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Abstract

Weconsider the nonlinear Stufm-Liouville problem

-u"(t)+u(t)P=Xu(t), u(t)>0, tel:=(0,1), u(0)=«(l)=0,

where p > 1 is a constant and A > 0 is an eigenvalue parameter. To understand the

global structure of the bifurcation diagram in R+ x L2(I) completely, we establish the

asymptotic expansion of X(a) (associated with eigenfunction ua with ||ua||2 = a) as

a -4oo. We also obtain the corresponding asymptotics of the width of the boundary

layer ofua as a -¥ oo.
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1 Introduction

We consider the following nonlinear Sturm-Liouville problem

-u"{t)+u{tf = Xu(t), tel:=(0,l), (1.1)

u(t) > 0, tel, (1.2)

u(0) = «(l)=0, (1.3)

where p > 1 is a constant and A > 0 is an eigenvalue parameter. It is known by Berestycki [1]

and Praile et al. [7] that for each a > 0, there exists a unique solution (X,u) - (X(a),ua) G

R+ x C2{I) with \\ua\\2 = a. The set {(X(a),ua),a > 0} gives all solutions of (1.1)-(1.3)

and is an unbounded curve of class C1 in R+ x L2(I) emanating from (ft2, 0).

The purpose of this paper is to understand the global structure of this bifurcation diagram

in R+ x L2(I) completely. To this end, we establish the asymptotic expansion of X(a) as

a -4-oo. Wealso establish the corresponding asymptotics of the width of the boundary layer

ofua as a-> oo.

The equation (1.1)-(1.3) has been extensively investigated by many authors in L°°-

framework from a viewpoint of local and global bifurcation theory. We refer to Berestycki

[1], Praile et al. [7], Holzmann and Kielhofer [11], Rabinowitz [12], [13] and the references

therein for the works in this direction. On the other hand, since (1.1)-(1.3) is regarded as

an eigenvalue problem, it is significant to investigate (1.1)-(1.3) in L2-framework. For the

works in this direction, we refer to Bongers et al. [2], Chabrowski [3], Chiappinelli [4], [5],

[6], Heinz [8], [9], [10], Shibata [14] and the references therein. In particular, Chiappinelli

[4], [5] obtained the asymptotic formula for X(a) as a -> 0. On the other hand, in Shibata

[14], the following asymptotic formula for X(a) as a -» oo has been given: There exists a

constant C > 0 such that for a > 1,

C-ia(P-i)/2 < A(a) _ aP-i < Ca(p-W_ (1 4)

(1.4) gives the optimal estimate for the second term of A(a) as a -¥ oo. However, the exact
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second term was not obtained. Our main aim in this paper is to improve the formula (1.4)

to gain a complete picture of the bifurcation diagram in R+ x L?(I).

Now we state our results. Let No := {0,1,2,•E•E•E}.

Theorem 1. For any n e No, the following asymptotic formula holds as a -» oo:

X(a) =oF-'+ClO^+± ^{*fh+1Ct+W1-v)/2+o(^(1-p)/2), (1-5)

where
<* = <»+3>/,$7T -1 + FTi*fl<b (L6)

and ak(p) is apolynomial (deg ak(p) < k+ l) which is determined by a0,au•E •E•E,ak-i-

For example,

M
i (^ (5-P)(9~P) a(v)-(3-P)(5-P)(7~P)

ao(p)=1, ox(p)= 24 ' °2^~ 24

The following theorem gives the asymptotic formula for the boundary layer of ua as

a->•Eoo.

Theorem 2. For any n e No, the following formula holds as a -^ oo:

<(0)2=<(D2 = ^^+C1^)/2+gJ^craW-p)/2 (i.7)

+ o(a2+ra(1-p)/2),

ty/iere Afc(p) *s a polynomial (deg Ak(p) < k + l) which is determined by a0, ax, •E•E•E, ofc_i.

For example,

,̂
, a,\ (9^P)(13-P) .M (5-p)(7-p)(9-p)

Ao(p)=1, Ai(p)=^ ^ , A2(p)= ^ •E

The following theorem gives the relationship between ||wa||2 and ||wa||oo for <*> 1.

Theorem 3. For any n e No, thefollowingformula holds as a -> oo:

II^H^i=oP-i+Cla^+E^Cr^11^2+o(d»^)/2). (1.8)
fc=o\P L)



As a corollary of Theorems 1-3, we obtain the analogous results for the nonlinear Sturm-

Liouville problem

-w"(t)+Kt)rMt) = Xu(t), teI:=(0,l), (1-9)

w(0) = «(l)=0. (1-10)

For (1.9)-(1.10), it is known that for each a > 0, there exists a unique solution (A,u) =

(A(m, a),um>a) G R+ xC2{I) (m G N) suchthat um,a has exactly m-1 interior simple zeros

in /, tzm,a > 0 near 0 and ||«m,a||2 = a (cf. [1, 7]). Moreover, the set {(\{m,a),±um,a),a >

0,m G N} gives all solutions of (1.9)-(1.10). {(A(m,a),v),a > °> is called the m'th

branch of nodal solutions of (1.9)-(1.10) and is an unbounded curve of class C1 in R+ x L2(J)

emanating from ((m7r)2, 0). Then clearly, (A(l,a),ui,a) = (A(a),Ua) and it is seen from an

easy symmetry argument (cf. [10, p. 313]) that the interior zeroes of um>a(m > 2) are

exactly {1/m, •E•E•E, (m - l)/m}. Therefore, the restriction of um,a to [0, 1/m] corresponds

to a positive solution (with a different eigenvalue) on I via a dilation. We then obtain

the explicit correspondence between A(a) and A(m, a) and obtain the analogous asymptotic

formulas for all the branches of (1.9)-(1.10).

Corollary 4. Let m £ N be fixed. Then for any n à¬ No, the following asymptotic

formulas hold as a -» oo:

A(m,a) =a^+mC^-^+± ^KrV^ +o(^1^/2), (1.ll)
fc=0\P l)

II'

"å m ,M=<M=̂ «+mC1a^+f:J^rt (mCl)-Q-»A
+ 0(Q2+"(1-rt/2), (I-12)

IK-IIE1 = **å +"fl^ +t T^TtL(mC,)*",.*'-"'' + Ota"'1-"2). (1.13)
fc=0\P L>

The remainder of this paper is organized as follows. In Section 2, we establish the second

term of the asymptotics of A(a). In Section 3, we establish the third and fourth terms of the
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asymptotics of X(a). This step is needed to use the mathematical induction in Section 4. In

Section 4, we prove Theorems 1-3 by using the mathematical induction and the arguments

developed in Sections 2 and 3. We also give the proof of Corollary 4 at the end of Section 4.

2 Second term of\(a)

Webegin with notations and the fundamental properties of X(a) and ua. Let || •E ||g (q > 1, oo)

be the usual L«-norm. Ck {k = 2,3, •E•E•E) denotes positive constants independent of a » 1.

Let

\2(a) := X(a)-ap~\ (2.1)

7(a) := Klli+^IKIlSx, (2-2)

-ft(a) := iW-^Y^1. (2.3)

It is known by Berestycki [1] and Praile et al. [7] that (1.1)-(1.3) has a unique solution ux

for a given A > tt2,

A-+ooAVCP-1)

uniformly on compact subsets on /. Moreover, the mapping A \-¥ u\ à¬ C2(J) is strictly

increasing (i.e., dux/d\ > 0 in /) and C1 for A >?r2 (cf. [7, p. 203]). Therefore, we see

that a(X) = IKH2 is C1 and strictly increasing, namely, da(X)/X > 0 for A > tt2. Therefore,

X(a), the inverse ofa(A), is also C1 and dX(a)/da > 0 for a > 0.

Lemma 2.1. |K||i = 2d(l+o(l))^+3)/2/(p+3) fora > 1.

Proof. Since (1.1) is autonomous, we know that ua satisfies

uQ(t) - ua(l-t), 0<t<1, (2.5)

,a(-J = maxua(t)= ||u«||oo, (2-6)

< (t) > 0, 0<t<-. (2.7)

u,



Since it follows from (1.1) that

=0 for0<t<1,
7t \2u«{t) -

p+i i

the expression between brackets is constant in [0, 1], and taking t = 0, 1/2, for 0 < t < 1, we

obtain

\u'M = lu>M- ~MtY+1+^uM (2-8)

This along with (2.7) implies that for 0 < t < 1/2

<(t)=^(Htiall^-ua(ty)-^(KIP1"^(t)*1). C2-9)

Then by (2.5), (2.7), (2.9) and putting s = ua(*)/IMIoo, we obtain

KHi = 2/o1/2^(KHL-ua(t)2)-^(KP1-^(t^KW* (2.io)

By (1.4) and (2.4), we seethat Ht^Hoo = A(a)1/^-1)(l+o(l)) for a > 1. By this, for a » 1

and 0 < s < 1, weobtain

2 |k f\^,\IU 112 (~[ _02"*_ -lU/Jip+Vi -A (a) ||«a l ^c(l-^2)- \ uo ||P+i(l _ sP+i) < C2.
A(a)(p+3)/(2(P-i))V'^11"'a|l°o^ " > p+1

By this, (2.10) and Lebesgue's convergence theorem, we obtain

v Kill _of1 Ip~1._S2å ZC^.-2£l-
£&>A(a)(p+3)/(2^-1)) ~ h \)p+l p+1 P.+3'

This along with (1.4) implies our assertion. Thus the proof is complete, i

Lemma 2.2. d^o^/da = 2aA2(o;) for alla > 0.

Proof. By (1.1) and (2.2), we obtain

da Ji da Ji da
dua(t)=2/{-<(*)+« (*)»}

J I
-dt

=2\(a) jiua(t)d^dt = \(a)±jiua(t?dt

=2a\(a).



By this, (2.1) and (2.3), we obtain our assertion. |

Lemma 2.3. A2(o) = d(l +o(l))a(p~1)/2 fora» 1.

Proof. Multiply ua by (1.1). Then integration by parts yields

KII^ + lklK = A(c*)c*2. (2-12)

By this and (2.2), we obtain

^-^aV-f^Klll
By substituting (2.1) and (2.3) for this, we obtain

72(a)~
p +1

A 2(a)«2 = j^\\<\\l (2.13)

i i(a) -12(01) = h(a) := (2.14)

Then by this and Lemma 2.2, we find that 72 satisfies the differential equation

./ 112
|'C

a a

We see from Lemma 2.1 that |/i(s)|/sp+1 < C3s-(p+1)/2 for s » 1. This implies that for

a>1
r MU<_1_ (1_p)/2_ (215)
Ja SP+1 ~p~1

Then we see that the solution 72 of (2.14) is represented as

72(a) = h{a) + h{a) := d>>+l £ ^-ds+ C,a^\ (2.16)

Wesee from (2.15) that h{a) = o{ap+1) for a > 1. By (1.4) and (2.4), we obtain ||ua||£i =

(1 + o(l))ap+1 for a » 1. Therefore, by (2.2) and Lemma 2.1, for a > 1, we obtain

7(a) = -^o?+1 + o(a*>+1). (2.17)

By this and (2.3), we see that 72(0) = o(ap+l). Therefore, we find that C4 = 0, and

consequently, by (2.16), we obtain

^a) = cT+i£ =£&d8. (2.18)



Then by this, Lemma 2.1 and l'Hopital's rule, we obtain

L00-h(s)/s^ds 2\\u'Jl 4
<£*5> a(l-p)/2 a^a(p+3)/2 P+3

This along with (2.18) implies that for a > 1

72(a) = i^La(P+3)/2 + 0(a(p+3)/2) (2 19)

Now, by (2.13) and Lemma 2.1, for a > 1, we obtain

p+1 . , p-1
-=-72(0) --7T-

This implies our conclusion. Thus the proof is complete.

\2{aW = ^72(«) - P-^\\<\\\ = (1 + o(l))CW^3)/2. (2.20)

3 The third and fourth terms ofX(a)

Taking (2.1), (2.3), (2.19) and Lemma 2.3 into account, we put

X3(a) := X(a)-ap~l-C^'^2, (3.1)

l3(a) := 7(a)--^^ - i^a^V2. (3.2)

Then by (2.ll), (3.1) and (3.2), we have

^p- = 2c*A3(a). (3.3)

da

The following estimate for Hua Hoo enables us to repeat the arguments in the previous section.

Lemma 3.1. Fora»1

(A(a) - e-CsV^))V(p-i) < ll^l^ < A(a)1/(p-1}. (3.4)

Proof. Since the second inequality is known by Berestycki [1], we have only to prove the

first inequality. We put va(t) := A(a)-1/(p-1^Q(i + 1/2) and wa := 1 - va. By (1.1) and

(2.6), we see that wa satisfies:

<(i) = X(a)(l-wa(t)-(I-wa(t)Y), *à¬ (~ i),

tWa(0) = 1-||u«||oo,

<(0) = 0.



Since 0 < va < 1 in / by the second inequality of (3.4), we have 0 < wa < 1 in (-1/2,1/2).

By (2.4), we see that va ->•E1 and wa -> 0 uniformly on 7,5 := [-8,8] as a -> oo, where

0 < 8 <C 1 is a fixed constant. Therefore, for a fixed constant 0 < e <g. p - 1, we obtain by

Taylor expansion that for a » 1

X(a)(p-1-e)wa < <(t)<\(a)(p-1+e)wa, tà¬Is,

wa(0) = 1-IKHoo,

<(0) = 0.

Since W±(a, t) := (1/2)(1 - IMIooXeV^-1^^* + e-V(*>-1±£)A(")*) satisfy

W£(a,*) = \(a)(p-l±e)W±(a,t), tEIs,

W±{a,0) = l-IMloo,

W£(0) = 0,

we easily see that W-(a,t) < wa(t) < W+(a,t) for t E Is and a » 1. This implies that as

en-¥oo
i(l - ||««||oo)cV^1-W-)' < W-(a,5) < wa(5) -). 0.

This yields 1 - C6e"*V(p-1-6)A(or) < H^Hoo. Hence, there exists a constant C5 > 0 such that

fora>1

(A(a) - e-ciV*W)V(P-D < A(a)i/(p-D(i _ ^g-V^-1-)^))

< A(a)1^-1)||«a||oo = ||ua||oo.

Thus the proof is complete. |

Next, we study the asymptotics of A3(a). To this end, we prove the following lemma.

Lemma 3.2. Fora»1

(p+ 3)73(0) - i\3(a)a2 = vo(a)a2, (3.5)

where 770(0;) -+ C\ as a -> 00.
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Proof. For a fixed a > 0, it is easy to see that L(a,t) := X(a)t2/2-tp+1/(p+1) is strictly

increasing for 0 < t < X(a)1^~1\ Therefore, by Lemma 3.1, we obtain

L(a, (A(a) - e-^V^J)1/^-!)) < L{a, \\uc\U) < L{a, A(a)1^-1)). (3.6)

First, we study the asymptotics of L(a, ||wa||oo)- By (2.2) and (2.12), we have

+1_
-

1
7 (a) - rryA(Q;)Q;2 (3.7)

i m-l-1 Pi-A/,
llUalfci? = ' T(Md)a--7WJ- l^-oj

p-1

/ II2 _ P+l
> ll2

P
p+1

p

Integrate (2.8) over /. Then by (3.7) and (3.8), we obtain

^<(0)2 =oIKIb-P+i KHRi + 2A(a)a (3.9)

I Q _cc-./«.\\ f~.\~.2rta)+ oL i\H<*)<r.
2 (P"1)

/ v-v 2(P-1)'

By substituting (3.1) and (3.2) for (3.9), we see from (2.8) that

L(a,\\uaU = \u'M

_ P-1 ~.p+i,1^ +W+3>/2+-^73(a)
-2(p+l)- '2"1" '2(p-l)

+ 2^1)A3(a)a2- (3'10)

Secondly, we study the asymptotics of L(a, X(a)1^p~1^). By (3.1) and Taylor expansion, for

a ^> 1, we obtain

p-l
2(P+ 1)

(a?-1 + da(p-1)/2 + \3(a)YP+1^p-V

p-l
2 (p+l)

a p+1(l + da^-rV2 + X3(a)al-p)^+1^-^ (3.ll)

p-1
2 (p+ir v p

ap+1 |l

v-l
-I-

(p-
£lij(Cia<1-ri/2 + AsC^a1^)2 + o((C1cP->W + Aa^a1"")2)j •E

ll



Note that A3(a) = o{a{p~1)/2) by (3.1) and Lemma 2.3. By using this and (3.ll), we obtain

I(o,WM) = ^Tf+1+\ci^m+\H«W (3.12)

Finally, we study the asymptotics of L(a, (\(a) - e-C6VA(Q))1/(p-i)). By (1.4) and Taylor

expansion, for a ~^>1, we have

L(a,(X(a) - e_p-c5vA(<*O)i/(p-i))(3.13)

(A(a)_ -<WA(a))2/(P
-

1)v-i
2(p+1)
A(a)+

,-Csy/Xla)

p+1
- -C*i/\(a) \ 2/(p-l) ~-CsJ\(a)

=A(a)2^-1) [ 1-
\ /~.\

y-i.
o (» rA«) +

s

\ytx) j \*W-r *å )
«

-He \ -o.r,*~/\tn\
=\{af^~^ ( 1- å £-

j"

\\\t~\
+ yo-pjc

1 \2\/
^- +o(\(a)-2e-2C*VW)

X p-1
2(P+1)

A(a) +

(p- i)A(a) (P- iyx(ay
a-d-f\(a) '

p+l
p -1 \ /-.\(v+l)/(v-l) /å % , ~<-\\\^-2C^\/X(a) \f».\(3-p)/(p-l)

2(p+1)
A (a)(p+1 )/(p-i) _

2(P"1)
(1 + o(l))e- <)A(a)(3-

P~ l \^\(v+l)/(v-l) /-,/^-2C7a(P-1)/z«.3-p\
tx -)2(p+ l)

p-1
2(p+l)'

Therefore, by (3.10), (3.12) and (3.13), we obtain (3.5). Thus the proof is complete.

Lemma 3.3. A3(a) = (1+o(l))C?/(p- 1) asa->00.

Proof. By (3.3) and (3.5), we obtain

, p+3 ,. rjo(a)a
7s(«)"^T73(a)= -.

By solving this equation, we see that

(3.14)

TH(a) = «"/'£° JgM y*+fta»W. (3.15)
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73(a) = o(a(p+3)/2) by (2.19) and (3.2). Moreover, the first term of the right hand side of

(3.15) is also o(a(p+3)/2). Therefore, we see that C8 = 0. Moreover, by PHopital's rule, we

have

r
f?Vom^p+l)/2)ds Vo(*)_ 1 2

lim f.-T75 = urn - -Uj.a->oo (yy--p)/l a->-oop- 1 p- 1

J- «0/-. /-\\ 0 te\ t r%\

Vo.xu;

This along with (3.15) implies

73(a) = ^riC12(l + o(l))a2.

Then by (3.5) and (3.16), we obtain

  X3(a)a2=^7S.(«)"\(l+o{l))CW=^71^(1+0(1))^- (317)

Thus the proof is complete, i

 Taking Lemma 3.3 and (3.16) into account, we put

      X4(a) := X3(a)- -^C2
X,     (3.18)

     74(a) := TsM-^-^V-    (3-19)

Then by (3.3), (3.18) and (3.19), we obtain

         ^M- = 2aXi{a).       (3.20)

                        da

 Lemma 3.4. A4(a) = (5 -p)(9-p)(l +o{l))Cfa^-^2/(24(p- I)2) os a^oo.

 Proof. By (3.10), (3.18) and (3.19), we obtain

                  p+3  . .  p-5 . , . o

By the same argument as that to obtain (3.12), by (3.1), (3.18) and Taylor expansion, for

a> 1, we obtain

 L(a,\(a)^) = J^±-\(a)WVW

                           13



-, / -1 \ (p+l)/(p-l)

=WTTf+l+lc^P+m+phc^+\x^ (3-22)

6(p-I)2

Therefore, by (3.6), (3.13), (3.21) and (3.22), we obtain

(p + 3)74(a) - 4A4(a)a2 = g^yU + o(l))C?a<8^2. (3.23)

This along with (3.20) implies

t4(«) - ^74(a) = ^7i(«)«(3-p)/2, (3.24)

where 771(0:) -> (p - 9)Cf/(6(p - 1)) as a -> 00. Then by the same calculation as that to

obtain (3.15), we obtain

74(o0=a^)/2£°=^lds= g^j(l+o(l))C13c(5--)/2. (3.25)

Then by (3.23) and (3.25), we obtain

\4(aW = ^74(«) - I^Iy(l + o(l))C1V5-)/2 (3.26)

This implies our assertion. |

4 ProofofTheorems

In this section, for i, k,m G No, the notation (4.m)i=A; means "(4.m) for the case i = k". By

using the arguments in Section 3, we prove Theorem 1 by showing the following Proposition

4.1.

Proposition 4.1. There exist polynomials {Bi(p)}i>0 ofp (deg Bi(p) < i) such that for

any n G No, the following asymptotic formulas (4-1) and (4-2) hold as a -¥ 00:

X(a) = a?"1+dc^-W+£ ^{f C{+2a^-^'2+o(an^-^2), (4.1)
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7(«) = ^-P+1+^^-(P+3)/2+g(^TT^+2a2+J(1-p)/2 (42)

+ o(a2+n(1-p)/2),

where

a«(p) := 4^+7)P)^(P) (0<^<^)' (4-3)

6*(p) := T^rBiCp) (0<»<n). (4.4)

For example, we know from Lemmas 3.3 and 3.4 that

BO(P) = \Bi(p) = ^,ao(p) = 1,ax(p) = <5"*X9~*>>,60(p) = 1,bl(p) = ^.

To prove Proposition 4.1, we need the following Lemma4.2, which is the extension of (3.22).

For1<i<k,weput

Xi+3(a) := A(a)-^-C^~^-g^^A^^^'^ (45)

7i+3(«) := 7(«) - ^1 ~C1«W/J (4.6)

Y^ &J-(P) ^j+2 2+j(l-p)/2

Lemma 4.2. Lei A; à¬ N be fixed. Assume that (4-l)n=k-i-(4-4)n=k-i are vaW. T/iera

tfiere existe a polynomial Bk(p) ofp (deg Bk(j>) < k) determined by aQ(p),ax(p), •E•E•E, ak-i(p)

such that the following asymptotics holds as a -* oo:

L(a,A(«)1/(p-D) = 2§Tl)aP+1+\c^+m+^(a)a2 (4.7)

^ >4j-(p) i+2 2+j(l-p)/2

+ _^l_Cfe+2a2+fc(l-P)/2 + O(a2+*(1-P)/»)|

where
,. 8+5i-ip ,,

(0<i<k-1). (4.8)
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Proof. We prove the assertion by the mathematical induction with respect to k 6E N.

The case k = 1. (4.7)fc=i follows from (3.22) with A0(p) = l,BQ(p) = 1/2 and Bx{p) =

(9 - p)/Q. (In this case, we do not have to assume (4.1)n==o-(4.4)n=o, since they follow from

Lemma 3.3 and (3.16).) Thus the proof of the case k = 1 is complete.

The case k > 2. Assume that (4.1)n=fc_1-(4.4)ra=fc_i hold. Clearly, (4.1)7l=fc_i-(4.4)re=fc_i

imply (4.1)n=fc_2-(4.4)n=fc_2- Therefore, by the induction assumption, we have (4.7), in

which k is replaced by k - 1. The proof of (4.7) is divided into three steps.

Step 1. We define Ak-\{p) by (4.8)i=fc_i. Then we obtain by (4.3)o<i<fc-i and (4.4)o<i<fc-i

thatfor0<i<k-1

AW=io.W+b,(p)-j§^j*W+0^<p)=^fB'W- <4-9)

This implies (4.8)0<j<fc-i. By (4.1)n=fc_i and (4.5)i=fclfe-i, for a > 1, we obtain

We*) =Afe+2(a)- ^M-C^a^-^-^ =o{^k-^-^). (4.10)

Substitute (4.10) for (4.7), in which k is replaced by k - 1. Then by (4.9)i=fc_i, we obtain

L(a,X(ay/^) = 2§^V+1+\^+z)/2+\\kM*2 (4.ll)

+ E (^k^+2«2+i(1"p)/2 + ^(a)'

where rk(a) = o(a2+(fc~1^1~p^2). Therefore, to prove (4.7), it is sufficient to show that

rk{a) = fpB- (i)k+i C"+2a2+k{1~P)/2 + °(°?+k{l-p)/2)- (4-12)

Step 2. To derive (4.12), we calculate L(a, A(a)1/^-1)). We put

gk(x) := 1+^(x) := l+ClX+E (p°J^+1C?+V+a.

Furthermore, let gk(k + 2, x) denote the Taylor expansion of 0fc(a;)(p+1)/(p"""1) of (A; + 2)-th

order, which is denoted by

gk(k+2,x) = l+ci(p)x+c2(p)x2 + å •E•E+ck+2(p)xk+2.
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Then by (4.5)^=^ and Taylor expansion, we have

  L(a, \(a)^-V) = ^-±.

)X{a)^y^     (4.13)

p-1
2(P+1)

p-l

o^\l + hk(a^-^2) + \k+3(a)al-^+1^-V

L^+l/i J_P+1 (h,(n(l-P)/*\M \..Jn\^~P\

y=2 ./•EIP -V

+ o(^fc+2)(1-^2)}.

Let 2 < j < A; + 2 be fixed. We denote by {zij(a)}i the terms of the expansion of

(hk(a(l-pV2) + Afc+3(a)a1-P)i which contain Afc+3(a). Then by (4.10), for a > 1, we ob-

tain

Ma)| < CaU-W-^2 å (Afc+sCa)*1"1') = oCa^^1^/2) = o^^2^1-^2).

Then by this and (4.13), we obtain

L(a, X(a)'"å '-») = ^Yf+1 (4.14)

J1 +*±iMa<^)+g fr+ iw-i»)-:-tf- a-2)p)Va(^)/,y

+ o(a(fc+2)(l-P)/2)j + lAfc+3(a)a2

=̂r-ZlT^^1 + cib)«(1~p)/2 + c2(p)«2(1-p)/2 + •E•E•E+ ck+2(P)a(k+W-M2}

+ iAfc+3(a)a2 + o(a2+fc^)/2).

Then by noting a?+1 •EaV>+W-p)/2 = a2+fc(i-P)/2j we see from (411) and ^ 14) that

rfc(«) - r^rcn.jWoW^ + o(a2+k^-^2). (4.15)

Step 3. (k + 2)\ck+2(p) is given by the (k + 2)-th derivative ofgk(xYp+1^^-^ at x = 0.

Werecall that the n-th derivative of a composite function z(x) = Z(y) and y = ip(x) is

rfn , , ^ n\ dmZfi/V1fv"V2fv'"V3 (v^\Ph
i x)= > l^-l |i^| |^_] ...|
\ / / ^

-z(
d xT'

'

\.""j
(A)l(A)!-(A)!^lllj \2\J \3\J '"\h\J
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Here, the symbol J2 indicates summation over all solutions in non negative integers of the

equation /3i + 2/52 H 1- h(5h - n and m = Pi + /52 H \-fih- By using this formula for

n=k+2, weobtain

1 dfe+2 (0fc(aOb*1>/C-1>)
Cfe+2(P) ~ (F+2)I d^5 U=0

v 1 /p+n/ 2 \/3-p\/m-(m-2)p\

x^/M^H -(EzI p-l'l '"{(p-l)»-l)
\ - / \ »- •E t

Then we first find that the exponent of (p - 1) in the denominator of ck+2(p) is m + fa +

2fo + - >- + (h - l)(3h = Jfe + 2. Secondly, ck+2(p) contains cf+2/32+'"+/l/3'1 = C{+2. Thirdly,

since deg Bi(p) < i for 0 < i < k- 1, we know from (4.3)0<j<fc-i that deg ai{p) < i+1

for 0 < i < k - 1. Therefore, we see that the degree of the numerator of Ck+2(p) is at most

m-1+fa + 2/93 + (h - l)Ph - k + 1. Finally, since the numerator of Ck+2(p) contains the

term (p+ 1), we see that

where Cfe+2(p) is a polynomial ofp with deg 5fc+2(p) < k. Then by (4.12), (4.15) and (4.16),

we obtain Bk = ck+2/2. Now (4.7) follows from (4.ll) and (4.12). |

Nowwe prove Proportion 4.1.

Proof of Proposition 4-1- We prove (4.1)-(4.4) by mathematical induction with respect

toneNo.

The case n = 0. By (3.1), (3.2), Lemma 3.3 and (3.16), we see that (4.1)n=0-(4.4)n=0 are

valid with ao(p) = bo(p) - 1,B0(p) - 1/2. Thus the proofofthe case n = 0 is complete.

The case n - k. Assume that (4.1)n=fc_i- (4.4)n=fc_i are valid. Then it follows from

(4.3)0<i<fc-i and (4.4)0<i<fe-i that

<k(p)=4+l(l~P)t>i(p) (0<i<k-1).
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By this, (2.ll), (4.5)i=*. and (4.6)i=k, we obtain

% ^ =2QAt+3(a). (4.17)

da

Substitute (4.5)i=fc and (4.6)i=fe for (3.9). Then by (3.10) and (4.9)0<i<fc-i, we obtain

L(a,\\ua\U = _^^« + lfta«WW.+g_^g;Tcr<»^(1-*)/I (4.18)

+ W^fM(a) + W=T)Vs(a)a2'

By this, (3.6), (3.13) and (4.7), we obtain

Then by (4.17) and (4.19), we obtain

7U«) - ^-W*) = %(«)a1+fc(1"p)/2, (4.20)

where rjk(a) -¥ -Bk(p)Ci+2/(p - l)k as a -> oo. By (4.2)n=fc_1 and (4.6)i=fc, we see that

7^+3(0) = o(o;2+(fc-i)(i-P)/2) = 0(a(p+3)/2) for a > 1. Therefore, by solving (4.20), we obtain

7 fc+3(a) = a^+3^2 r -rj^s^-^'+^'ds. (4.21)
Ja

Then by l'Hopital's rule, we obtain

Jtt°o-^ (a)aWi^-(i^))/a<ifl 2^fc (p) fc+2
a"i a(fe+l)(l-P)/2 (jfc+l)(p-1)*=+! X ' V ^

This along with (4.21) implies

W°) = (t+ yi)MCWC + o(l))a2+*<-'»'2. (4.23)

By putting bk(p) = 2Bk(p)/(k+ l), we obtain (4.4)n=fe. Then we obtain (4.2)n=fc by (4.4)n=fc,

(4.6)i=fc and (4.23). Now, by (4.19) and (4.23), we obtain

Afc+3(a)a2 = XTw(a)- 2^(1+0(1))^^(1"?)/2 (424)

-(4+Ml-p))Bfc(p) rnscfe+2 2+fc(l-P)/2
-2(A;+l)(p-l)^+i (1+O(1)}Cl a
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By putting ak(p) = (4 + fc(l - p))Bk(p)/(2(k + 1)), we obtain (4.3)n=fc. Then we obtain

(4.1)n=fc by (4.3)n=fc, (4.5)i=fc and (4.24). Thus the proof is complete. å 

Now weget Theorem 1 from Proposition 4.1. Theorem 2 is a direct consequence of (2.5),

(3.6), (3.10), (3.13), (4.7)fc=n+i and (4.2A)k=n+1. Finally, Theorem 3 is a consequence of

Lemma3.1 and Theorem 1. Thus the proofs of Theorems 1-3 are complete. |

Weconclude this section by the proof of Corollary 4. We note that um,a satisfies

-<«(*)+<,«(*) = X(m,a)umta(t), t e (0,l/m), (4.25)

um,a(t) > 0> *e(0,l/ro), (4.26)

«m,«(0) = um>a(l/m) = 0. (4.27)

We put s = mt,P := mr2f^~^a and wm^{s) = m"2^"1^,^*). Then ||twmj3||2 = P and

(\(m,a)/m2, wmtp) satisfies (1.1)-(1.3). Then by Theorem 1, for a >•E1, we obtain

^l£2 = p-i+c^-w+y, a*(p) Ck+2pk{i-P)/2 (4-28)

This along with the definition of (3 implies (1.ll). Next, by noting

\\WmAoo - m-^-^H^alloo, (4.30)

we easily obtain (1.12) by Theorem 2 and (4.29). Finally, (1.13) follows from Theorem 3

and (4.30). i
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