Precise Spectral Asymptotics for Nonlinear Sturm–Liouville Problems

Journal of Differential Equations Volume 180 Issue 2 Page 374-394 published_at 2002-04-10
アクセス数 : 626
ダウンロード数 : 144

今月のアクセス数 : 7
今月のダウンロード数 : 5
File
JDifferEqu_180_374.pdf 725 KB 種類 : fulltext
Title ( eng )
Precise Spectral Asymptotics for Nonlinear Sturm–Liouville Problems
Creator
Source Title
Journal of Differential Equations
Volume 180
Issue 2
Start Page 374
End Page 394
Abstract
We consider the nonlinear Sturm–Liouville problem-u″(t)+u(t)p=λu(t), u(t)>0, tI(0, 1), u(0)=u(1)=0, where p>1 is a constant and λ>0 is an eigenvalue parameter. To understand the global structure of the bifurcation diagram in R+×L2(I) completely, we establish the asymptotic expansion of λ(α) (associated with eigenfunction uα with uα2=α) as α→∞. We also obtain the corresponding asymptotics of the width of the boundary layer of uα as α→∞.
NDC
Mathematics [ 410 ]
Language
eng
Resource Type journal article
Publisher
Elsevier Science
Date of Issued 2002-04-10
Rights
Copyright (c) 2002 Elsevier Science (USA).
Publish Type Author’s Original
Access Rights open access
Source Identifier
[ISSN] 0022-0396
[DOI] 10.1006/jdeq.2001.4061
[NCID] AA00696680
[DOI] http://dx.doi.org/10.1006/jdeq.2001.4061