PRECISE SPECTRAL ASYMPTOTICS FOR NONLINEAR STURM-LIOUVILLE PROBLEMS

TETSUTARO SHIBATA

The Division of Mathematical and Information Sciences, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan

Abstract

We consider the nonlinear Sturm-Liouville problem

 $-u''(t) + u(t)^p = \lambda u(t), \ u(t) > 0, \ t \in I := (0,1), \ u(0) = u(1) = 0,$

where p > 1 is a constant and $\lambda > 0$ is an eigenvalue parameter. To understand the global structure of the bifurcation diagram in $\mathbf{R}_+ \times L^2(I)$ completely, we establish the asymptotic expansion of $\lambda(\alpha)$ (associated with eigenfunction u_{α} with $||u_{\alpha}||_2 = \alpha$) as $\alpha \to \infty$. We also obtain the corresponding asymptotics of the width of the boundary layer of u_{α} as $\alpha \to \infty$.

Proposed running head: precise spectral asymptotics

TETSUTARO SHIBATA

The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences Hiroshima University (Higashi-Hiroshima, 739-8521, Japan e-mail: shibata@mis.hiroshima-u.ac.jp fax: ++81-824-24-0756

1 Introduction

We consider the following nonlinear Sturm-Liouville problem

$$-u''(t) + u(t)^p = \lambda u(t), \quad t \in I := (0, 1), \tag{1.1}$$

$$u(t) > 0, \quad t \in I, \tag{1.2}$$

$$u(0) = u(1) = 0,$$
 (1.3)

where p > 1 is a constant and $\lambda > 0$ is an eigenvalue parameter. It is known by Berestycki [1] and Fraile *et al.* [7] that for each $\alpha > 0$, there exists a unique solution $(\lambda, u) = (\lambda(\alpha), u_{\alpha}) \in$ $\mathbf{R}_{+} \times C^{2}(\bar{I})$ with $||u_{\alpha}||_{2} = \alpha$. The set $\{(\lambda(\alpha), u_{\alpha}), \alpha > 0\}$ gives all solutions of (1.1)–(1.3) and is an unbounded curve of class C^{1} in $\mathbf{R}_{+} \times L^{2}(I)$ emanating from $(\pi^{2}, 0)$.

The purpose of this paper is to understand the global structure of this bifurcation diagram in $\mathbf{R}_+ \times L^2(I)$ completely. To this end, we establish the *asymptotic expansion* of $\lambda(\alpha)$ as $\alpha \to \infty$. We also establish the corresponding asymptotics of the width of the boundary layer of u_{α} as $\alpha \to \infty$.

The equation (1.1)-(1.3) has been extensively investigated by many authors in L^{∞} framework from a viewpoint of local and global bifurcation theory. We refer to Berestycki
[1], Fraile *et al.* [7], Holzmann and Kielhöfer [11], Rabinowitz [12], [13] and the references
therein for the works in this direction. On the other hand, since (1.1)-(1.3) is regarded as
an eigenvalue problem, it is significant to investigate (1.1)-(1.3) in L^2 -framework. For the
works in this direction, we refer to Bongers *et al.* [2], Chabrowski [3], Chiappinelli [4], [5],
[6], Heinz [8], [9], [10], Shibata [14] and the references therein. In particular, Chiappinelli
[4], [5] obtained the asymptotic formula for $\lambda(\alpha)$ as $\alpha \to \infty$ has been given: There exists a
constant C > 0 such that for $\alpha \gg 1$,

$$C^{-1}\alpha^{(p-1)/2} \le \lambda(\alpha) - \alpha^{p-1} \le C\alpha^{(p-1)/2}.$$
 (1.4)

(1.4) gives the optimal estimate for the second term of $\lambda(\alpha)$ as $\alpha \to \infty$. However, the exact

second term was not obtained. Our main aim in this paper is to improve the formula (1.4) to gain a complete picture of the bifurcation diagram in $\mathbf{R}_+ \times L^2(I)$.

Now we state our results. Let $\mathbf{N}_0:=\{0,1,2,\cdots\}.$

THEOREM 1. For any $n \in \mathbb{N}_0$, the following asymptotic formula holds as $\alpha \to \infty$:

$$\lambda(\alpha) = \alpha^{p-1} + C_1 \alpha^{(p-1)/2} + \sum_{k=0}^n \frac{a_k(p)}{(p-1)^{k+1}} C_1^{k+2} \alpha^{k(1-p)/2} + o(\alpha^{n(1-p)/2}), \tag{1.5}$$

where

$$C_1 = (p+3) \int_I \sqrt{\frac{p-1}{p+1} - s^2 + \frac{2}{p+1}} s^{p+1} ds$$
(1.6)

and $a_k(p)$ is a polynomial (deg $a_k(p) \leq k+1$) which is determined by a_0, a_1, \dots, a_{k-1} .

For example,

$$a_0(p) = 1$$
, $a_1(p) = \frac{(5-p)(9-p)}{24}$, $a_2(p) = \frac{(3-p)(5-p)(7-p)}{24}$

The following theorem gives the asymptotic formula for the boundary layer of u_{α} as $\alpha \to \infty$.

THEOREM 2. For any $n \in \mathbf{N}_0$, the following formula holds as $\alpha \to \infty$:

$$u_{\alpha}'(0)^{2} = u_{\alpha}'(1)^{2} = \frac{p-1}{p+1}\alpha^{p+1} + C_{1}\alpha^{(p+3)/2} + \sum_{k=0}^{n} \frac{2A_{k}(p)}{(p-1)^{k+1}}C_{1}^{k+2}\alpha^{2+k(1-p)/2} \quad (1.7)$$
$$+ o(\alpha^{2+n(1-p)/2}),$$

where $A_k(p)$ is a polynomial (deg $A_k(p) \leq k+1$) which is determined by a_0, a_1, \dots, a_{k-1} .

For example,

$$A_0(p) = 1, \quad A_1(p) = \frac{(9-p)(13-p)}{48}, \quad A_2(p) = \frac{(5-p)(7-p)(9-p)}{48}.$$

The following theorem gives the relationship between $||u_{\alpha}||_2$ and $||u_{\alpha}||_{\infty}$ for $\alpha \gg 1$. THEOREM 3. For any $n \in \mathbb{N}_0$, the following formula holds as $\alpha \to \infty$:

$$\|u_{\alpha}\|_{\infty}^{p-1} = \alpha^{p-1} + C_1 \alpha^{(p-1)/2} + \sum_{k=0}^{n} \frac{a_k(p)}{(p-1)^{k+1}} C_1^{k+2} \alpha^{k(1-p)/2} + o(\alpha^{n(1-p)/2}).$$
(1.8)

As a corollary of Theorems 1–3, we obtain the analogous results for the nonlinear Sturm-Liouville problem

$$-u''(t) + |u(t)|^{p-1}u(t) = \lambda u(t), \quad t \in I := (0,1),$$
(1.9)

$$u(0) = u(1) = 0. (1.10)$$

For (1.9)–(1.10), it is known that for each $\alpha > 0$, there exists a unique solution $(\lambda, u) = (\lambda(m, \alpha), u_{m,\alpha}) \in \mathbf{R}_+ \times C^2(\bar{I}) \ (m \in \mathbf{N})$ such that $u_{m,\alpha}$ has exactly m-1 interior simple zeros in I, $u_{m,\alpha} > 0$ near 0 and $||u_{m,\alpha}||_2 = \alpha$ (cf. [1, 7]). Moreover, the set $\{(\lambda(m, \alpha), \pm u_{m,\alpha}), \alpha > 0, m \in \mathbf{N}\}$ gives all solutions of (1.9)–(1.10). $\{(\lambda(m, \alpha), u_{m,\alpha}), \alpha > 0\}$ is called the m-th branch of nodal solutions of (1.9)–(1.10) and is an unbounded curve of class C^1 in $\mathbf{R}_+ \times L^2(I)$ emanating from $((m\pi)^2, 0)$. Then clearly, $(\lambda(1, \alpha), u_{1,\alpha}) = (\lambda(\alpha), u_{\alpha})$ and it is seen from an easy symmetry argument (cf. [10, p. 313]) that the interior zeroes of $u_{m,\alpha}$ $(m \geq 2)$ are exactly $\{1/m, \dots, (m-1)/m\}$. Therefore, the restriction of $u_{m,\alpha}$ to [0, 1/m] corresponds to a positive solution (with a different eigenvalue) on I via a dilation. We then obtain the explicit correspondence between $\lambda(\alpha)$ and $\lambda(m, \alpha)$ and obtain the analogous asymptotic formulas for all the branches of (1.9)–(1.10).

COROLLARY 4. Let $m \in \mathbb{N}$ be fixed. Then for any $n \in \mathbb{N}_0$, the following asymptotic formulas hold as $\alpha \to \infty$:

$$\lambda(m,\alpha) = \alpha^{p-1} + mC_1 \alpha^{(p-1)/2} + \sum_{k=0}^n \frac{a_k(p)}{(p-1)^{k+1}} (mC_1)^{k+2} \alpha^{k(1-p)/2} + o(\alpha^{n(1-p)/2}), \quad (1.11)$$

$$u'_{m,\alpha}(0)^{2} = u'_{m,\alpha}(1)^{2} = \frac{p-1}{p+1}\alpha^{p+1} + mC_{1}\alpha^{(p+3)/2} + \sum_{k=0}^{n} \frac{2A_{k}(p)}{(p-1)^{k+1}}(mC_{1})^{k+2}\alpha^{2+k(1-p)/2} + o(\alpha^{2+n(1-p)/2}),$$
(1.12)

$$\|u_{m,\alpha}\|_{\infty}^{p-1} = \alpha^{p-1} + mC_1 \alpha^{(p-1)/2} + \sum_{k=0}^n \frac{a_k(p)}{(p-1)^{k+1}} (mC_1)^{k+2} \alpha^{k(1-p)/2} + o(\alpha^{n(1-p)/2}).$$
(1.13)

The remainder of this paper is organized as follows. In Section 2, we establish the second term of the asymptotics of $\lambda(\alpha)$. In Section 3, we establish the third and fourth terms of the

asymptotics of $\lambda(\alpha)$. This step is needed to use the mathematical induction in Section 4. In Section 4, we prove Theorems 1–3 by using the mathematical induction and the arguments developed in Sections 2 and 3. We also give the proof of Corollary 4 at the end of Section 4.

2 Second term of $\lambda(\alpha)$

We begin with notations and the fundamental properties of $\lambda(\alpha)$ and u_{α} . Let $\|\cdot\|_q$ $(q \ge 1, \infty)$ be the usual L^q -norm. C_k $(k = 2, 3, \cdots)$ denotes positive constants independent of $\alpha \gg 1$. Let

$$\lambda_2(\alpha) := \lambda(\alpha) - \alpha^{p-1}, \qquad (2.1)$$

$$\gamma(\alpha) := \|u_{\alpha}'\|_{2}^{2} + \frac{2}{p+1} \|u_{\alpha}\|_{p+1}^{p+1}, \qquad (2.2)$$

$$\gamma_2(\alpha) := \gamma(\alpha) - \frac{2}{p+1} \alpha^{p+1}.$$
(2.3)

It is known by Berestycki [1] and Fraile *et al.* [7] that (1.1)–(1.3) has a unique solution u_{λ} for a given $\lambda > \pi^2$,

$$\lim_{\lambda \to \infty} \frac{u_{\lambda}}{\lambda^{1/(p-1)}} = 1 \tag{2.4}$$

uniformly on compact subsets on I. Moreover, the mapping $\lambda \mapsto u_{\lambda} \in C^{2}(\overline{I})$ is strictly increasing (i.e., $du_{\lambda}/d\lambda > 0$ in I) and C^{1} for $\lambda > \pi^{2}$ (cf. [7, p. 203]). Therefore, we see that $\alpha(\lambda) = ||u_{\lambda}||_{2}$ is C^{1} and strictly increasing, namely, $d\alpha(\lambda)/\lambda > 0$ for $\lambda > \pi^{2}$. Therefore, $\lambda(\alpha)$, the inverse of $\alpha(\lambda)$, is also C^{1} and $d\lambda(\alpha)/d\alpha > 0$ for $\alpha > 0$.

LEMMA 2.1. $||u'_{\alpha}||_{2}^{2} = 2C_{1}(1+o(1))\alpha^{(p+3)/2}/(p+3)$ for $\alpha \gg 1$.

Proof. Since (1.1) is autonomous, we know that u_{α} satisfies

$$u_{\alpha}(t) = u_{\alpha}(1-t), \quad 0 \le t \le 1,$$
 (2.5)

$$u_{\alpha}\left(\frac{1}{2}\right) = \max_{0 \le t \le 1} u_{\alpha}(t) = \|u_{\alpha}\|_{\infty}, \qquad (2.6)$$

$$u'_{\alpha}(t) > 0, \quad 0 \le t < \frac{1}{2}.$$
 (2.7)

Since it follows from (1.1) that

$$\frac{d}{dt} \left[\frac{1}{2} u'_{\alpha}(t)^2 - \frac{1}{p+1} u_{\alpha}(t)^{p+1} + \frac{1}{2} \lambda u_{\alpha}(t)^2 \right] = 0 \quad \text{for } 0 \le t \le 1,$$

the expression between brackets is constant in [0, 1], and taking t = 0, 1/2, for $0 \le t \le 1$, we obtain

$$\frac{1}{2}u'_{\alpha}(0)^{2} = \frac{1}{2}u'_{\alpha}(t)^{2} - \frac{1}{p+1}u_{\alpha}(t)^{p+1} + \frac{1}{2}\lambda u_{\alpha}(t)^{2} \qquad (2.8)$$

$$= -\frac{1}{p+1}\|u_{\alpha}\|_{\infty}^{p+1} + \frac{1}{2}\lambda\|u_{\alpha}\|_{\infty}^{2}.$$

This along with (2.7) implies that for $0 \le t \le 1/2$

$$u_{\alpha}'(t) = \sqrt{\lambda(\alpha)(\|u_{\alpha}\|_{\infty}^{2} - u_{\alpha}(t)^{2}) - \frac{2}{p+1}(\|u_{\alpha}\|_{\infty}^{p+1} - u_{\alpha}(t)^{p+1})}.$$
(2.9)

Then by (2.5), (2.7), (2.9) and putting $s = u_{\alpha}(t)/||u_{\alpha}||_{\infty}$, we obtain

$$\begin{aligned} \|u_{\alpha}'\|_{2}^{2} &= 2 \int_{0}^{1/2} \sqrt{\lambda(\alpha)} (\|u_{\alpha}\|_{\infty}^{2} - u_{\alpha}(t)^{2}) - \frac{2}{p+1} (\|u_{\alpha}\|_{\infty}^{p+1} - u_{\alpha}(t)^{p+1}) u_{\alpha}'(t) dt \ (2.10) \\ &= 2 \|u_{\alpha}\|_{\infty} \int_{0}^{1} \sqrt{\lambda(\alpha)} \|u_{\alpha}\|_{\infty}^{2} (1 - s^{2}) - \frac{2}{p+1} \|u_{\alpha}\|_{\infty}^{p+1} (1 - s^{p+1}) ds. \end{aligned}$$

By (1.4) and (2.4), we see that $||u_{\alpha}||_{\infty} = \lambda(\alpha)^{1/(p-1)}(1+o(1))$ for $\alpha \gg 1$. By this, for $\alpha \gg 1$ and $0 \le s \le 1$, we obtain

$$\frac{2\|u_{\alpha}\|_{\infty}}{\lambda(\alpha)^{(p+3)/(2(p-1))}}\sqrt{\lambda(\alpha)\|u_{\alpha}\|_{\infty}^{2}(1-s^{2})-\frac{2}{p+1}\|u_{\alpha}\|_{\infty}^{p+1}(1-s^{p+1})} \leq C_{2}.$$

By this, (2.10) and Lebesgue's convergence theorem, we obtain

$$\lim_{\alpha \to \infty} \frac{\|u'_{\alpha}\|_{2}^{2}}{\lambda(\alpha)^{(p+3)/(2(p-1))}} = 2\int_{0}^{1} \sqrt{\frac{p-1}{p+1} - s^{2} + \frac{2}{p+1}s^{p+1}} ds = \frac{2C_{1}}{p+3}.$$

This along with (1.4) implies our assertion. Thus the proof is complete.

LEMMA 2.2. $d\gamma_2(\alpha)/d\alpha = 2\alpha\lambda_2(\alpha)$ for all $\alpha > 0$.

Proof. By (1.1) and (2.2), we obtain

$$\frac{d\gamma(\alpha)}{d\alpha} = 2 \int_{I} u'_{\alpha}(t) \frac{du'_{\alpha}(t)}{d\alpha} dt + 2 \int_{I} u_{\alpha}(t)^{p} \frac{du_{\alpha}(t)}{d\alpha} dt \qquad (2.11)$$

$$= 2 \int_{I} \{-u''_{\alpha}(t) + u_{\alpha}(t)^{p}\} \frac{du_{\alpha}(t)}{d\alpha} dt$$

$$= 2\lambda(\alpha) \int_{I} u_{\alpha}(t) \frac{du_{\alpha}(t)}{d\alpha} dt = \lambda(\alpha) \frac{d}{d\alpha} \int_{I} u_{\alpha}(t)^{2} dt$$

$$= 2\alpha\lambda(\alpha).$$

By this, (2.1) and (2.3), we obtain our assertion.

LEMMA 2.3.
$$\lambda_2(\alpha) = C_1(1+o(1))\alpha^{(p-1)/2}$$
 for $\alpha \gg 1$.

Proof. Multiply u_{α} by (1.1). Then integration by parts yields

$$\|u_{\alpha}'\|_{2}^{2} + \|u_{\alpha}\|_{p+1}^{p+1} = \lambda(\alpha)\alpha^{2}.$$
(2.12)

By this and (2.2), we obtain

$$\gamma(\alpha) - \frac{2}{p+1}\lambda(\alpha)\alpha^2 = \frac{p-1}{p+1} \|u'_{\alpha}\|_2^2.$$

By substituting (2.1) and (2.3) for this, we obtain

$$\gamma_2(\alpha) - \frac{2}{p+1} \lambda_2(\alpha) \alpha^2 = \frac{p-1}{p+1} \|u'_{\alpha}\|_2^2.$$
(2.13)

Then by this and Lemma 2.2, we find that γ_2 satisfies the differential equation

$$\gamma_{2}'(\alpha) - \frac{p+1}{\alpha}\gamma_{2}(\alpha) = h(\alpha) := -\frac{(p-1)\|u_{\alpha}'\|_{2}^{2}}{\alpha}.$$
(2.14)

We see from Lemma 2.1 that $|h(s)|/s^{p+1} \leq C_3 s^{-(p+1)/2}$ for $s \gg 1$. This implies that for $\alpha \gg 1$

$$\int_{\alpha}^{\infty} \frac{|h(s)|}{s^{p+1}} ds \le \frac{2}{p-1} C_3 \alpha^{(1-p)/2}.$$
(2.15)

Then we see that the solution γ_2 of (2.14) is represented as

$$\gamma_2(\alpha) = I_1(\alpha) + I_2(\alpha) := \alpha^{p+1} \int_{\alpha}^{\infty} \frac{-h(s)}{s^{p+1}} ds + C_4 \alpha^{p+1}.$$
 (2.16)

We see from (2.15) that $I_1(\alpha) = o(\alpha^{p+1})$ for $\alpha \gg 1$. By (1.4) and (2.4), we obtain $||u_{\alpha}||_{p+1}^{p+1} = (1+o(1))\alpha^{p+1}$ for $\alpha \gg 1$. Therefore, by (2.2) and Lemma 2.1, for $\alpha \gg 1$, we obtain

$$\gamma(\alpha) = \frac{2}{p+1} \alpha^{p+1} + o(\alpha^{p+1}).$$
(2.17)

By this and (2.3), we see that $\gamma_2(\alpha) = o(\alpha^{p+1})$. Therefore, we find that $C_4 = 0$, and consequently, by (2.16), we obtain

$$\gamma_2(\alpha) = \alpha^{p+1} \int_{\alpha}^{\infty} \frac{-h(s)}{s^{p+1}} ds.$$
(2.18)

Then by this, Lemma 2.1 and l'Hopital's rule, we obtain

$$\lim_{\alpha \to \infty} \frac{\int_{\alpha}^{\infty} -h(s)/s^{p+1}ds}{\alpha^{(1-p)/2}} = \lim_{\alpha \to \infty} \frac{2\|u_{\alpha}'\|_{2}^{2}}{\alpha^{(p+3)/2}} = \frac{4}{p+3}C_{1}.$$

This along with (2.18) implies that for $\alpha \gg 1$

$$\gamma_2(\alpha) = \frac{4C_1}{p+3} \alpha^{(p+3)/2} + o(\alpha^{(p+3)/2}).$$
(2.19)

Now, by (2.13) and Lemma 2.1, for $\alpha \gg 1$, we obtain

$$\lambda_2(\alpha)\alpha^2 = \frac{p+1}{2}\gamma_2(\alpha) - \frac{p-1}{2}\|u'_{\alpha}\|_2^2 = (1+o(1))C_1\alpha^{(p+3)/2}.$$
(2.20)

This implies our conclusion. Thus the proof is complete. \blacksquare

3 The third and fourth terms of $\lambda(\alpha)$

Taking (2.1), (2.3), (2.19) and Lemma 2.3 into account, we put

$$\lambda_3(\alpha) := \lambda(\alpha) - \alpha^{p-1} - C_1 \alpha^{(p-1)/2},$$
(3.1)

$$\gamma_3(\alpha) := \gamma(\alpha) - \frac{2}{p+1} \alpha^{p+1} - \frac{4C_1}{p+3} \alpha^{(p+3)/2}.$$
(3.2)

Then by (2.11), (3.1) and (3.2), we have

$$\frac{d\gamma_3(\alpha)}{d\alpha} = 2\alpha\lambda_3(\alpha). \tag{3.3}$$

The following estimate for $||u_{\alpha}||_{\infty}$ enables us to repeat the arguments in the previous section.

Lemma 3.1. For $\alpha \gg 1$

$$(\lambda(\alpha) - e^{-C_5\sqrt{\lambda(\alpha)}})^{1/(p-1)} \le \|u_\alpha\|_{\infty} < \lambda(\alpha)^{1/(p-1)}.$$
(3.4)

Proof. Since the second inequality is known by Berestycki [1], we have only to prove the first inequality. We put $v_{\alpha}(t) := \lambda(\alpha)^{-1/(p-1)}u_{\alpha}(t+1/2)$ and $w_{\alpha} := 1 - v_{\alpha}$. By (1.1) and (2.6), we see that w_{α} satisfies:

$$\begin{split} w_{\alpha}''(t) &= \lambda(\alpha)(1 - w_{\alpha}(t) - (1 - w_{\alpha}(t))^{p}), \quad t \in \left(-\frac{1}{2}, \frac{1}{2}\right), \\ w_{\alpha}(0) &= 1 - \|v_{\alpha}\|_{\infty}, \\ w_{\alpha}'(0) &= 0. \end{split}$$

Since $0 < v_{\alpha} < 1$ in I by the second inequality of (3.4), we have $0 < w_{\alpha} < 1$ in (-1/2, 1/2). By (2.4), we see that $v_{\alpha} \to 1$ and $w_{\alpha} \to 0$ uniformly on $I_{\delta} := [-\delta, \delta]$ as $\alpha \to \infty$, where $0 < \delta \ll 1$ is a fixed constant. Therefore, for a fixed constant $0 < \epsilon \ll p - 1$, we obtain by Taylor expansion that for $\alpha \gg 1$

$$\begin{split} \lambda(\alpha)(p-1-\epsilon)w_{\alpha} &< w_{\alpha}''(t) < \lambda(\alpha)(p-1+\epsilon)w_{\alpha}, \quad t \in I_{\delta}, \\ w_{\alpha}(0) &= 1 - \|v_{\alpha}\|_{\infty}, \\ w_{\alpha}'(0) &= 0. \end{split}$$

Since $W_{\pm}(\alpha, t) := (1/2)(1 - ||v_{\alpha}||_{\infty})(e^{\sqrt{(p-1\pm\epsilon)\lambda(\alpha)}t} + e^{-\sqrt{(p-1\pm\epsilon)\lambda(\alpha)}t})$ satisfy

$$\begin{split} W_{\pm}''(\alpha,t) &= \lambda(\alpha)(p-1\pm\epsilon)W_{\pm}(\alpha,t), \quad t\in I_{\delta}, \\ W_{\pm}(\alpha,0) &= 1-\|v_{\alpha}\|_{\infty}, \\ W_{\pm}'(0) &= 0, \end{split}$$

we easily see that $W_{-}(\alpha, t) \leq w_{\alpha}(t) \leq W_{+}(\alpha, t)$ for $t \in I_{\delta}$ and $\alpha \gg 1$. This implies that as $\alpha \to \infty$

$$\frac{1}{2}(1 - \|v_{\alpha}\|_{\infty})e^{\sqrt{(p-1-\epsilon)\lambda(\alpha)\delta}} \le W_{-}(\alpha,\delta) \le w_{\alpha}(\delta) \to 0.$$

This yields $1 - C_6 e^{-\delta \sqrt{(p-1-\epsilon)\lambda(\alpha)}} \leq ||v_{\alpha}||_{\infty}$. Hence, there exists a constant $C_5 > 0$ such that for $\alpha \gg 1$

$$\begin{aligned} (\lambda(\alpha) - e^{-C_5\sqrt{\lambda(\alpha)}})^{1/(p-1)} &\leq \lambda(\alpha)^{1/(p-1)} (1 - C_6 e^{-\delta\sqrt{(p-1-\epsilon)\lambda(\alpha)}}) \\ &\leq \lambda(\alpha)^{1/(p-1)} \|v_\alpha\|_{\infty} = \|u_\alpha\|_{\infty}. \end{aligned}$$

Thus the proof is complete. \blacksquare

Next, we study the asymptotics of $\lambda_3(\alpha)$. To this end, we prove the following lemma. LEMMA 3.2. For $\alpha \gg 1$

$$(p+3)\gamma_3(\alpha) - 4\lambda_3(\alpha)\alpha^2 = \eta_0(\alpha)\alpha^2, \qquad (3.5)$$

where $\eta_0(\alpha) \to C_1^2$ as $\alpha \to \infty$.

Proof. For a fixed $\alpha > 0$, it is easy to see that $L(\alpha, t) := \lambda(\alpha)t^2/2 - t^{p+1}/(p+1)$ is strictly increasing for $0 \le t \le \lambda(\alpha)^{1/(p-1)}$. Therefore, by Lemma 3.1, we obtain

$$L(\alpha, (\lambda(\alpha) - e^{-C_5\sqrt{\lambda(\alpha)}})^{1/(p-1)}) \le L(\alpha, \|u_\alpha\|_{\infty}) \le L(\alpha, \lambda(\alpha)^{1/(p-1)}).$$
(3.6)

First, we study the asymptotics of $L(\alpha, ||u_{\alpha}||_{\infty})$. By (2.2) and (2.12), we have

$$\|u_{\alpha}'\|_{2}^{2} = \frac{p+1}{p-1} \left(\gamma(\alpha) - \frac{2}{p+1}\lambda(\alpha)\alpha^{2}\right), \qquad (3.7)$$

$$\|u_{\alpha}\|_{p+1}^{p+1} = \frac{p+1}{p-1} (\lambda(\alpha)\alpha^2 - \gamma(\alpha)).$$
(3.8)

Integrate (2.8) over I. Then by (3.7) and (3.8), we obtain

$$\frac{1}{2}u'_{\alpha}(0)^{2} = \frac{1}{2}||u'_{\alpha}||_{2}^{2} - \frac{1}{p+1}||u_{\alpha}||_{p+1}^{p+1} + \frac{1}{2}\lambda(\alpha)\alpha^{2} \qquad (3.9)$$

$$= \frac{p+3}{2(p-1)}\gamma(\alpha) + \frac{p-5}{2(p-1)}\lambda(\alpha)\alpha^{2}.$$

By substituting (3.1) and (3.2) for (3.9), we see from (2.8) that

$$L(\alpha, ||u_{\alpha}||_{\infty}) = \frac{1}{2} u_{\alpha}'(0)^{2}$$

= $\frac{p-1}{2(p+1)} \alpha^{p+1} + \frac{1}{2} C_{1} \alpha^{(p+3)/2} + \frac{p+3}{2(p-1)} \gamma_{3}(\alpha)$
 $+ \frac{p-5}{2(p-1)} \lambda_{3}(\alpha) \alpha^{2}.$ (3.10)

Secondly, we study the asymptotics of $L(\alpha, \lambda(\alpha)^{1/(p-1)})$. By (3.1) and Taylor expansion, for $\alpha \gg 1$, we obtain

$$L(\alpha, \lambda(\alpha)^{1/(p-1)}) = \frac{(p-1)}{2(p+1)} \lambda(\alpha)^{(p+1)/(p-1)}$$

$$= \frac{p-1}{2(p+1)} (\alpha^{p-1} + C_1 \alpha^{(p-1)/2} + \lambda_3(\alpha))^{(p+1)/(p-1)}$$

$$= \frac{p-1}{2(p+1)} \alpha^{p+1} (1 + C_1 \alpha^{(1-p)/2} + \lambda_3(\alpha) \alpha^{1-p})^{(p+1)/(p-1)}$$

$$= \frac{p-1}{2(p+1)} \alpha^{p+1} \left\{ 1 + \frac{p+1}{p-1} (C_1 \alpha^{(1-p)/2} + \lambda_3(\alpha) \alpha^{1-p}) + \frac{p+1}{(p-1)^2} (C_1 \alpha^{(1-p)/2} + \lambda_3(\alpha) \alpha^{1-p})^2 + o((C_1 \alpha^{(1-p)/2} + \lambda_3(\alpha) \alpha^{1-p})^2) \right\}.$$

Note that $\lambda_3(\alpha) = o(\alpha^{(p-1)/2})$ by (3.1) and Lemma 2.3. By using this and (3.11), we obtain

$$L(\alpha, \lambda(\alpha)^{1/(p-1)}) = \frac{p-1}{2(p+1)} \alpha^{p+1} + \frac{1}{2} C_1 \alpha^{(p+3)/2} + \frac{1}{2} \lambda_3(\alpha) \alpha^2 \qquad (3.12)$$
$$+ \frac{1}{2(p-1)} C_1^2 \alpha^2 + o(\alpha^2).$$

Finally, we study the asymptotics of $L(\alpha, (\lambda(\alpha) - e^{-C_5\sqrt{\lambda(\alpha)}})^{1/(p-1)})$. By (1.4) and Taylor expansion, for $\alpha \gg 1$, we have

$$\begin{split} L(\alpha, (\lambda(\alpha) - e^{-C_5\sqrt{\lambda(\alpha)}})^{1/(p-1)}) & (3.13) \\ &= (\lambda(\alpha) - e^{-C_5\sqrt{\lambda(\alpha)}})^{2/(p-1)} \left(\frac{p-1}{2(p+1)}\lambda(\alpha) + \frac{e^{-C_5\sqrt{\lambda(\alpha)}}}{p+1} \right) \\ &= \lambda(\alpha)^{2/(p-1)} \left(1 - \frac{e^{-C_5\sqrt{\lambda(\alpha)}}}{\lambda(\alpha)} \right)^{2/(p-1)} \left(\frac{p-1}{2(p+1)}\lambda(\alpha) + \frac{e^{-C_5\sqrt{\lambda(\alpha)}}}{p+1} \right) \\ &= \lambda(\alpha)^{2/(p-1)} \left(1 - \frac{2e^{-C_5\sqrt{\lambda(\alpha)}}}{(p-1)\lambda(\alpha)} + \frac{(3-p)e^{-2C_5\sqrt{\lambda(\alpha)}}}{(p-1)^2\lambda(\alpha)^2} + o(\lambda(\alpha)^{-2}e^{-2C_5\sqrt{\lambda(\alpha)}}) \right) \\ &\times \left(\frac{p-1}{2(p+1)}\lambda(\alpha) + \frac{e^{-C_5\sqrt{\lambda(\alpha)}}}{p+1} \right) \\ &= \frac{p-1}{2(p+1)}\lambda(\alpha)^{(p+1)/(p-1)} - \frac{1}{2(p-1)}(1+o(1))e^{-2C_5\sqrt{\lambda(\alpha)}}\lambda(\alpha)^{(3-p)/(p-1)} \\ &= \frac{p-1}{2(p+1)}\lambda(\alpha)^{(p+1)/(p-1)} - O(e^{-2C_7\alpha^{(p-1)/2}}\alpha^{3-p}) \\ &= \frac{p-1}{2(p+1)}\lambda(\alpha)^{(p+1)/(p-1)} - o(\alpha^2). \end{split}$$

Therefore, by (3.10), (3.12) and (3.13), we obtain (3.5). Thus the proof is complete.

Lemma 3.3. $\lambda_3(\alpha) = (1 + o(1))C_1^2/(p-1)$ as $\alpha \to \infty$.

Proof. By (3.3) and (3.5), we obtain

$$\gamma_3'(\alpha) - \frac{p+3}{2\alpha}\gamma_3(\alpha) = -\frac{\eta_0(\alpha)\alpha}{2}.$$
(3.14)

By solving this equation, we see that

$$\gamma_3(\alpha) = \alpha^{(p+3)/2} \int_{\alpha}^{\infty} \frac{\eta_0(s)}{2s^{(p+1)/2}} ds + C_8 \alpha^{(p+3)/2}.$$
(3.15)

 $\gamma_3(\alpha) = o(\alpha^{(p+3)/2})$ by (2.19) and (3.2). Moreover, the first term of the right hand side of (3.15) is also $o(\alpha^{(p+3)/2})$. Therefore, we see that $C_8 = 0$. Moreover, by l'Hopital's rule, we have

$$\lim_{\alpha \to \infty} \frac{\int_{\alpha}^{\infty} \eta_0(s) / (2s^{(p+1)/2}) ds}{\alpha^{(1-p)/2}} = \lim_{\alpha \to \infty} \frac{\eta_0(\alpha)}{p-1} = \frac{1}{p-1} C_1^2.$$

This along with (3.15) implies

$$\gamma_3(\alpha) = \frac{1}{p-1} C_1^2 (1+o(1)) \alpha^2.$$
(3.16)

Then by (3.5) and (3.16), we obtain

$$\lambda_3(\alpha)\alpha^2 = \frac{p+3}{4}\gamma_3(\alpha) - \frac{1}{4}(1+o(1))C_1^2\alpha^2 = \frac{1}{p-1}C_1^2(1+o(1))\alpha^2.$$
(3.17)

Thus the proof is complete. \blacksquare

Taking Lemma 3.3 and (3.16) into account, we put

$$\lambda_4(\alpha) := \lambda_3(\alpha) - \frac{1}{p-1}C_1^2,$$
 (3.18)

$$\gamma_4(\alpha) := \gamma_3(\alpha) - \frac{1}{p-1} C_1^2 \alpha^2.$$
 (3.19)

Then by (3.3), (3.18) and (3.19), we obtain

$$\frac{d\gamma_4(\alpha)}{d\alpha} = 2\alpha\lambda_4(\alpha). \tag{3.20}$$

LEMMA 3.4. $\lambda_4(\alpha) = (5-p)(9-p)(1+o(1))C_1^3 \alpha^{(1-p)/2}/(24(p-1)^2)$ as $\alpha \to \infty$. Proof. By (3.10), (3.18) and (3.19), we obtain

$$L(\alpha, \|u_{\alpha}\|_{\infty}) = \frac{p-1}{2(p+1)} \alpha^{p+1} + \frac{1}{2} C_1 \alpha^{(p+3)/2} + \frac{1}{p-1} C_1^2 \alpha^2 \qquad (3.21)$$
$$+ \frac{p+3}{2(p-1)} \gamma_4(\alpha) + \frac{p-5}{2(p-1)} \lambda_4(\alpha) \alpha^2.$$

By the same argument as that to obtain (3.12), by (3.1), (3.18) and Taylor expansion, for $\alpha \gg 1$, we obtain

$$L(lpha,\lambda(lpha)^{1/(p-1)}) = rac{p-1}{2(p+1)}\lambda(lpha)^{(p+1)/(p-1)}$$

$$= \frac{p-1}{2(p+1)} \left(\alpha^{p-1} + C_1 \alpha^{(p-1)/2} + \frac{1}{p-1} C_1^2 + \lambda_4(\alpha) \right)^{(p+1)/(p-1)}$$

$$= \frac{p-1}{2(p+1)} \alpha^{p+1} + \frac{1}{2} C_1 \alpha^{(p+3)/2} + \frac{1}{p-1} C_1^2 \alpha^2 + \frac{1}{2} \lambda_4(\alpha) \alpha^2 \qquad (3.22)$$

$$+ \frac{9-p}{6(p-1)^2} C_1^3 \alpha^{(5-p)/2} + o(\alpha^{(5-p)/2}).$$

Therefore, by (3.6), (3.13), (3.21) and (3.22), we obtain

$$(p+3)\gamma_4(\alpha) - 4\lambda_4(\alpha)\alpha^2 = \frac{9-p}{3(p-1)}(1+o(1))C_1^3\alpha^{(5-p)/2}.$$
(3.23)

This along with (3.20) implies

$$\gamma_4'(\alpha) - \frac{p+3}{2\alpha}\gamma_4(\alpha) = \eta_1(\alpha)\alpha^{(3-p)/2}, \qquad (3.24)$$

where $\eta_1(\alpha) \to (p-9)C_1^3/(6(p-1))$ as $\alpha \to \infty$. Then by the same calculation as that to obtain (3.15), we obtain

$$\gamma_4(\alpha) = \alpha^{(p+3)/2} \int_{\alpha}^{\infty} \frac{-\eta_1(s)}{s^p} ds = \frac{9-p}{6(p-1)^2} (1+o(1)) C_1^3 \alpha^{(5-p)/2}.$$
 (3.25)

Then by (3.23) and (3.25), we obtain

$$\lambda_4(\alpha)\alpha^2 = \frac{p+3}{4}\gamma_4(\alpha) - \frac{9-p}{12(p-1)}(1+o(1))C_1^3\alpha^{(5-p)/2}$$

$$= \frac{(5-p)(9-p)}{24(p-1)^2}(1+o(1))C_1^3\alpha^{(5-p)/2}.$$
(3.26)

This implies our assertion. \blacksquare

4 Proof of Theorems

In this section, for $i, k, m \in \mathbb{N}_0$, the notation $(4.m)_{i=k}$ means "(4.m) for the case i = k". By using the arguments in Section 3, we prove Theorem 1 by showing the following Proposition 4.1.

PROPOSITION 4.1. There exist polynomials $\{B_i(p)\}_{i\geq 0}$ of p (deg $B_i(p) \leq i$) such that for any $n \in \mathbb{N}_0$, the following asymptotic formulas (4.1) and (4.2) hold as $\alpha \to \infty$:

$$\lambda(\alpha) = \alpha^{p-1} + C_1 \alpha^{(p-1)/2} + \sum_{j=0}^n \frac{a_j(p)}{(p-1)^{j+1}} C_1^{j+2} \alpha^{j(1-p)/2} + o(\alpha^{n(1-p)/2}), \qquad (4.1)$$

$$\gamma(\alpha) = \frac{2}{p+1} \alpha^{p+1} + \frac{4}{p+1} C_1 \alpha^{(p+3)/2} + \sum_{j=0}^n \frac{b_j(p)}{(p-1)^{j+1}} C_1^{j+2} \alpha^{2+j(1-p)/2}$$
(4.2)
+ $o(\alpha^{2+n(1-p)/2}),$

where

$$a_i(p) := \frac{4+i(1-p)}{2(i+1)} B_i(p) \quad (0 \le i \le n),$$

$$(4.3)$$

$$b_i(p) := \frac{2}{i+1} B_i(p) \quad (0 \le i \le n).$$
 (4.4)

For example, we know from Lemmas 3.3 and 3.4 that

$$B_0(p) = \frac{1}{2}, B_1(p) = \frac{9-p}{6}, a_0(p) = 1, a_1(p) = \frac{(5-p)(9-p)}{24}, b_0(p) = 1, b_1(p) = \frac{9-p}{6}.$$

To prove Proposition 4.1, we need the following Lemma 4.2, which is the extension of (3.22). For $1 \le i \le k$, we put

$$\lambda_{i+3}(\alpha) := \lambda(\alpha) - \alpha^{p-1} - C_1 \alpha^{(p-1)/2} - \sum_{j=0}^{i-1} \frac{a_j(p)}{(p-1)^{j+1}} C_1^{j+2} \alpha^{j(1-p)/2}, \qquad (4.5)$$

$$\gamma_{i+3}(\alpha) := \gamma(\alpha) - \frac{2}{p+1} \alpha^{p+1} - \frac{4}{p+3} C_1 \alpha^{(p+3)/2}$$

$$- \sum_{j=0}^{i-1} \frac{b_j(p)}{(p-1)^{j+1}} C_1^{j+2} \alpha^{2+j(1-p)/2}.$$
(4.6)

LEMMA 4.2. Let $k \in \mathbb{N}$ be fixed. Assume that $(4.1)_{n=k-1}-(4.4)_{n=k-1}$ are valid. Then there exists a polynomial $B_k(p)$ of p (deg $B_k(p) \leq k$) determined by $a_0(p), a_1(p), \dots, a_{k-1}(p)$ such that the following asymptotics holds as $\alpha \to \infty$:

$$L(\alpha, \lambda(\alpha)^{1/(p-1)}) = \frac{p-1}{2(p+1)} \alpha^{p+1} + \frac{1}{2} C_1 \alpha^{(p+3)/2} + \frac{1}{2} \lambda_{k+3}(\alpha) \alpha^2 \qquad (4.7)$$
$$+ \sum_{j=0}^{k-1} \frac{A_j(p)}{(p-1)^{j+1}} C_1^{j+2} \alpha^{2+j(1-p)/2}$$
$$+ \frac{B_k(p)}{(p-1)^{k+1}} C_1^{k+2} \alpha^{2+k(1-p)/2} + o(\alpha^{2+k(1-p)/2}),$$

where

$$A_i(p) = \frac{8+5i-ip}{4(i+1)} B_i(p) \quad (0 \le i \le k-1).$$
(4.8)

Proof. We prove the assertion by the mathematical induction with respect to $k \in \mathbb{N}$. The case k = 1. $(4.7)_{k=1}$ follows from (3.22) with $A_0(p) = 1, B_0(p) = 1/2$ and $B_1(p) = (9-p)/6$. (In this case, we do not have to assume $(4.1)_{n=0}-(4.4)_{n=0}$, since they follow from Lemma 3.3 and (3.16).) Thus the proof of the case k = 1 is complete.

The case $k \ge 2$. Assume that $(4.1)_{n=k-1}-(4.4)_{n=k-1}$ hold. Clearly, $(4.1)_{n=k-1}-(4.4)_{n=k-1}$ imply $(4.1)_{n=k-2}-(4.4)_{n=k-2}$. Therefore, by the induction assumption, we have (4.7), in which k is replaced by k-1. The proof of (4.7) is divided into three steps.

Step 1. We define $A_{k-1}(p)$ by $(4.8)_{i=k-1}$. Then we obtain by $(4.3)_{0 \le i \le k-1}$ and $(4.4)_{0 \le i \le k-1}$ that for $0 \le i \le k-1$

$$A_i(p) = \frac{1}{2}a_i(p) + B_i(p) = \frac{p-5}{2(p-1)}a_i(p) + \frac{p+3}{2(p-1)}b_i(p) = \frac{8+5i-ip}{4(i+1)}B_i(p).$$
(4.9)

This implies $(4.8)_{0 \le i \le k-1}$. By $(4.1)_{n=k-1}$ and $(4.5)_{i=k,k-1}$, for $\alpha \gg 1$, we obtain

$$\lambda_{k+3}(\alpha) = \lambda_{k+2}(\alpha) - \frac{a_{k-1}(p)}{(p-1)^k} C_1^{k+1} \alpha^{(k-1)(1-p)/2} = o(\alpha^{(k-1)(1-p)/2}).$$
(4.10)

Substitute (4.10) for (4.7), in which k is replaced by k - 1. Then by $(4.9)_{i=k-1}$, we obtain

$$L(\alpha, \lambda(\alpha)^{1/(p-1)}) = \frac{p-1}{2(p+1)} \alpha^{p+1} + \frac{1}{2} C_1 \alpha^{(p+3)/2} + \frac{1}{2} \lambda_{k+3}(\alpha) \alpha^2 \qquad (4.11)$$
$$+ \sum_{j=0}^{k-1} \frac{A_j(p)}{(p-1)^{j+1}} C_1^{j+2} \alpha^{2+j(1-p)/2} + r_k(\alpha),$$

where $r_k(\alpha) = o(\alpha^{2+(k-1)(1-p)/2})$. Therefore, to prove (4.7), it is sufficient to show that

$$r_k(\alpha) = \frac{B_k(p)}{(p-1)^{k+1}} C_1^{k+2} \alpha^{2+k(1-p)/2} + o(\alpha^{2+k(1-p)/2}).$$
(4.12)

Step 2. To derive (4.12), we calculate $L(\alpha, \lambda(\alpha)^{1/(p-1)})$. We put

$$g_k(x) := 1 + h_k(x) := 1 + C_1 x + \sum_{j=0}^{k-1} \frac{a_j(p)}{(p-1)^{j+1}} C_1^{j+2} x^{j+2}$$

Furthermore, let $g_k(k+2,x)$ denote the Taylor expansion of $g_k(x)^{(p+1)/(p-1)}$ of (k+2)-th order, which is denoted by

$$g_k(k+2,x) = 1 + c_1(p)x + c_2(p)x^2 + \dots + c_{k+2}(p)x^{k+2}.$$

Then by $(4.5)_{i=k}$ and Taylor expansion, we have

$$L(\alpha, \lambda(\alpha)^{1/(p-1)}) = \frac{p-1}{2(p+1)} \lambda(\alpha)^{(p+1)/(p-1)}$$

$$= \frac{p-1}{2(p+1)} \alpha^{p+1} (1 + h_k (\alpha^{(1-p)/2}) + \lambda_{k+3}(\alpha) \alpha^{1-p})^{(p+1)/(p-1)}$$

$$= \frac{p-1}{2(p+1)} \alpha^{p+1} \left\{ 1 + \frac{p+1}{p-1} \left(h_k (\alpha^{(1-p)/2}) + \lambda_{k+3}(\alpha) \alpha^{1-p} \right) + \sum_{j=2}^{k+2} \frac{(p+1)2(3-p)\cdots(j-(j-2)p)}{j!(p-1)^j} \left(h_k (\alpha^{(1-p)/2}) + \lambda_{k+3}(\alpha) \alpha^{1-p} \right)^j + o(\alpha^{(k+2)(1-p)/2}) \right\}.$$

$$(4.13)$$

Let $2 \leq j \leq k+2$ be fixed. We denote by $\{z_{l,j}(\alpha)\}_l$ the terms of the expansion of $(h_k(\alpha^{(1-p)/2}) + \lambda_{k+3}(\alpha)\alpha^{1-p})^j$ which contain $\lambda_{k+3}(\alpha)$. Then by (4.10), for $\alpha \gg 1$, we obtain

$$|z_{l,j}(\alpha)| \le C\alpha^{(j-1)(1-p)/2} \cdot (\lambda_{k+3}(\alpha)\alpha^{1-p}) = o(\alpha^{(k+j)(1-p)/2}) = o(\alpha^{(k+2)(1-p)/2}).$$

Then by this and (4.13), we obtain

$$L(\alpha, \lambda(\alpha)^{1/(p-1)}) = \frac{p-1}{2(p+1)} \alpha^{p+1}$$

$$\times \left\{ 1 + \frac{p+1}{p-1} h_k(\alpha^{(1-p)/2}) + \sum_{j=2}^{k+2} \frac{(p+1)2(3-p)\cdots(j-(j-2)p)}{j!(p-1)^j} h_k(\alpha^{(1-p)/2})^j + o(\alpha^{(k+2)(1-p)/2}) \right\} + \frac{1}{2} \lambda_{k+3}(\alpha) \alpha^2$$

$$= \frac{p-1}{2(p+1)} \alpha^{p+1} \{ 1 + c_1(p) \alpha^{(1-p)/2} + c_2(p) \alpha^{2(1-p)/2} + \dots + c_{k+2}(p) \alpha^{(k+2)(1-p)/2} \}$$

$$+ \frac{1}{2} \lambda_{k+3}(\alpha) \alpha^2 + o(\alpha^{2+k(1-p)/2}).$$

$$(4.14)$$

Then by noting $\alpha^{p+1} \cdot \alpha^{(k+2)(1-p)/2} = \alpha^{2+k(1-p)/2}$, we see from (4.11) and (4.14) that

$$r_k(\alpha) = \frac{p-1}{2(p+1)} c_{k+2}(p) \alpha^{2+k(1-p)/2} + o(\alpha^{2+k(1-p)/2}).$$
(4.15)

Step 3. $(k+2)!c_{k+2}(p)$ is given by the (k+2)-th derivative of $g_k(x)^{(p+1)/(p-1)}$ at x = 0. We recall that the *n*-th derivative of a composite function z(x) = Z(y) and $y = \psi(x)$ is

$$\frac{d^n}{dx^n}z(x) = \sum \frac{n!}{(\beta_1)!(\beta_2)!\cdots(\beta_h)!} \frac{d^m Z}{dy^m} \left(\frac{y'}{1!}\right)^{\beta_1} \left(\frac{y''}{2!}\right)^{\beta_2} \left(\frac{y'''}{3!}\right)^{\beta_3} \cdots \left(\frac{y^{(h)}}{h!}\right)^{\beta_h}$$

Here, the symbol \sum indicates summation over all solutions in non negative integers of the equation $\beta_1 + 2\beta_2 + \cdots + h\beta_h = n$ and $m = \beta_1 + \beta_2 + \cdots + \beta_h$. By using this formula for n = k + 2, we obtain

$$c_{k+2}(p) = \frac{1}{(k+2)!} \frac{d^{k+2} \left(g_k(x)^{(p+1)/(p-1)}\right)}{dx^{k+2}} |_{x=0}$$

= $\sum \frac{1}{(\beta_1)! (\beta_2)! \cdots (\beta_h)!} \left(\frac{p+1}{p-1}\right) \left(\frac{2}{p-1}\right) \left(\frac{3-p}{p-1}\right) \left(\frac{m-(m-2)p}{p-1}\right)$
 $\times (C_1)^{\beta_1} \left(\frac{a_0(p)C_1^2}{p-1}\right)^{\beta_2} \cdots \left(\frac{a_{h-2}(p)C_1^h}{(p-1)^{h-1}}\right)^{\beta_h}.$

Then we first find that the exponent of (p-1) in the denominator of $c_{k+2}(p)$ is $m + \beta_2 + 2\beta_3 + \cdots + (h-1)\beta_h = k+2$. Secondly, $c_{k+2}(p)$ contains $C_1^{\beta_1+2\beta_2+\cdots+h\beta_h} = C_1^{k+2}$. Thirdly, since deg $B_i(p) \leq i$ for $0 \leq i \leq k-1$, we know from $(4.3)_{0 \leq i \leq k-1}$ that deg $a_i(p) \leq i+1$ for $0 \leq i \leq k-1$. Therefore, we see that the degree of the numerator of $c_{k+2}(p)$ is at most $m-1+\beta_2+2\beta_3+(h-1)\beta_h=k+1$. Finally, since the numerator of $c_{k+2}(p)$ contains the term (p+1), we see that

$$c_{k+2}(p) = \frac{(p+1)C_1^{k+2}\tilde{c}_{k+2}(p)}{(p-1)^{k+2}},$$
(4.16)

where $\tilde{c}_{k+2}(p)$ is a polynomial of p with deg $\tilde{c}_{k+2}(p) \leq k$. Then by (4.12), (4.15) and (4.16), we obtain $B_k = \tilde{c}_{k+2}/2$. Now (4.7) follows from (4.11) and (4.12).

Now we prove Proportion 4.1.

Proof of Proposition 4.1. We prove (4.1)–(4.4) by mathematical induction with respect to $n \in \mathbb{N}_0$.

The case n = 0. By (3.1), (3.2), Lemma 3.3 and (3.16), we see that $(4.1)_{n=0}$ -(4.4)_{n=0} are valid with $a_0(p) = b_0(p) = 1$, $B_0(p) = 1/2$. Thus the proof of the case n = 0 is complete.

The case n = k. Assume that $(4.1)_{n=k-1}$ (4.4)_{n=k-1} are valid. Then it follows from $(4.3)_{0 \le i \le k-1}$ and $(4.4)_{0 \le i \le k-1}$ that

$$a_i(p) = \frac{4+i(1-p)}{4}b_i(p) \quad (0 \le i \le k-1).$$

By this, (2.11), $(4.5)_{i=k}$ and $(4.6)_{i=k}$, we obtain

$$\frac{d\gamma_{k+3}(\alpha)}{d\alpha} = 2\alpha\lambda_{k+3}(\alpha). \tag{4.17}$$

Substitute $(4.5)_{i=k}$ and $(4.6)_{i=k}$ for (3.9). Then by (3.10) and $(4.9)_{0 \le i \le k-1}$, we obtain

$$L(\alpha, \|u_{\alpha}\|_{\infty}) = \frac{p-1}{2(p+1)} \alpha^{p+1} + \frac{1}{2} C_1 \alpha^{(p+3)/2} + \sum_{j=0}^{k-1} \frac{A_j(p)}{(p-1)^{j+1}} C_1^{j+2} \alpha^{2+j(1-p)/2} \quad (4.18)$$
$$+ \frac{p+3}{2(p-1)} \gamma_{k+3}(\alpha) + \frac{p-5}{2(p-1)} \lambda_{k+3}(\alpha) \alpha^2.$$

By this, (3.6), (3.13) and (4.7), we obtain

$$\frac{p+3}{2(p-1)}\gamma_{k+3}(\alpha) - \frac{4}{2(p-1)}\lambda_{k+3}(\alpha)\alpha^2 = \frac{B_k(p)}{(p-1)^{k+1}}(1+o(1))C_1^{k+2}\alpha^{2+k(1-p)/2}.$$
 (4.19)

Then by (4.17) and (4.19), we obtain

$$\gamma_{k+3}'(\alpha) - \frac{p+3}{2\alpha}\gamma_{k+3}(\alpha) = \eta_k(\alpha)\alpha^{1+k(1-p)/2},$$
(4.20)

where $\eta_k(\alpha) \to -B_k(p)C_1^{k+2}/(p-1)^k$ as $\alpha \to \infty$. By $(4.2)_{n=k-1}$ and $(4.6)_{i=k}$, we see that $\gamma_{k+3}(\alpha) = o(\alpha^{2+(k-1)(1-p)/2}) = o(\alpha^{(p+3)/2})$ for $\alpha \gg 1$. Therefore, by solving (4.20), we obtain

$$\gamma_{k+3}(\alpha) = \alpha^{(p+3)/2} \int_{\alpha}^{\infty} -\eta_k(s) s^{(k(1-p)-(1+p))/2} ds.$$
(4.21)

Then by l'Hopital's rule, we obtain

$$\lim_{\alpha \to \infty} \frac{\int_{\alpha}^{\infty} -\eta_k(s) s^{(k(1-p)-(1+p))/2} ds}{\alpha^{(k+1)(1-p)/2}} = \frac{2B_k(p)}{(k+1)(p-1)^{k+1}} C_1^{k+2}.$$
(4.22)

This along with (4.21) implies

$$\gamma_{k+3}(\alpha) = \frac{2B_k(p)}{(k+1)(p-1)^{k+1}} C_1^{k+2} (1+o(1))\alpha^{2+k(1-p))/2}.$$
(4.23)

By putting $b_k(p) = 2B_k(p)/(k+1)$, we obtain $(4.4)_{n=k}$. Then we obtain $(4.2)_{n=k}$ by $(4.4)_{n=k}$, (4.6)_{*i*=*k*} and (4.23). Now, by (4.19) and (4.23), we obtain

$$\lambda_{k+3}(\alpha)\alpha^{2} = \frac{p+3}{4}\gamma_{k+3}(\alpha) - \frac{B_{k}(p)}{2(p-1)^{k}}(1+o(1))C_{1}^{k+2}\alpha^{2+k(1-p)/2}$$

$$= \frac{(4+k(1-p))B_{k}(p)}{2(k+1)(p-1)^{k+1}}(1+o(1))C_{1}^{k+2}\alpha^{2+k(1-p)/2}.$$
(4.24)

By putting $a_k(p) = (4 + k(1 - p))B_k(p)/(2(k + 1))$, we obtain $(4.3)_{n=k}$. Then we obtain $(4.1)_{n=k}$ by $(4.3)_{n=k}$, $(4.5)_{i=k}$ and (4.24). Thus the proof is complete.

Now we get Theorem 1 from Proposition 4.1. Theorem 2 is a direct consequence of (2.5), (3.6), (3.10), (3.13), (4.7)_{k=n+1} and (4.24)_{k=n+1}. Finally, Theorem 3 is a consequence of Lemma 3.1 and Theorem 1. Thus the proofs of Theorems 1–3 are complete.

We conclude this section by the proof of Corollary 4. We note that $u_{m,\alpha}$ satisfies

$$-u''_{m,\alpha}(t) + u^{p}_{m,\alpha}(t) = \lambda(m,\alpha)u_{m,\alpha}(t), \quad t \in (0, 1/m),$$
(4.25)

$$u_{m,\alpha}(t) > 0, \quad t \in (0, 1/m),$$
(4.26)

$$u_{m,\alpha}(0) = u_{m,\alpha}(1/m) = 0.$$
 (4.27)

We put $s = mt, \beta := m^{-2/(p-1)}\alpha$ and $w_{m,\beta}(s) = m^{-2/(p-1)}u_{m,\alpha}(t)$. Then $||w_{m,\beta}||_2 = \beta$ and $(\lambda(m,\alpha)/m^2, w_{m,\beta})$ satisfies (1.1)-(1.3). Then by Theorem 1, for $\alpha \gg 1$, we obtain

$$\frac{\lambda(m,\alpha)}{m^2} = \beta^{p-1} + C_1 \beta^{(p-1)/2} + \sum_{k=0}^n \frac{a_k(p)}{(p-1)^{k+1}} C_1^{k+2} \beta^{k(1-p)/2} + o(\beta^{n(1-p)/2}).$$
(4.28)

This along with the definition of β implies (1.11). Next, by noting

$$w'_{m,\beta}(0) = m^{-(p+1)/(p-1)}u'_{m,\alpha}(0),$$
 (4.29)

$$||w_{m,\beta}||_{\infty} = m^{-2/(p-1)} ||u_{m,\alpha}||_{\infty}, \qquad (4.30)$$

we easily obtain (1.12) by Theorem 2 and (4.29). Finally, (1.13) follows from Theorem 3 and (4.30).

ACKNOWLEDGMENTS

The author should like to thank the referee for his helpful comments that improved the manuscript, and in particular, for suggesting that Corollary 4 should be included in the revised version of the manuscript. This research has been supported by Japan Society for the Promotion of Science.

References

- H. Berestycki, Le nombre de solutions de certains problèmes semi-linéares elliptiques, J. Functional Analysis 40 (1981), 1–29.
- [2] A. Bongers, H.-P. Heinz and T. Küpper, Existence and bifurcation theorems for nonlinear elliptic eigenvalue problems on unbounded domains, J. Differential Equations 47 (1983), 327– 357.
- [3] J. Chabrowski, On nonlinear eigenvalue problems, Forum Math. 4 (1992), 359–375.
- R. Chiappinelli, Remarks on bifurcation for elliptic operators with odd nonlinearity, Israel J. Math. 65 (1989), 285-292.
- [5] R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinear term, Nonlinear Anal. TMA **13** (1989), 871–878.
- [6] R. Chiappinelli, Constrained critical points and eigenvalue approximation for semilinear elliptic operators, Forum Math. **11** (1999), 459–481.
- [7] J. M. Fraile, J. López-Gómez and J. C. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations 123 (1995), 180-212.
- [8] H.-P. Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987) 263-300.
- [9] H.-P. Heinz, Nodal properties and bifurcation from the essential spectrum for a class of nonlinear Sturm-Liouville problems, J. Differential Equations 64 (1986) 79–108.
- [10] H.-P. Heinz, Nodal properties and variational characterizations of solutions to nonlinear Sturm-Liouville problems, J. Differential Equations 62 (1986) 299–333.
- [11] M. Holzmann and H. Kielhöfer, Uniqueness of global positive solution branches of nonlinear elliptic problems, Math. Ann. **300** (1994), 221–241.
- P. Rabinowitz, A note on a nonlinear eigenvalue problem for a class of differential equations, J. Differential Equations 9 (1971), 536-548.
- [13] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.
- [14] T. Shibata, Asymptotic behavior of the variational eigenvalues for semilinear Sturm-Liouville problems, Nonlinear Anal. TMA 18 (1992), 929–935.