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Abstract

We consider the nonlinear Sturm-Liouville problem
—u"(t) + u(®)” = Mu(t), u(t) >0, tel:=(0,1), u(0)=u(l)=0,

where p > 1 is a constant and A > 0 is an eigenvalue parameter. To understand the
global structure of the bifurcation diagram in Ry x L2 (I) completely, we establish the
asymptotic expansion of A(a) (associated with eigenfunction ua with |jugllz = a) as
a — oo. We also obtain the corresponding asymptotics of the width of the boundary

layer of u, as a — 0.
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1 Introduction

We consider the following nonlinear Sturm-Liouville problem

—u"(t) +u(t)? = Xu(t), tel:=(0,1), (1.1)
u(t) > 0, tel, (1.2)
u(O) = u(1) =0, . (1.3)

where p > 1 is a constant and A > 0 is an eigenvalue parameter. It is known by Berestycki [1]
and Fraile et al. [7] that for each a > 0, there exists a unique solution (A, u) = (A\(a),u,) €
R, x C*(I) with |juq[l2 = . The set {(A\(@), uq),a > 0} gives all solutions of (1.1)~(1.3)
and is an unbounded curve of class C* in Ry x L*(I) emanating from (72, 0).

The purpose of this paper is to understand the global structure of this bifurcation diagram
in Ry x L*(I) completely. To this end, we establish the asymptotic ezpansion of Ma) as
a — 0o. We also establish the corresponding asymptotics of the width of the boundary layer
of u, as a — oo.

The equation (1.1)-(1.3) has been extensively investigated by many authors in L-
framework from a viewpoint of local and global bifurcation theory. We refer to Berestycki
[1], Fraile et al. [7], Holzmann and Kielhfer [11], Rabinowitz [12], [13] and the references
therein for the works in this direction. On the other hand, since (1.1)~(1.3) is regarded as
an eigenvalue problem, it is significant to investigate (1.1)~(1.3) in L*-framework. For the
works in this direction, we refer to Bongers et al. [2], Chabrowski [3], Chiappinelli [4], [5],
[6], Heinz [8], [9], [10], Shibata [14] and the references therein. In particular, Chiappinelli
[4], [5] obtained the asymptotic formula for A(a) as o — 0. On the other hand, in Shibata
[14], the following asymptotic formula for A(e) as @ — oo has been given: There exists a

constant C' > 0 such that for a > 1,
C1aP V2 < Ma) — o™t < Calr~V/2, (1.4)
(1.4) gives the optimal estimate for the second term of A(a) as & — co. However, the exact
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second term was not obtained. Our main aim in this paper is to improve the formula (1.4)
to gain a complete picture of the bifurcation diagram in R x L(I).

Now we state our results. Let Ng := {0,1,2,---}.

THEOREM 1. For any n € Ny, the following asymptotic formula holds as o —+ oo:

Ma) = o#=1 4 CraD/2 4 f: _‘iki%)mcm GFUR/2 o o 1)), (1.5)

01=(27+3)/I\/%_

and ax(p) is a polynomial (deg ax(p) < k+1 ) which is determined by ag, a1, "+, Gk—1-

where

2
2 P+l 1.6
+ oy 18 S (1.6)

For example,

(5-p)(9—p) a(p) = B-p6E-—p)(7-p)

(Lo(p) = ]" a‘l(p) = 2 ) 24

The following theorem gives the asymptotic formula for the boundary layer of u, as
o — 0.

THEOREM 2. For anyn € Nb, the following formula holds as a — 0o:

D— 1 n 2Ak(p) _
u, (0?2 =ul (1) = maﬁl + CralPt3)/2 4 Z ——1—)m0'“+2 o2 tk-P)/2 - (1.7)

+ 0(a2+n(1—p)/2) ,

where Ag(p) is a polynomial (deg Ay(p) < k+ 1) which is determined by ao, a1, -+, Gx—1-

For example,

Ap) =1, A(p)= © _ pl(;?’ =D ) = 6 - p)(7;8p)(9 -P)

The following theorem gives the relationship between |[uq |z and ||tq|je for o > 1.

THEOREM 3. For any n € Ny, the following formula holds as o — oo:

n
a
||ua“P— = P} +C a(}’ 1)/2 + Z __i(%i__{_fck+2 k(l——p)/2 +O(an(1—p)/2). (18)



As a corollary of Theorems 1-3, we obtain the analogous results for the nonlinear Sturm-

Liouville problem

() + )P ) = M), tel:=(0,1), (1.9)

uw(0) = u(1)=0. (1.10)

For (1.9)~(1.10), it is known that for each a > 0, there exists a unique solution (A, u) =
(A(m, @), Um,e) € Ry X C%(I) (m € N) such that up, has exactly m—1 interior simple zeros
in I, Upm,q > 0 near 0 and |[umallz = a (cf. (1, 7]). Moreover, the set {(\(m, @), LUma), @ >
0,m € N} gives all solutions of (1.9)-(1.10). {(A(m, @), Uma),@ > 0} is called the m-th
branch of nodal solutions of (1.9)—(1.10) and is an unbounded curve of class C* in Ry x L*(1)
emanating from ((m7)?,0). Then clearly, (A(1,a),u1,e) = (M(@), uq) and it is seen from an
easy symmetry argument (cf. [10, p. 313]) that the interior zeroes of Upma (M > 2) are
exactly {1/m,--+,(m — 1)/m}. Therefore, the restriction of um,q t0 [0,1/m] corresponds
to a positive solution (with a different eigenvalue) on I via a dilation. We then obtain
the explicit correspondence between A(a) and A(m, a) and obtain the analogous asymptotic

formulas for all the branches of (1.9)—(1.10).
COROLLARY 4. Let m € N be fized. Then for any n € No, the following asymptotic

formulas hold as o — o0:

A, @) = 077+ O 3 B (G2 o), (111

' 2 _ 2 _ P~ 1 o1 (p+3)/2 2 2A4(p) k42, 2+k(1-p)/2
Up, 0(0)° = Uy o (1)° = g 1% +mCia +z§)_—p— 1) (mCh)"

+ o(a®m(1-P)/2), (1.12)

”uma”p 1 __ ap——l + mC a(P—-l)/2 + Z G)_Tk%f(mcl)k+2ak<l_p)/2 + O(Otn(l—-p)/Z). (113)

The remainder of this paper is organized as follows. In Section 2, we establish the second

term of the asymptotics of A(a). In Section 3, we establish the third and fourth terms of the
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asymptotics of A(a). This step is needed to use the mathematical induction in Section 4. In
Section 4, we prove Theorems 1-3 by using the mathematical induction and the arguments

developed in Sections 2 and 3. We also give the proof of Corollary 4 at the end of Section 4.

2 Second term of \(«)

We begin with notations and the fundamental properties of A(e) and ug. Let ||-[l; (¢ =1, 00)

be the usual Le-norm. Cj (k = 2,3,---) denotes positive constants independent of a > 1.

Let
Ao(a) == Ma)—aP ™, (2.1)
2
Y(a) = ““L”%"'p—_i_—l“%”iﬁ, (2.2)
2
To(a) = 7(01)—map+l- (2.3)

Tt is known by Berestycki [1] and Fraile et al. (7] that (1.1)~(1.3) has a unique solution u,
for a given A\ > 72,

i uy
Afglo A/ (-1

1 (2.4)
uniformly on compact subsets on I. Moreover, the mapping A — ux € C*(I) is strictly
increasing (i.e., duy/dA > 0 in I) and C* for A > 7 (cf. [7, p. 203]). Therefore, we see
that a()) = ||ual|2 is C* and strictly increasing, namely, da(A)/A > 0 for A > 72, Therefore,
A(a), the inverse of a(}), is also C* and dA(a)/da > 0 for a > 0.

LEMMA 2.1. ||, |2 = 2C,(1 + o(1))a®*3)/2/(p 4 3) for o> 1.

Proof. Since (1.1) is autonomous, we know that u, satisfies

ua(t) = ux(l—t), 0<t<1, (2.5)
1
” (:-2-) = 1% ta(t) = talle, (26)



Since it follows from (1.1) that

d |1, . 1
dt §ua(t) S p+1

the expression between brackets is constant in [0, 1], and taking t =0,1/2,for 0 <t < 1, we

()P + %)\ua(t)z —0 for 0<t<1,

obtain

1 ! 2 1 ! 2 1 p+1 1 2
-— - — — — 2.
2ua(_()) 5o (t) TUa )P+ + zAua (t) (2.8)

1 1
= g el el

This along with (2.7) implies that for 0 <t <1/2
2
0 = M@l ~ ol = Sl —alP) (29)
Then by (2.5), (2.7), (2.9) and putting s = Ua(t)/||tal|e, We obtain

ol = 2 7 3@l = a8~ (el — a8 ) (210)

2l (1 = ##)ds.

1
= 2||Uq oo/ A o go 1—s?)—
lualleo | \/ (@luallZe(l = %) = =
By (1.4) and (2.4), we see that |[ualle = A@)/®=D(1+ o(1)) for a > 1. By this, for o> 1

and 0 < s <1, we obtain

2||ualloo 2 +1
)‘(a)(p+3)/(2(p_1)) Mol |2, (1 — s?) — m“ua‘”go (1 —sptl) < Co.

By this, (2.10) and Lebesgue’s convergence theorem, we obtain

. A +1de — 26,
A SR E /e / Pt 1 ToF 1sp a8=r3

This along with (1.4) implies our assertion. Thus the proof is complete.

LEMMA 2.2. dvys(a)/da = 2aX:(a) for all o > 0.
Proof. By (1.1) and (2.2), we obtain

d—’ji%l = 2 /1 u;(t)fi%*gldwz / Yo (t)”@%ﬁdt (2.11)
— 2 [ +uatey) e
= 22(0) [ualty By

= 20 ().

- )\(a)zl% [ualta



By this, (2.1) and (2.3), we obtain our assertion. y

LEMMA 2.3. Ao(a) = Ci(1 4 0(1))a®Y/2 for o> 1.

Proof. Multiply u, by (1.1). Then integration by parts yields
I3 + lluallpis = Ma)o?. (2.12)
By this and (2.2), we obtain
2 9 __b— 1 112
@) - N @a® = BTl

By substituting (2.1) and (2.3) for this, we obtain

2
p+1

p—1
Yo(ar) — Ao(a)a? = m”%”%- (2.13)

Then by this and Lemma 2.2, we find that -y, satisfies the differential equation

(@) — P Lr(0) = ey o= - @ el 219

We see from Lemma 2.1 that |h(s)|/s?T! < Cas~®+1/2 for s > 1. This implies that for

a>1

o |k 2
/a !Szf_fz'ds < - 10301(1_”)/2. (2.15)

Then we see that the solution 7, of (2.14) is represented as

o _h
vo(@) = [(a) + Ix(a) = o /a -Sp—i?ds + CyoP™. (2.16)

We see from (2.15) that I; () = o(e?*?) for a > 1. By (1.4) and (2.4), we obtain ||ua||§ii =
(1+ o(1))aP*! for > 1. Therefore, by (2.2) and Lemma 2.1, for o:>> 1, we obtain

2
p+1

y(a) = ot + o(aP™). (2.17)

By this and (2.3), we see that v2(a) = o(a?*'). Therefore, we find that C4 = 0, and

consequently, by (2.16), we obtain

Yo(a) = ot /:) ;Z'S) ds. (2.18)
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Then by this, Lemma 2.1 and 'Hopital’s rule, we obtain
[ ~h(s)/s7ds _ . 2ulp _ 4

(11-1—)112010 all-p)/2 T asoo q(p+3)/2 T p+ 301
This along with (2.18) implies that for o > 1
4
Yo(ar) = ﬂ%a(”g)/ 2+ o(alPt¥/2), (2.19)
Now, by (2.13) and Lemma 2.1, for a >> 1, we obtain
+1 -1
Mo(a)a? = 2 ya(e) — Ll = (L + o(1)Cral# 02, (2.20)
This implies our conclusion. Thus the proof is complete. 3
3 The third and fourth terms of \(«a)
Taking (2.1), (2.3), (2.19) and Lemma 2.3 into account, we put
Xs(@) = Ma)—af Tt = CalPV/2) (3.1)
2 4C
— _ P+l _ 1 (p+3)/2
y(a) = v(e) oy T p+3a . (3.2)
Then by (2.11), (3.1) and (3.2), we have
DY) _94(a). (3.3)

do

The following estimate for ||ua||c enables us to repeat the arguments in the previous section.

LEMMA 3.1. Fora>1
(A(@) = e VAN < flug oo < A@)VE. (3.4)
Proof. Since the second inequality is known by Berestycki [1], we have only to prove the
first inequality. We put v, (t) := Aa) P Dy, (t 4+ 1/2) and we == 1 — v,. By (1.1) and
(2.6), we see that w, satisfies:
wi(t) = MNa)(1-walt) - (1-wa®P), te(-5.5),
wa(0) = 1—||valle,

wh(0) = 0.



Since 0 < v, < 1 in I by the second inequality of (3.4), we have 0 < w, < 1in (-1/2,1/2).
By (2.4), we see that v, — 1 and w, — 0 uniformly on I5 := [-§,d] as @ — oo, where
0 < d <« 1 is a fixed constant. Therefore, for a fixed constant 0 < ¢ < p — 1, we obtain by
Taylor expansion that for a > 1
Ma)(p—1—-Quw, < wit)<AMa)(p—1+€w, tE€Is,
wa(0) = 1— |lvalloos
w,(0) = 0.

Since Wi(a,t) := (1/2)(1 ~ ||valloo) (eV P1EIN . o=/ (P=1EOXaN) gatigfy

__Z(Oz,t) = /\(a)(p -1+ e)Wi(a>t)’ te Iﬁa
Wi(@,0) = 1— [[valeo,

£(0) =0,

we easily see that W_(a, 1) < wa(t) < W, (a,t) for t € I5 and a > 1. This implies that as
a — 00

%(1 — [valloo)e VO < W_(a,5) < wel(8) — 0.

This yields 1 — Cge™0V P~1-9X@) < |lvalleo- Hence, there exists a constant C5 > 0 such that

fora>1

(Ma) — e CVAXD)E-D < \(q)VE-D(] — Cye=tVP-1-9Na)y
< M@)* Vvalloo = [[tallco-
Thus the proof is complete.

Next, we study the asymptotics of As(a). To this end, we prove the following lemma.

LEMMA 3.2. Fora>1
(p+ 3)v3(a) — 4X3(a)a? = mo(a)a?, (3.5)

where no(a) — C? as a — oo.
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Proof. For a fixed a > 0, it is easy to see that L(a, t) := A a)t?/2—tP*1/(p+1) is strictly

increasing for 0 < t < A(a)¥®~1), Therefore, by Lemma 3.1, we obtain
L(a, (Ma) — " VXN E-)) < [(q, [|ualleo) < L(a, A(@)®). (3.6)

First, we study the asymptotics of L(a, |[uqlle). By (2.2) and (2.12), we have

1112 p+1 2 2
Il = 253 (v60) - s 25acee?) 87
luallEt = g“(,\(a)a —(a)). (3.8)

Integrate (2.8) over I. Then by (3.7) and (3.8), we obtain

1 1
2007 = Sl — el + A (@)’ (39)

P+ 1
p+ 3 - 5 2
= LT° )+ 22 MNaa.
2-1)" " -1
By substituting (3.1) and (3.2) for (3.9), we see from (2.8) that

1
Lo luell) = 504(0)

p—1 Pt p+3)2 , P+3
= = + C’a + a
e 2p-1) "

p—9
5= )Ag(a)a (3.10)

Secondly, we study the asymptotics of L(a, A(a)*/~1)). By (3.1) and Taylor expansion, for

a > 1, we obtain
| _y
I ve-0y = P=1) ey
(@, M) ) 20T 1)/\(01)

_ 2?’ = (ap— + Ca® /2 4 ) (a))(p+1)/(p—1)

P—1 n (1-p)/2 —p\(r+1)/ (p—1)
_— = 1 —-p P P .
20 +1)a ( +Ca + As(a ) ) (3.11)

-1
= p— {1 +p__(C L "”)/2+)\3(a)a1 ~P)

2o+ 1)
p+1

o= 1)2(Cla 1-9)/2 4 Mg(@)ad™?)? + o (Cra—P/2 4 Ag(a)al‘P)2)},
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Note that A3(a) = o(afP=1)/2) by (3.1) and Lemma 2.3. By using this and (3.11), we obtain

1 1

L{a, Na)/@D) = 5(?_:15 AR ca(P+3>/2+ Fha(a)a? (3.12)
+2( _1)01a + o(a?).

Finally, we study the asymptotics of L(a, (A(e) — e"%V®)/(p-1). By (1.4) and Taylor

expansion, for o 3> 1, we have

L(a, (Ma) — e~CsVA@)1/-1) (3.13)

—Cs4/Ma)\2/(p—1 p—1 e~ C5v/Ma)
= (M) — e~CsV/A)2/( )(m/\(aH_m_)

oot o /A@\ Y o—~Cs/3@)
= M) I— Mo) + ————
M) 2(p+1) p+1

—Cs+/Ma) _ —2C54/ ()
— )\(a)z/(P_l) (1 _ 26 5 + (3 p)e 5 + O(A(a)_2e-—205'\/)\(a)))

(P=DMa) = (p—1)*A(e)?

1
< = @)@t/ -1 _ 14 o(1))e2CsV @) ) (q)3~P)/ (p—1)
P (p+1)/(P=1) _ O(—2Cra®P~1/2 \3—p
2( n 1))\(a) O(e a7 ?)

2(—-1-5}‘(0[)(?“)/(? D — o(a?).

Therefore, by (3.10), (3.12) and (3.13), we obtain (3.5). Thus the proof is complete. g

LEMMA 3.3. A3(a) = (14+0(1))C%/(p — 1) as a — oo.
Proof. By (3.3) and (3.5), we obtain

Pt ) = - (3.14)

7s(@) —
By solving this equation, we see that

vs(a) = alPt3)/2 / oo pﬂg Fopryads s + CgalP+3)/2, (3.15)
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y3(a) = o(alPt3)/2) by (2.19) and (3.2). Moreover, the first term of the right hand side of
(3.15) is also o(a®*3)/2). Therefore, we see that Cg = 0. Moreover, by 'Hopital’s rule, we

have

oo (p+1)/2
i S m()/@sE s m@) _ 1

i, QP73 adeop—1 p—1

This along with (3.15) implies

(o) = - - O3(1 +o(1)a?. (3.16)

Then by (3.5) and (3.16), we obtain

1 1 :
As(a)a? = P : 373(a) - Z(l +0(1))Cia® = - 1C’12(1 + o(1))a?. (3.17)
Thus the proof is complete. §
Taking Lemma 3.3 and (3.16) into account, we put
1 e
M) = As(a)— P 10’1, _ (3.18)
1 2 2
(@) = m(a) - — 10101 . (3.19)
Then by (3.3), (3.18) and (3.19), we obtain
dys(a
7;(2 ) — 2074(a). (3.20)

LEMMA 3.4. Ai(a) = (5—p)(9 — p)(1 + o(1))C3al=P)/2/(24(p — 1)) as a — oo.
Proof. By (3.10), (3.18) and (3.19), we obtain

p—1 1 1
L o) = 1 2o 0H3)/2 T 22 ‘
(@ lualle) = 5E e + 3G+ —Cta (3.21)

p+3 p—>5 2
+ _——2(17 — 1)’)’4(01) + ——Z(p -7 A(a)a’.

By the same argument as that to obtain (3.12), by (3.1), (3.18) and Taylor expansion, for

a > 1, we obtain

L{a, M ()V/eD) = _zg)_;ll_),\(a)(wl)/(p—l)
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p—1 » I (p+1)/(p—1)
= af —I—C’la(p ) +

1
1012 + Ag(a)

2(p+1) -
= Pl en + L ciatrror - L oy 15 (@) (3.22)
2(p + 1) 27! p—11 2™
9=P s, 6-p)/2 (5-p)/2
+6(p——1)201a + o ).
Therefore, by (3.6), (3.13), (3.21) and (3.22), we obtain
9— -
(p+3)va(a) - hi(@)a’ = 5 o _pl) (1+0(1))C3a5-P)/2, (3.23)
This along with (3.20) implies
+3 _
%(@) — (@) = m(@)a® PP, (3:24)

where 7;(a) = (p — 9)C3/(6(p — 1)) as @ — co. Then by the same calculation as that to

obtain (3.15), we obtain

a SP 6(p — 1)?
Then by (3.23) and (3.25), we obtain

va(@) = oP+3)/2 /oo —(s) ds = 9P (14 0(1))C3a®P)/2, (3.25)

M) = ?11—374(@ _ i%ﬁ(l + 0(1))CEaP2 (3.26)
————(52'4' (Z )(_91—)2;7 )1+ o(1)) a2,

This implies our assertion. g

4 Proof of Theorems

In this section, for i, k,m € Ny, the notation (4.m);— means ”(4.m) for the case i = k”. By
using the arguments in Section 3, we prove Theorem 1 by showing the following Proposition

4.1.

PROPOSITION 4.1. There ezist polynomials {B;(p)}io of p (deg B;(p) < i) such that for

any n € Ny, the following asymptotic formulas (4.1) and (4.2) hold as a — oo:

Ma) = o4 CaPD/2 4 - __aaﬂofﬂaj(l—p)/?+0(an(1—P)/2), (4.1)
j=(Q (p - 1)J+1
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v(a) = 2 2 Pty _i_c P32 i _If__@)_cﬂﬂ 2+j(1-p)/2 (4.2)
j=

p+1 p+1 ~ (p—1)i+1"

+ o(a+n-P/2),

where
a;(p) = fl—;é(—i%)p—)&(p) (0<i<n), (4.3)
bilp) = i—i—lBi(p) 0<i<n). (4.4)

For example, we know from Lemmas 3.3 and 3.4 that

gp,&o(p) =1,a1(p) = (—5:—%27)‘, bo(p) = 1,b1(p) = Q_g_p

&@=%&@=

To prove Proposition 4.1, we need the following Lemma 4.2, which is the extension of (3.22).

For 1 <1i <k, we put

_ _ = ailp 2 i1
)\i+3(a) = )\(OZ) —af 1_ C’la(p n/2 _ Zo G—L(j)m(]{-kza](l p)/2, (45)
5 .
; = — Pt - (a2 4.6
Yira(c) v(@) p+1 +3 o (4.6)
_ S __bj(p) Citly 2+j(1-p)/2
-1t

LEMMA 4.2. Let k € N be fized. Assume that (4.1)n=k—1—(4.4)n=k-1 are valid. Then
there ezists a polynomial By (p) of p (deg Bi(p) < k) determined by ao(p), a1(p), -+ * , ak-1(p)

such that the following asymptotics holds as o — oo:

L{o, M(a)V® D) = ___259_*_11)

k-1 A (p

j+2 2+.’I(1—p)/2
+z:@—1V”O

1
ot + C’ oP+3)/2 4 2)\k+3(a)a (4.7)

n Bk(P) Ck:+2a2+k:(1—p)/2 +o(a2+k(1_p)/2),

where
8+ 5i —

—T:TTB() 0<i<k-1). (4.8)

Ai(p) =
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Proof. We prove the assertion by the mathematical induction with respect to k € N.

The case k = 1. (4.7)x=1 follows from (3.22) with Aq(p) = 1, Bo(p) = 1/2 and By (p) =
(9—p)/6. (In this ca,se; we do not have to assume (4.1),,-0—(4.4),=0, since they follow from
Lemma 3.3 and (3.16).) Thus the proof of the case k£ = 1 is complete.

The case k > 2. Assume that (4.1)p=_1—(4.4)n=t—1 hold. Clearly, (4.1)p=-1—(4-4)n=k-1
imply (4.1)p—k_9—(4.4)n=—o. Therefore, by the induction assumption, we have (4.7), in
which £ is replaced by k — 1. The proof of (4.7) is divided into three steps.

Step 1. We define Ay_;(p) by (4.8);=k—1. Then we obtain by (4.3)o<i<k-1 and (4.4)o<i<k-1
that for 0<i<k—1

Ap) = 50) + Bilp) = 5o ses(p) + 5o sh®) = st B). (49)

This implies (4.8)o<i<k—1- By (4.1)n=k—1 and (4.5)i=k k1, for & > 1, we obtain

Nesa(@) = Ma(@) = B CFGEER — oo, (410)

Substitute (4.10) for (4.7), in which k is replaced by k — 1. Then by (4.9);—_1, we obtain
/-1y — _p__l_ p+1 w2, L 4.11
L(a, M) ) 20 + 1) + = C' o' + 2)\k+3(a)a (4.11)

+ Z (p - 1 J+1 TR O 4 (a),

where i (a) = o(a?+(k-1)(1-P)/2) Therefore, to prove (4.7), it is sufficient to show that

By (p _
rk(a) = §)I)c+1 Ck+2 2+k(1-p)/2 +0(0:2+k(1 P)/2). (4.12)

Step 2. To derive (4.12), we calculate L(a, A(a)/®~1). We put

k—1

gr(z) =1+ he(z) =1+ Crz + Z __aJ(S)J+ICJ+2 42

Furthermore, let gi(k + 2,z) denote the Taylor expansion of gi(z)®+t1/(~1) of (k 4 2)-th
order, which is denoted by
ge(k +2,2) = 1+ c1(p)z + ca(p)z® + - - + craa(p)e™+.
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Then by (4.5);= and Taylor expansion, we have
Ye-0y = P15 yere-y i1
L(a, M) )= 30 +1)/\(a) (4.13)

P—1 o (1-p)/2 oA-PY )/ (-D)
oL + k(0 7P7%) + Apgs(a)a 7P)PTHAP

p—1 p+1 (1-p)/2 1-p
s {15 (e )

n ’;\52 (p+1)2(3 —J'I()I))—l()gj— (5 —2)p) (hk(a(l—-p)/2) i )\k+3(a)a1_p)j
+ O(Q(k+2)(1—p)/2)} ,

Let 2 < j < k + 2 be fixed. We denote by {z,;(e)}; the terms of the expansion of
(he(at=P/2) + A ya(@)al™P)? which contain Agis(a). Then by (4.10), for a > 1, we ob-

tain
|215(@)| < Ca¥=DA-P2. (), s(a)atP) = o(a*t1-P)/2) — o(aF+A0-p)/2),

Then by this and (4.13), we obtain
-1

La, Ma)V/F1) = 2(p+ e aftl (4.14)
Iil o1-P)/2 E@+1)2B8-p)--(—-(—2)p) o (1-P)/2d
x4e1+ h )—l—Z Ao =1y hue( )

+ 0(a<k+2)(1_p)/2)} + —)\k+3(a)a2

2? +11)°‘p+1{1+c (D)% 4 ca(p)aP TPV o ghyp(p)alMTRIOPI2Y

+ EAk+3(a)a2 + 0(a2+k(1—p)/2).

Then by noting af*! . g*+21-P)/2 = o2+k(1-P)/2 we see from (4.11) and (4.14) that

-1
2( +1)

Step 3. (k + 2)!cry2(p) is given by the (k + 2)-th derivative of gy (z)®+0/?-1) at 2z = 0.

S Chsa(p)aPTEP/2 o(a?tFI-P)/2, (4.15)

ri(a) =

We recall that the n-th derivative of a composite function 2(z) = Z(y) and y = ¢(z) is

dr 3 n amz (o B y" B2 y" Bs y(h) Br
0= emrenae (1) (5) (&) (5 )
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Here, the symbol Y indicates summation over all solutions in non negative integers of the
equation B, + 28, + -+ + hB, = n and m = [ + 2 + -+ + Br. By using this formula for

n =k + 2, we obtain

1 dk+2 (gk(x)(p‘l'l)/(p_l))
eri2(p) = (k +2)! dah+? lo=0

- e o) (o) (5) (P )

Then we first find that the exponent of (p — 1) in the denominator of cxia(p) is m + (2 +
263+ -+ (h = 1) = k + 2. Secondly, ciio(p) containg CPF282Ht40n — Ch+2 . Thirdly,
since deg B;(p) < i for 0 < i < k — 1, we know from (4.3)o<i<k—1 that deg a;(p) < i+1
for 0 <4 < k — 1. Therefore, we see that the degree of the numerator of Cr+2(p) is at most
m — 1+ By + 283+ (h — 1)B, = k + 1. Finally, since the numerator of cx;(p) contains the
term (p + 1), we see that

_ P+ )OI Ea(p)
Ck+2(p) - (p — 1)k+2 ’ (416)

where &,2(p) is a polynomial of p with deg &x12(p) < k. Then by (4.12), (4.15) and (4.16),
we obtain By = éy2/2. Now (4.7) follows from (4.11) and (4.12). 4

Now we prove Proportion 4.1.

Proof of Proposition 4.1. We prove (4.1)—(4.4) by mathematical induction with respect
to n € Np.

The case n = 0. By (3.1), (3.2), Lemma 3.3 and (3.16), we see that (4.1),—0—(4.4)n=0 are
valid with ag(p) = bo(p) = 1, Bo(p) = 1/2. Thus the proof of the case n = 0 is complete.

The case n = k. Assume that (4.1),—k—1— (4.4)n=k—1 are valid. Then it follows from

(4-3)05i§k—1 and (4‘4)0Si5k—1 that

wl) =) 0<isk-).
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By thiS, (211), (45)z=k and (4~6)i=k, we obtain
di+3(0) = 2043(0). (4.17)
da
Substitute (4.5);— and (4.6);—, for (3.9). Then by (3.10) and (4.9)¢<i<k—1, We obtain

-1 1 k=1 4. . .
Lo, ||tallee) = 2p———a‘“+1 + §Cla(1’+3>/2 +3 (?—’Lp)—c*{“a“ﬂl-f’)/? (4.18)
j=0

(p+1) —1)i+t
p+3 p—5 2
+ XP—_T)’YH:%(OZ) + 2(:[)—_1)“)\“3(04)0‘ :

By this, (3.6), (3.13) and (4.7), we obtain

2(};;-—31)-’}%4_3(a) _ %‘%;T))\k_l_s(a)az _ _(__I_)_Bi_k_(iz)%l_(l + 0(1))C{c+2a2+k(1—p)/2. (4.19)

Then by (4.17) and (4.19), we obtain

p+3 _
Thys(@) = 5—=ers(@) = me(e)a TP, (4.20)

where n,(a) — —By(p)Ci*?/(p — 1)* as a — 00. By (4.2)p=k—1 and (4.6);=x, we see that

Yrys(a) = o(a?HE-D(1=P)/2) = o(aP+3)/2) for a > 1. Therefore, by solving (4.20), we obtain
Yrrs(a) = a(?+3)/2/a —nk(s)s(k(l‘p)'(l+”))/2ds. (4.21)

Then by ’Hopital’s rule, we obtain

o —m(s)s MR Rgs 2B (p) k2
dim, ak+1)(1-p)/2 T (k+ 1) (p— 1)k @ (422)
This along with (4.21) implies
Toral@) = b B G 4 o(1))a P, (4.29

kD1
By putting bx(p) = 2By (p)/(k+1), we obtain (4.4),—x. Then we obtain (4.2),— by (4.4)n=+,

(4.6)i=1 and (4.23). Now, by (4.19) and (4.23), we obtain

+3 B _
Aers(@)a® = pT’)’k+3(O-’) - ﬁu + 0(1))CF+2o2Hk(1-p)/2 (4.24)

(4+ k(1 - p))Bi(p) o2 ek
90k +1)(p — 1)+ (1 + o(1))CkH22H+0-P)/2,
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By putting ax(p) = (4 + k(1 — p))Bk(p)/(2(k + 1)), we obtain (4.3),-;. Then we obtain
(4.1)p=r by (4.3)n=k, (4.5);=r and (4.24). Thus the proof is complete. 3

Now we get Theorem 1 from Proposition 4.1. Theorem 2 is a direct consequence of (2.5),
(3.6), (3.10), (3.13), (4.7)k=n4+1 and (4.24)p—p41. Finally, Theorem 3 is a consequence of
Lemma 3.1 and Theorem 1. Thus the proofs of Theorems 1-3 are complete. §

We conclude this section by the proof of Corollary 4. We note that u,, o satisfies

~Uno(t) T UR (1) = Am,a)uma(t), tE€(0,1/m), (4.25)
Umal(t) > 0, te(0,1/m), (4.26)
Um,a(0) = Uma(l/m)=0. (4.27)

We put s = mt, B := m~%P Vg and wy, s(s) = m~¥® Dy, ,(t). Then ||wyallz = B and

(A(m, a)/m?, wy, ) satisfies (1.1)—(1.3). Then by Theorem 1, for o > 1, we obtain

Am, o _ - =~ a -

+ o( g2/,
This along with the definition of 3 implies (1.11). Next, by noting
W), 5(0) = m @/ =Ny (0), (4.29)
lwmpllo = Mm% ® [t a]lco, (4.30)
we easily obtain (1.12) by Theorem 2 and (4.29). Finally, (1.13) follows from Theorem 3
and (4.30). 5
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