Precise Spectral Asymptotics for Nonlinear Sturm–Liouville Problems
Journal of Differential Equations Volume 180 Issue 2
Page 374-394
published_at 2002-04-10
アクセス数 : 626 件
ダウンロード数 : 144 件
今月のアクセス数 : 7 件
今月のダウンロード数 : 5 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00021528
File |
JDifferEqu_180_374.pdf
725 KB
種類 :
fulltext
|
Title ( eng ) |
Precise Spectral Asymptotics for Nonlinear Sturm–Liouville Problems
|
Creator | |
Source Title |
Journal of Differential Equations
|
Volume | 180 |
Issue | 2 |
Start Page | 374 |
End Page | 394 |
Abstract |
We consider the nonlinear Sturm–Liouville problem-u″(t)+u(t)p=λu(t), u(t)>0, tI(0, 1), u(0)=u(1)=0, where p>1 is a constant and λ>0 is an eigenvalue parameter. To understand the global structure of the bifurcation diagram in R+×L2(I) completely, we establish the asymptotic expansion of λ(α) (associated with eigenfunction uα with uα2=α) as α→∞. We also obtain the corresponding asymptotics of the width of the boundary layer of uα as α→∞.
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Elsevier Science
|
Date of Issued | 2002-04-10 |
Rights |
Copyright (c) 2002 Elsevier Science (USA).
|
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[ISSN] 0022-0396
[DOI] 10.1006/jdeq.2001.4061
[NCID] AA00696680
[DOI] http://dx.doi.org/10.1006/jdeq.2001.4061
|