f(b, c, a)f ′(c, a, b) + f ′(b, c, a)f(c, a, b). Then we have f ′′(1, 1, 1) =

2f(1, 1, 1)f ′(1, 1, 1), and

f ′′(1, ω, ω2) = f(ω, ω2, 1)f ′(ω2, 1, ω) + f ′(ω, ω2, 1)f(ω2, 1, ω).

Now assume that deg f = p and deg f ′ = q. Then we have f(ω, ω2, 1) = f(ω, ω2, ω3) =
ωpf(1, ω, ω2), and similarly f(ω2, 1, ω) = ω2pf(1, ω, ω2). Hence we have

f ′′(1, ω, ω2) = (ωp+2q + ω2p+q)f(1, ω, ω2)f ′(1, ω, ω2).

Thus, if the polynomial f ′′ does not possess a symmetric factor, we have d(f ′′) = 1
2
(ωp+2q+

ω2p+q)d(f)d(f ′). We can easily see that

1

2
(ωp+2q + ω2p+q) =

{
1 p ≡ q (mod 3),
− 1

2
p 6≡ q (mod 3).

Hence if both d(f), d(f ′) are of the form (−2)k, and in addition if f ′′ does not possess a
symmetric factor, then d(f ′′) is also the power of −2.

In case f ′′ = f ′
a(−faf

′
a + fbf

′
b + fcf

′
c) we can similarly calculate its degree under the

same assumption:

d(f ′′) =

{
d(f)d(f ′)2 p + q ≡ 0 (mod 3),
−2d(f)d(f ′)2 p + q 6≡ 0 (mod 3).

Hence under the assumption that f ′′ never possess a symmetric factor under the operations
(ii) and (iii), we have “proved” that d(f) = (−2)k for any f ∈ PC. “q.e.d.”

But of course, the above assumption does not hold in general. For example we consider
the following case:

f = (b + c)(−a + b + c),

f ′ = (b + c)(−a + b + c){a3(b + c) − 2a2bc − a(b + c)(b2 − 3bc + c2) − bc(b − c)2}.
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Then we have

f ′′ = fbf
′
c + f ′

bfc

= 2a2(a + b)(b + c)(c + a)(−a + b + c)(a − b + c)(a + b − c)

= a2.

As this example shows, it is hard to judge whether f ′′ admits a symmetric factor or not
by only seeing f and f ′, and in case it admits, it is also hard to find its symmetric factor
without explicit calculations. This is the principal difficulty in the explicit determination
of PC.

But if we can succeed to show Conjecture 2, we can easily see that some centers
does not belong to PC. For example, for the point X45 corresponding to the polynomial
f(a, b, c) = a(−a+2b+2c), we have d(f) = −1, and so we “know” that X45 6∈ PC. Similarly
concerning the Feuerbach point X11, we can “show” X11 6∈ PC by applying Conjecture 2,
since d(f) = ∞ in this case.

The converse to Conjecture 2 certainly does not hold. For example, for the quadratic
polynomial

f(a, b, c) = a2 + b2 + c2 − (−2)n(a2 + b2 + c2 − 3bc),

we have d(f) = (−2)n. But we conjecture that f(a, b, c) 6∈ PC for n 6= 0, 1, as we will
explain later (Conjecture 4). It seems that some more conditions are necessary to charac-
terize the set PC in addition to Conjecture 2.

As known from the above “incomplete proof”, the degree d(f) roughly gives the number
of operations (ii), (iii) to obtain the center f from the initial one, unless symmetric factors
appear during these operations. Hence we may say again that the degree d(f) indicates a
sort of complexity of the center f .

Next, we state two conjectures concerning polynomials in PC with lower degree. For
linear polynomials, we have the following conjecture.

Conjecture 3. Linear polynomials in PC are exhausted by

2n(a + b + c) + (−1)n(2a − b − c) (n ∈ Z).

Note that these centers are lying on the Nagel line and we already know that they are
contained in PC. This conjecture is an easy consequence of Conjecture 2. In fact, by
putting f(a, b, c) = pa + q(b + c), we have d(f) = (p− q)/(p + 2q), and by “Conjecture 2”
it is equal to (−2)−n for some n. In case n 6= 1, from this equality we have

q =
(−2)n − 1

(−2)n + 2
p.

Substituting this value into f , we have

f(a, b, c) =
(−1)np

(−2)n + 2
{2n(a + b + c) + (−1)n(2a − b − c)}

= 2n(a + b + c) + (−1)n(2a − b − c).
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In case n = 1, we have immediately f(a, b, c) = q(b + c) = b + c. And thus, if Conjecture
2 holds, we obtain Conjecture 3.

If Conjecture 3 holds, we can uniquely specify the linear polynomials in PC by one
invariant d(f).

Concerning quadratic polynomials in PC, we have the following conjecture.

Conjecture 4. Quadratic polynomials in PC are exhausted by the following two fami-
lies, depending on three parameters l, m, n ∈ Z:

Q1 : 2l+m+n(a + b + c)2 − (−1)m+n2l(a2 + b2 + c2 − ab − bc − ca)

− {(−1)l+m2n−1 + (−1)l+n2m−1}(a + b + c)(2a − b − c)

+ (−1)l+m+n{2a2 − 2a(b + c) − b2 + 4bc − c2},

Q2 : 2l+m+n(a + b + c)2 + (−1)m+n2l+1(a2 + b2 + c2 − ab − bc − ca)

+ {(−1)l+m2n + (−1)l+n2m}(a + b + c)(2a − b − c)

+ (−1)l+m+n{2a2 − 2a(b + c) − b2 + 4bc − c2}.

We here show that these two families are actually contained in PC. First, put

f(a, b, c) = 2m(a + b + c) + (−1)m(2a − b − c),

f ′(a, b, c) = 2n(a + b + c) + (−1)n(2a − b − c),

and consider the quadratic polynomial obtained by the operation (ii):

f ′′(a, b, c) = fbf
′
c + f ′

bfc.

Then the polynomial

(f ′′)l = 2l(f ′′
a + f ′′

b + f ′′
c) + (−1)l(2f ′′

a − f ′′
b − f ′′

c),

depending on three parameters l, m, n, constitutes a family of quadratic polynomials in
PC. By computation, we can see that this family coincides with Q1. We may simply write
this polynomial as {(fm)b(fn)c + (fn)b(fm)c}l, where f(a, b, c) = a.

By using the same notation, we can show that the second family Q2 coincides with the
polynomial (fmfn)l. (See Proposition 5 (5), (4).)

These two families Q1 and Q2 are quite similar at a first glance. But they actually
constitute different families of polynomials. For example, the polynomial a2 + bc is con-
tained in Q1, but not in Q2. Conversely, the polynomial a2 is contained in Q2, but not in
Q1. (The intersection Q1 ∩Q2 is non-empty, because bc is contained in both families.) We
also note that these polynomials can not be divided by the symmetric linear polynomial
a+ b+ c, and hence these polynomials are essentially quadratic. We remark that from the
construction, both Q1 and Q2 are symmetric with respect to m and n.
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Now we calculate the invariants of these quadratic polynomials. For the polynomial in
Q1, we have

d(f) =

(
− 1

2

)l+m+n

, q(f) =

(
− 1

2

)m+n+1

,

e(f) =
1

3

[
2a2 − 2a(b + c) − b2 + 4bc − c2

+{(−2)m−1 + (−2)n−1}(a + b + c)(2a − b − c)
]
,

and for the polynomial in Q2, we have

d(f) =

(
− 1

2

)l+m+n

, q(f) =

(
− 1

2

)m+n

,

e(f) =
1

3

[
2a2 − 2a(b + c) − b2 + 4bc − c2

+{(−2)m + (−2)n}(a + b + c)(2a − b − c)] .

The invariant s(f) has a common expression in terms of q(f):

s(f) =
1

3
{(a + b + c)2 + 2q(f)(a2 + b2 + c2 − ab − bc − ca)}.

For both classes, the exponents of d(f) are l + m + n, and they are almost equal to the
number of operations (ii), (iii) to obtain polynomials in Q1, Q2 from the initial f = a. We
remark that q(f), e(f), s(f) does not contain the parameter l, since they are the invariants
of the generalized Euler line.

Generally, as we already explained, a polynomial f(a, b, c) ∈ P is uniquely determined
by d(f), e(f) and s(f). From the above expressions we know that these three quantities
for Q1 ∪ Q2 are essentially determined by the values

l, m + n, (−2)m + (−2)n.

So these three values are the essence of elements in Q1∪Q2. By using the following lemma,
we can directly see that these three quantities determine the elements in Q1 ∪ Q2.

Lemma 6. If (−2)a +(−2)b = (−2)c +(−2)d (a, b, c, d ∈ Z), then up to the symmetry
of exponents, we have (a, b) = (c, d) or (a, b, c) = (d + 2, d + 1, d).

For example, assume that three invariants d(f), q(f) and e(f) coincide for the polynomial
in Q1 with parameters (l,m, n) and for the polynomial in Q2 with parameters (l′,m′, n′).
Then by using Lemma 6, we can show m = n and (l′,m′, n′) = (l − 1,m + 1,m). By
substituting these values into Q1 and Q2, we see that these two polynomials just coincide.

Triangle centers defined by linear polynomials 2n(a + b + c) + (−1)n(2a − b − c) all
lie on the Nagel line, as we examined above. As for the quadratic centers Q1 ∪ Q2, they
constitute a curious figure like a milky way, possibly contains several lines. We here plot
them for small l, m, n as a reference (Figure 5).
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Figure 5

For higher degrees it seems difficult to characterize the centers in PC. We conjecture
that polynomials in PC with degree n contain 2n − 1 free parameters as in the case of
n = 1, 2.

The points in PC are situated discretely in the plane, and we may say that three
invariants d(f), e(f) and s(f) give a “discrete coordinate” of the points in PC. Conjecture
2 implies that among these invariants d(f) must take a special form. Perhaps there are
another restrictions on polynomials e(f) and s(f), and it is an important problem to
characterize the set of these polynomials. We conjecture that e(f) and s(f) admit some
decompositions consisting of finer invariants. And many geometric facts can be verified
in terms of these finer invariants. For example, we suppose that three points in PC are
collinear if and only if these finer invariants satisfy some simple algebraic relations, as in
Proposition 4 (1) for generalized Euler lines. It is our final problem to give an atlas of
triangle centers in terms of several invariants, by which we can understand many geometric
facts in a simple unified manner.

Finally, we state one more conjecture concerning isogonal conjugate. In defining the
set PC, we used the barycentric coordinate. But if we use trilinear coordinate instead
of barycentric coordinate, we obtain another class of triangle centers P ′

C. (We consider
f(a, b, c) as a trilinear coordinate of the triangle center, and construct P ′

C completely by
the same procedure as PC.) Geometrically we can say that the set P ′

C is closed under the
Ceva conjugate and the isogonal conjugate, since 1/f(a, b, c) means the isogonal conjugate
of f(a, b, c) in trilinear coordinate. But this set may coincide with PC itself.

Conjecture 5. PC = P ′
C.

In barycentric coordinate the isogonal conjugate of f(a, b, c) is given by a2/f(a, b, c). Hence
if Conjecture 1 holds, then Conjecture 5 follows immediately, since a2 ∈ PC.
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In this paper we considered a sequence of infinite triangles ∆n(ABC). But there are
many other sequences such as orthic triangles, as recently discussed in [16]. (See the list
of publications in References at the end of this paper.) It seems an interesting problem to
investigate a trajectory of a fixed triangle center for each sequence of triangles, keeping in
mind the results in Proposition 1.

P

A

B C
A1

B1

C1 A2

B2
C2

Figure 6

As one example, we consider a sequence of infinite Cevian triangles determined by a
fixed triangle center P (see Figure 6). In case P is the centroid of ∆ABC, this sequence is
nothing but ∆n(ABC) we discussed above. For a general triangle center P , we can show
that the trajectory of the centroid of this sequence of triangles lies on a cubic curve, not on
a line. If P is the orthocenter of ∆ABC, then this cubic curve possesses a cusp singularity
at H, and three asymptotic lines of this cubic curve form a triangle which is homothetic
to the original ∆ABC. Many interesting properties seem to hold in this setting. As one
important problem, we ask whether a similar result as in Theorem 2 holds or not in this
sequence of Cevian triangles.

Appendix

In Appendix we list up barycentric coordinates of triangle centers Xk ∈ P in Kimber-
ling’s list [32] for k ≤ 100, and also the values of d(f) and q(f), which we here express
d(Xk), q(Xk) respectively. See the reference [32] for the exact definition of these centers
and their properties. (Note that we omit the centers X13, X14, X15, etc., whose barycentric
coordinates are not polynomials of a, b, c.)

X1 (Incenter) f = a, d(X1) = q(X1) = 1.
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X2 (Centroid) f = 1, d(X2) = q(X2) = 1.

X3 (Circumcenter) f = a2(−a2 + b2 + c2), d(X3) = −2, q(X3) = 1.

X4 (Orthocenter) f = (a2 − b2 + c2)(a2 + b2 − c2), d(X4) = (−2)2, q(X4) = −2.

X5 (Nine-point center) f = a2(b2 + c2) − (b2 − c2)2, d(X5) = 1, q(X5) = − 1
2
.

X6 (Lemoine point) f = a2, d(X6) = q(X6) = 1.

X7 (Gergonne point) f = (a − b + c)(a + b − c), d(X7) = (−2)2, q(X7) = −2.

X8 (Nagel point) f = −a + b + c, d(X8) = q(X8) = −2.

X9 (Mittenpunkt) f = a(−a + b + c), d(X9) = q(X9) = −2.

X10 (Spieker center) f = b + c, d(X10) = q(X10) = − 1
2
.

X11 (Feuerbach point) f = (b − c)2(−a + b + c), d(X11) = q(X11) = ∞.

X12 f = (b + c)2(a − b + c)(a + b − c), d(X12) = 1, q(X12) = − 1
2
.

X19 (Clawson point) f = a(a2−b2+c2)(a2+b2−c2), d(X19) = (−2)2, q(X19) = −2.

X20 (de Longchamps point) f = 3a4 − 2a2(b2 + c2) − (b2 − c2)2,
d(X20) = (−2)3, q(X20) = (−2)2.

X21 (Schiffler point) f = a(a+b)(a+c)(−a+b+c), d(X21) = − 1
2
, q(X21) =

(
− 1

2

)2
.

X22 (Exeter point) f = a2(−a4 + b4 + c4), d(X22) = −2, q(X22) = 5
2
.

X23 (Far-out point) f = a2(−a4 + b4 + c4 − b2c2), d(X23) = q(X23) = ∞.

X24 f = a2(a2 − b2 + c2)(a2 + b2 − c2){a4 + b4 + c4 − 2a2(b2 + c2)},
d(X24) = (−2)3, q(X24) = 1.

X25 f = a2(a2 − b2 + c2)(a2 + b2 − c2), d(X25) = (−2)2, q(X25) = −2.

X26 f = a2{a8 − 2a6(b2 + c2) + 2a2(b6 + c6) − (b2 − c2)2(b4 + c4)},
d(X26) = (−2)2, q(X26) = − 1

2
.

X27 f = (a + b)(a + c)(a2 − b2 + c2)(a2 + b2 − c2), d(X27) = 1, q(X27) =
(
− 1

2

)2
.

X28 f = a(a + b)(a + c)(a2 − b2 + c2)(a2 + b2 − c2), d(X28) = 1, q(X28) =
(
− 1

2

)2
.

X29 f = (a + b)(a + c)(−a + b + c)(a2 − b2 + c2)(a2 + b2 − c2),
d(X29) = −2, q(X29) = − 1

2
.
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X30 (Euler infinity point) f = 2a4 − a2(b2 + c2)− (b2 − c2)2, d(X30) = q(X30) = ∞.

X31 (2nd power point) f = a3, d(X31) = q(X31) = 1.

X32 (3rd power point) f = a4, d(X32) = q(X32) = 1.

X33 f = a(−a + b + c)(a2 − b2 + c2)(a2 + b2 − c2), d(X33) = (−2)3, q(X33) = (−2)2.

X34 f = a(a − b + c)(a + b − c)(a2 − b2 + c2)(a2 + b2 − c2),
d(X34) = (−2)4, q(X34) = (−2)2.

X35 f = a2(−a2 + b2 + c2 + bc), d(X35) = − 1
2
, q(X35) =

(
− 1

2

)2
.

X36 f = a2(−a2 + b2 + c2 − bc), d(X36) = q(X36) = ∞.

X37 f = a(b + c), d(X37) = q(X37) = − 1
2
.

X38 f = a(b2 + c2), d(X38) = − 1
2
, q(X38) = 1.

X39 (Brocard midpoint) f = a2(b2 + c2), d(X39) = − 1
2
, q(X39) = 1.

X40 f = a{a3 +a2(b+c)−a(b+c)2− (b−c)2(b+c)}, d(X40) = (−2)2, q(X40) = −2.

X41 f = a3(−a + b + c), d(X41) = q(X41) = −2.

X42 f = a2(b + c), d(X42) = q(X42) = − 1
2
.

X43 f = a{a(b + c) − bc}, d(X43) = −2, q(X43) = − 1
2
.

X44 f = a(−2a + b + c), d(X44) = q(X44) = ∞.

X45 f = a(−a + 2b + 2c), d(X45) = q(X45) = −1.

X46 f = a{a3 + a2(b + c) − a(b2 + c2) − (b − c)2(b + c)}, d(X46) = −2, q(X46) = 1.

X47 f = a3{a4 + b4 + c4 − 2a2(b2 + c2)}, d(X47) = −2, q(X47) = − 1
2
.

X48 f = a3(−a2 + b2 + c2), d(X48) = −2, q(X48) = 1.

X49 f = a4(−a2 + b2 + c2){a4 + b4 + c4 − 2a2(b2 + c2) − b2c2},
d(X49) = 1, q(X49) =

(
− 1

2

)3
.

X50 f = a4(−a2 + b2 + c2 + bc)(−a2 + b2 + c2 − bc), d(X50) = q(X50) = ∞.

X51 f = a2{a2(b2 + c2) − (b2 − c2)2}, d(X51) = 1, q(X51) = − 1
2
.

X52 f = a2{a2(b2 + c2) − (b2 − c2)2}{a4 + b4 + c4 − 2a2(b2 + c2)},
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d(X52) = −2, q(X52) =
(
− 1

2

)2
.

X53 f = (a2 − b2 + c2)(a2 + b2 − c2){a2(b2 + c2) − (b2 − c2)2},
d(X53) = (−2)2, q(X53) = 1.

X54 (Konita point) f = a2{b2(a2 + c2) − (a2 − c2)2}{c2(a2 + b2) − (a2 − b2)2},
d(X54) = 1, q(X54) =

(
− 1

2

)3
.

X55 f = a2(−a + b + c), d(X55) = q(X55) = −2.

X56 f = a2(a − b + c)(a + b − c), d(X56) = (−2)2, q(X56) = −2.

X57 f = a(a − b + c)(a + b − c), d(X57) = (−2)2, q(X57) = −2.

X58 f = a2(a + b)(a + c), d(X58) =
(
− 1

2

)2
, q(X58) =

(
− 1

2

)3
.

X59 f = a2(a − b)2(a − c)2(a − b + c)(a + b − c), d(X59) = q(X59) = ∞.

X60 f = a2(a + b)2(a + c)2(−a + b + c), d(X60) =
(
− 1

2

)3
, q(X60) =

(
− 1

2

)5
.

X63 f = a(−a2 + b2 + c2), d(X63) = −2, q(X63) = 1.

X64 f = a2{3b4 − 2b2(a2 + c2) − (a2 − c2)2}{3c4 − 2c2(a2 + b2) − (a2 − b2)2},
d(X64) = (−2)6, q(X64) = (−2)3.

X65 f = a(b + c)(a − b + c)(a + b − c), d(X65) = −2, q(X65) = 1.

X66 f = (a4 − b4 + c4)(a4 + b4 − c4), d(X66) = (−2)2, q(X66) = −11.

X67 f = (a4 − b4 + c4 − a2c2)(a4 + b4 − c4 − a2b2), d(X67) = q(X67) = ∞.

X68 f = (−a2 + b2 + c2){a4 + b4 + c4 − 2b2(a2 + c2)}{a4 + b4 + c4 − 2c2(a2 + b2)},
d(X68) = (−2)3, q(X68) = 1.

X69 f = −a2 + b2 + c2, d(X69) = −2, q(X69) = 1.

X70 f = {b8 − 2b6(a2 + c2) + 2b2(a6 + c6) − (a2 − c2)2(a4 + c4)}
×{c8 − 2c6(a2 + b2) + 2c2(a6 + b6) − (a2 − b2)2(a4 + b4)},

d(X70) = (−2)4, q(X70) = − 1
2
.

X71 f = a2(b + c)(−a2 + b2 + c2), d(X71) = 1, q(X71) = − 1
2
.

X72 f = a(b + c)(−a2 + b2 + c2), d(X72) = 1, q(X72) = − 1
2
.

X73 f = a2(b + c)(a− b + c)(a + b− c)(−a2 + b2 + c2), d(X73) = (−2)2, q(X73) = 1.

X74 f = a2{2b4 − b2(a2 + c2) − (a2 − c2)2}{2c4 − c2(a2 + b2) − (a2 − b2)2},
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d(X74) = q(X74) = ∞.

X75 f = bc, d(X75) = 1, q(X75) = − 1
2
.

X76 (3rd Brocard point) f = b2c2, d(X76) = 1, q(X76) =
(
− 1

2

)2
.

X77 f = a(a − b + c)(a + b − c)(−a2 + b2 + c2), d(X77) = (−2)3, q(X77) = −2.

X78 f = a(−a + b + c)(−a2 + b2 + c2), d(X78) = (−2)2, q(X78) = −2.

X79 f = (a2 − b2 + c2 + ac)(a2 + b2 − c2 + ab), d(X79) =
(
− 1

2

)2
, q(X79) =

(
− 1

2

)3
.

X80 f = (a2 − b2 + c2 − ac)(a2 + b2 − c2 − ab), d(X80) = q(X80) = ∞.

X81 f = a(a + b)(a + c), d(X81) =
(
− 1

2

)2
, q(X81) =

(
− 1

2

)3
.

X82 f = a(a2 + b2)(a2 + c2), d(X82) =
(
− 1

2

)2
, q(X82) = 13

16
.

X83 f = (a2 + b2)(a2 + c2), d(X83) =
(
− 1

2

)2
, q(X83) = 13

16
.

X84 f = a{b3 + b2(a + c) − b(a + c)2 − (a − c)2(a + c)}
×{c3 + c2(a + b) − c(a + b)2 − (a − b)2(a + b)},

d(X84) = (−2)4, q(X84) = (−2)2.

X85 f = bc(a − b + c)(a + b − c), d(X85) = (−2)2, q(X85) = 1.

X86 f = (a + b)(a + c), d(X86) =
(
− 1

2

)2
, q(X86) =

(
− 1

2

)3
.

X87 f = a{b(a + c) − ac}{c(a + b) − ab}, d(X87) = (−2)2, q(X87) = −11
4
.

X88 f = a(a − 2b + c)(a + b − 2c), d(X88) = q(X88) = ∞.

X89 f = a(2a − b + 2c)(2a + 2b − c), d(X89) = 1, q(X89) = − 1
2
.

X90 f = a{b3 + b2(a + c) − b(a2 + c2) − (a − c)2(a + c)}
×{c3 + c2(a + b) − c(a2 + b2) − (a − b)2(a + b)},

d(X90) = (−2)2, q(X90) = 1.

X91 f = bc{a4 + b4 + c4 − 2b2(a2 + c2)}{a4 + b4 + c4 − 2c2(a2 + b2)},
d(X91) = (−2)2, q(X91) = − 1

2
.

X92 f = bc(a2 − b2 + c2)(a2 + b2 − c2), d(X92) = (−2)2, q(X92) = 1.

X93 f = b2c2(a2 − b2 + c2)(a2 + b2 − c2){a4 + b4 + c4 − 2b2(a2 + c2) − a2c2}
×{a4 + b4 + c4 − 2c2(a2 + b2) − a2b2}, d(X93) = 1, q(X93) =

(
− 1

2

)5
.
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X94 f = b2c2(a2 − b2 + c2 + ac)(a2 − b2 + c2 − ac)(a2 + b2 − c2 + ab)(a2 + b2 − c2 − ab),
d(X94) = q(X94) = ∞.

X95 f = {b2(a2 + c2) − (a2 − c2)2}{c2(a2 + b2) − (a2 − b2)2},
d(X95) = 1, q(X95) =

(
− 1

2

)3
.

X96 f = {b2(a2 + c2) − (a2 − c2)2}{c2(a2 + b2) − (a2 − b2)2}
×{a4 + b4 + c4 − 2b2(a2 + c2)}{a4 + b4 + c4 − 2c2(a2 + b2)},

d(X96) = (−2)2, q(X96) =
(
− 1

2

)3
.

X97 f = a2(−a2 + b2 + c2){b2(a2 + c2) − (a2 − c2)2}{c2(a2 + b2) − (a2 − b2)2},
d(X97) = −2, q(X97) =

(
− 1

2

)3
.

X98 (Tarry point) f = {a4 + b4 − c2(a2 + b2)}{a4 + c4 − b2(a2 + c2)},
d(X98) = q(X98) = ∞.

X99 (Steiner point) f = (a2 − b2)(a2 − c2), d(X99) = q(X99) = ∞.

X100 f = a(a − b)(a − c), d(X100) = q(X100) = ∞.
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