PRECISE SPECTRAL ASYMPTOTICS FOR NONLINEAR STURM-LIOUVILLE PROBLEMS

TETSUTARO SHIBATA
The Division of Mathematical and Information Sciences,
Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan

Abstract
We consider the nonlinear Sturm-Liouville problem
$$
-u^{\prime \prime}(t)+u(t)^{p}=\lambda u(t), u(t)>0, \quad t \in I:=(0,1), u(0)=u(1)=0
$$

where $p>1$ is a constant and $\lambda>0$ is an eigenvalue parameter. To understand the global structure of the bifurcation diagram in $\mathbf{R}_{+} \times L^{2}(I)$ completely, we establish the asymptotic expansion of $\lambda(\alpha)$ (associated with eigenfunction u_{α} with $\left\|u_{\alpha}\right\|_{2}=\alpha$) as $\alpha \rightarrow \infty$. We also obtain the corresponding asymptotics of the width of the boundary layer of u_{α} as $\alpha \rightarrow \infty$.

Proposed running head: precise spectral asymptotics

TETSUTARO SHIBATA

The Division of Mathematical and Information Sciences Faculty of Integrated Arts and Sciences
Hiroshima University Higashi-Hiroshima, 739-8521, Japan e-mail: shibata@mis.hiroshima-u.ac.jp fax: $++81-824-24-0756$

1 Introduction

We consider the following nonlinear Sturm-Liouville problem

$$
\begin{align*}
-u^{\prime \prime}(t)+u(t)^{p} & =\lambda u(t), \quad t \in I:=(0,1) \tag{1.1}\\
u(t) & >0, \quad t \in I \tag{1.2}\\
u(0) & =u(1)=0, \tag{1.3}
\end{align*}
$$

where $p>1$ is a constant and $\lambda>0$ is an eigenvalue parameter. It is known by Berestycki [1] and Fraile et al. [7] that for each $\alpha>0$, there exists a unique solution $(\lambda, u)=\left(\lambda(\alpha), u_{\alpha}\right) \in$ $\mathbf{R}_{+} \times C^{2}(\bar{I})$ with $\left\|u_{\alpha}\right\|_{2}=\alpha$. The set $\left\{\left(\lambda(\alpha), u_{\alpha}\right), \alpha>0\right\}$ gives all solutions of (1.1)-(1.3) and is an unbounded curve of class C^{1} in $\mathbf{R}_{+} \times L^{2}(I)$ emanating from ($\left.\pi^{2}, 0\right)$.

The purpose of this paper is to understand the global structure of this bifurcation diagram in $\mathbf{R}_{+} \times L^{2}(I)$ completely. To this end, we establish the asymptotic expansion of $\lambda(\alpha)$ as $\alpha \rightarrow \infty$. We also establish the corresponding asymptotics of the width of the boundary layer of u_{α} as $\alpha \rightarrow \infty$.

The equation (1.1)-(1.3) has been extensively investigated by many authors in L^{∞} framework from a viewpoint of local and global bifurcation theory. We refer to Berestycki [1], Fraile et al. [7], Holzmann and Kielhöfer [11], Rabinowitz [12], [13] and the references therein for the works in this direction. On the other hand, since (1.1)-(1.3) is regarded as an eigenvalue problem, it is significant to investigate (1.1)-(1.3) in L^{2}-framework. For the works in this direction, we refer to Bongers et al. [2], Chabrowski [3], Chiappinelli [4], [5], [6], Heinz [8], [9], [10], Shibata [14] and the references therein. In particular, Chiappinelli [4], [5] obtained the asymptotic formula for $\lambda(\alpha)$ as $\alpha \rightarrow 0$. On the other hand, in Shibata [14], the following asymptotic formula for $\lambda(\alpha)$ as $\alpha \rightarrow \infty$ has been given: There exists a constant $C>0$ such that for $\alpha \gg 1$,

$$
\begin{equation*}
C^{-1} \alpha^{(p-1) / 2} \leq \lambda(\alpha)-\alpha^{p-1} \leq C \alpha^{(p-1) / 2} \tag{1.4}
\end{equation*}
$$

(1.4) gives the optimal estimate for the second term of $\lambda(\alpha)$ as $\alpha \rightarrow \infty$. However, the exact
second term was not obtained. Our main aim in this paper is to improve the formula (1.4) to gain a complete picture of the bifurcation diagram in $\mathbf{R}_{+} \times L^{2}(I)$.

Now we state our results. Let $\mathbf{N}_{0}:=\{0,1,2, \cdots\}$.
Theorem 1. For any $n \in \mathbf{N}_{0}$, the following asymptotic formula holds as $\alpha \rightarrow \infty$:

$$
\begin{equation*}
\lambda(\alpha)=\alpha^{p-1}+C_{1} \alpha^{(p-1) / 2}+\sum_{k=0}^{n} \frac{a_{k}(p)}{(p-1)^{k+1}} C_{1}^{k+2} \alpha^{k(1-p) / 2}+o\left(\alpha^{n(1-p) / 2}\right) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}=(p+3) \int_{I} \sqrt{\frac{p-1}{p+1}-s^{2}+\frac{2}{p+1} s^{p+1}} d s \tag{1.6}
\end{equation*}
$$

and $a_{k}(p)$ is a polynomial $\left(\operatorname{deg} a_{k}(p) \leq k+1\right)$ which is determined by $a_{0}, a_{1}, \cdots, a_{k-1}$.
For example,

$$
a_{0}(p)=1, \quad a_{1}(p)=\frac{(5-p)(9-p)}{24}, \quad a_{2}(p)=\frac{(3-p)(5-p)(7-p)}{24}
$$

The following theorem gives the asymptotic formula for the boundary layer of u_{α} as $\alpha \rightarrow \infty$.

Theorem 2. For any $n \in \mathbf{N}_{0}$, the following formula holds as $\alpha \rightarrow \infty$:

$$
\begin{align*}
u_{\alpha}^{\prime}(0)^{2}=u_{\alpha}^{\prime}(1)^{2}= & \frac{p-1}{p+1} \alpha^{p+1}+C_{1} \alpha^{(p+3) / 2}+\sum_{k=0}^{n} \frac{2 A_{k}(p)}{(p-1)^{k+1}} C_{1}^{k+2} \alpha^{2+k(1-p) / 2} \tag{1.7}\\
& +o\left(\alpha^{2+n(1-p) / 2}\right)
\end{align*}
$$

where $A_{k}(p)$ is a polynomial (deg $\left.A_{k}(p) \leq k+1\right)$ which is determined by $a_{0}, a_{1}, \cdots, a_{k-1}$.
For example,

$$
A_{0}(p)=1, \quad A_{1}(p)=\frac{(9-p)(13-p)}{48}, \quad A_{2}(p)=\frac{(5-p)(7-p)(9-p)}{48}
$$

The following theorem gives the relationship between $\left\|u_{\alpha}\right\|_{2}$ and $\left\|u_{\alpha}\right\|_{\infty}$ for $\alpha \gg 1$.
Theorem 3. For any $n \in \mathbf{N}_{0}$, the following formula holds as $\alpha \rightarrow \infty$:

$$
\begin{equation*}
\left\|u_{\alpha}\right\|_{\infty}^{p-1}=\alpha^{p-1}+C_{1} \alpha^{(p-1) / 2}+\sum_{k=0}^{n} \frac{a_{k}(p)}{(p-1)^{k+1}} C_{1}^{k+2} \alpha^{k(1-p) / 2}+o\left(\alpha^{n(1-p) / 2}\right) \tag{1.8}
\end{equation*}
$$

As a corollary of Theorems 1-3, we obtain the analogous results for the nonlinear SturmLiouville problem

$$
\begin{align*}
-u^{\prime \prime}(t)+|u(t)|^{p-1} u(t) & =\lambda u(t), \quad t \in I:=(0,1) \tag{1.9}\\
u(0) & =u(1)=0 \tag{1.10}
\end{align*}
$$

For (1.9)-(1.10), it is known that for each $\alpha>0$, there exists a unique solution $(\lambda, u)=$ $\left(\lambda(m, \alpha), u_{m, \alpha}\right) \in \mathbf{R}_{+} \times C^{2}(\bar{I})(m \in \mathbf{N})$ such that $u_{m, \alpha}$ has exactly $m-1$ interior simple zeros in $I, u_{m, \alpha}>0$ near 0 and $\left\|u_{m, \alpha}\right\|_{2}=\alpha$ (cf. $\left.[1,7]\right)$. Moreover, the set $\left\{\left(\lambda(m, \alpha), \pm u_{m, \alpha}\right), \alpha>\right.$ $0, m \in \mathbf{N}\}$ gives all solutions of (1.9)-(1.10). $\left\{\left(\lambda(m, \alpha), u_{m, \alpha}\right), \alpha>0\right\}$ is called the m -th branch of nodal solutions of (1.9)-(1.10) and is an unbounded curve of class C^{1} in $\mathbf{R}_{+} \times L^{2}(I)$ emanating from $\left((m \pi)^{2}, 0\right)$. Then clearly, $\left(\lambda(1, \alpha), u_{1, \alpha}\right)=\left(\lambda(\alpha), u_{\alpha}\right)$ and it is seen from an easy symmetry argument (cf. [10, p. 313]) that the interior zeroes of $u_{m, \alpha}(m \geq 2)$ are exactly $\{1 / m, \cdots,(m-1) / m\}$. Therefore, the restriction of $u_{m, \alpha}$ to $[0,1 / m]$ corresponds to a positive solution (with a different eigenvalue) on I via a dilation. We then obtain the explicit correspondence between $\lambda(\alpha)$ and $\lambda(m, \alpha)$ and obtain the analogous asymptotic formulas for all the branches of (1.9)-(1.10).

Corollary 4. Let $m \in \mathbf{N}$ be fixed. Then for any $n \in \mathbf{N}_{0}$, the following asymptotic formulas hold as $\alpha \rightarrow \infty$:

$$
\begin{gather*}
\lambda(m, \alpha)=\alpha^{p-1}+m C_{1} \alpha^{(p-1) / 2}+\sum_{k=0}^{n} \frac{a_{k}(p)}{(p-1)^{k+1}}\left(m C_{1}\right)^{k+2} \alpha^{k(1-p) / 2}+o\left(\alpha^{n(1-p) / 2}\right), \tag{1.11}\\
\begin{array}{c}
u_{m, \alpha}^{\prime}(0)^{2}=u_{m, \alpha}^{\prime}(1)^{2}= \\
\frac{p-1}{p+1} \alpha^{p+1}+m C_{1} \alpha^{(p+3) / 2}+\sum_{k=0}^{n} \frac{2 A_{k}(p)}{(p-1)^{k+1}}\left(m C_{1}\right)^{k+2} \alpha^{2+k(1-p) / 2} \\
\\
+o\left(\alpha^{2+n(1-p) / 2}\right),
\end{array} \\
\left\|u_{m, \alpha}\right\|_{\infty}^{p-1}=\alpha^{p-1}+m C_{1} \alpha^{(p-1) / 2}+\sum_{k=0}^{n} \frac{a_{k}(p)}{(p-1)^{k+1}}\left(m C_{1}\right)^{k+2} \alpha^{k(1-p) / 2}+o\left(\alpha^{n(1-p) / 2}\right) . \tag{1.12}
\end{gather*}
$$

The remainder of this paper is organized as follows. In Section 2, we establish the second term of the asymptotics of $\lambda(\alpha)$. In Section 3, we establish the third and fourth terms of the
asymptotics of $\lambda(\alpha)$. This step is needed to use the mathematical induction in Section 4. In Section 4, we prove Theorems 1-3 by using the mathematical induction and the arguments developed in Sections 2 and 3. We also give the proof of Corollary 4 at the end of Section 4.

2 Second term of $\lambda(\alpha)$

We begin with notations and the fundamental properties of $\lambda(\alpha)$ and u_{α}. Let $\|\cdot\|_{q}(q \geq 1, \infty)$ be the usual L^{q}-norm. $C_{k}(k=2,3, \cdots)$ denotes positive constants independent of $\alpha \gg 1$. Let

$$
\begin{align*}
\lambda_{2}(\alpha) & :=\lambda(\alpha)-\alpha^{p-1} \tag{2.1}\\
\gamma(\alpha) & :=\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}+\frac{2}{p+1}\left\|u_{\alpha}\right\|_{p+1}^{p+1} \tag{2.2}\\
\gamma_{2}(\alpha) & :=\gamma(\alpha)-\frac{2}{p+1} \alpha^{p+1} . \tag{2.3}
\end{align*}
$$

It is known by Berestycki [1] and Fraile et al. [7] that (1.1)-(1.3) has a unique solution u_{λ} for a given $\lambda>\pi^{2}$,

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \frac{u_{\lambda}}{\lambda^{1 /(p-1)}}=1 \tag{2.4}
\end{equation*}
$$

uniformly on compact subsets on I. Moreover, the mapping $\lambda \mapsto u_{\lambda} \in C^{2}(\bar{I})$ is strictly increasing (i.e., $d u_{\lambda} / d \lambda>0$ in I) and C^{1} for $\lambda>\pi^{2}$ (cf. [7, p. 203]). Therefore, we see that $\alpha(\lambda)=\left\|u_{\lambda}\right\|_{2}$ is C^{1} and strictly increasing, namely, $d \alpha(\lambda) / \lambda>0$ for $\lambda>\pi^{2}$. Therefore, $\lambda(\alpha)$, the inverse of $\alpha(\lambda)$, is also C^{1} and $d \lambda(\alpha) / d \alpha>0$ for $\alpha>0$.

Lemma 2.1. $\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}=2 C_{1}(1+o(1)) \alpha^{(p+3) / 2} /(p+3)$ for $\alpha \gg 1$.
Proof. Since (1.1) is autonomous, we know that u_{α} satisfies

$$
\begin{align*}
u_{\alpha}(t) & =u_{\alpha}(1-t), \quad 0 \leq t \leq 1 \tag{2.5}\\
u_{\alpha}\left(\frac{1}{2}\right) & =\max _{0 \leq t \leq 1} u_{\alpha}(t)=\left\|u_{\alpha}\right\|_{\infty} \tag{2.6}\\
u_{\alpha}^{\prime}(t) & >0, \quad 0 \leq t<\frac{1}{2} \tag{2.7}
\end{align*}
$$

Since it follows from (1.1) that

$$
\frac{d}{d t}\left[\frac{1}{2} u_{\alpha}^{\prime}(t)^{2}-\frac{1}{p+1} u_{\alpha}(t)^{p+1}+\frac{1}{2} \lambda u_{\alpha}(t)^{2}\right]=0 \quad \text { for } 0 \leq t \leq 1,
$$

the expression between brackets is constant in $[0,1]$, and taking $t=0,1 / 2$, for $0 \leq t \leq 1$, we obtain

$$
\begin{align*}
\frac{1}{2} u_{\alpha}^{\prime}(0)^{2} & =\frac{1}{2} u_{\alpha}^{\prime}(t)^{2}-\frac{1}{p+1} u_{\alpha}(t)^{p+1}+\frac{1}{2} \lambda u_{\alpha}(t)^{2} \tag{2.8}\\
& =-\frac{1}{p+1}\left\|u_{\alpha}\right\|_{\infty}^{p+1}+\frac{1}{2} \lambda\left\|u_{\alpha}\right\|_{\infty}^{2}
\end{align*}
$$

This along with (2.7) implies that for $0 \leq t \leq 1 / 2$

$$
\begin{equation*}
u_{\alpha}^{\prime}(t)=\sqrt{\lambda(\alpha)\left(\left\|u_{\alpha}\right\|_{\infty}^{2}-u_{\alpha}(t)^{2}\right)-\frac{2}{p+1}\left(\left\|u_{\alpha}\right\|_{\infty}^{p+1}-u_{\alpha}(t)^{p+1}\right)} . \tag{2.9}
\end{equation*}
$$

Then by (2.5), (2.7), (2.9) and putting $s=u_{\alpha}(t) /\left\|u_{\alpha}\right\|_{\infty}$, we obtain

$$
\begin{align*}
\left\|u_{\alpha}^{\prime}\right\|_{2}^{2} & =2 \int_{0}^{1 / 2} \sqrt{\lambda(\alpha)\left(\left\|u_{\alpha}\right\|_{\infty}^{2}-u_{\alpha}(t)^{2}\right)-\frac{2}{p+1}\left(\left\|u_{\alpha}\right\|_{\infty}^{p+1}-u_{\alpha}(t)^{p+1}\right)} u_{\alpha}^{\prime}(t) d t(\tag{2.10}\\
& =2\left\|u_{\alpha}\right\|_{\infty} \int_{0}^{1} \sqrt{\lambda(\alpha)\left\|u_{\alpha}\right\|_{\infty}^{2}\left(1-s^{2}\right)-\frac{2}{p+1}\left\|u_{\alpha}\right\|_{\infty}^{p+1}\left(1-s^{p+1}\right)} d s
\end{align*}
$$

By (1.4) and (2.4), we see that $\left\|u_{\alpha}\right\|_{\infty}=\lambda(\alpha)^{1 /(p-1)}(1+o(1))$ for $\alpha \gg 1$. By this, for $\alpha \gg 1$ and $0 \leq s \leq 1$, we obtain

$$
\frac{2\left\|u_{\alpha}\right\|_{\infty}}{\lambda(\alpha)^{(p+3) /(2(p-1))}} \sqrt{\lambda(\alpha)\left\|u_{\alpha}\right\|_{\infty}^{2}\left(1-s^{2}\right)-\frac{2}{p+1}\left\|u_{\alpha}\right\|_{\infty}^{p+1}\left(1-s^{p+1}\right)} \leq C_{2}
$$

By this, (2.10) and Lebesgue's convergence theorem, we obtain

$$
\lim _{\alpha \rightarrow \infty} \frac{\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}}{\lambda(\alpha)^{(p+3) /(2(p-1))}}=2 \int_{0}^{1} \sqrt{\frac{p-1}{p+1}-s^{2}+\frac{2}{p+1} s^{p+1}} d s=\frac{2 C_{1}}{p+3} .
$$

This along with (1.4) implies our assertion. Thus the proof is complete.
Lemma 2.2. $d \gamma_{2}(\alpha) / d \alpha=2 \alpha \lambda_{2}(\alpha)$ for all $\alpha>0$.
Proof. By (1.1) and (2.2), we obtain

$$
\begin{align*}
\frac{d \gamma(\alpha)}{d \alpha} & =2 \int_{I} u_{\alpha}^{\prime}(t) \frac{d u_{\alpha}^{\prime}(t)}{d \alpha} d t+2 \int_{I} u_{\alpha}(t)^{p} \frac{d u_{\alpha}(t)}{d \alpha} d t \tag{2.11}\\
& =2 \int_{I}\left\{-u_{\alpha}^{\prime \prime}(t)+u_{\alpha}(t)^{p}\right\} \frac{d u_{\alpha}(t)}{d \alpha} d t \\
& =2 \lambda(\alpha) \int_{I} u_{\alpha}(t) \frac{d u_{\alpha}(t)}{d \alpha} d t=\lambda(\alpha) \frac{d}{d \alpha} \int_{I} u_{\alpha}(t)^{2} d t \\
& =2 \alpha \lambda(\alpha) .
\end{align*}
$$

By this, (2.1) and (2.3), we obtain our assertion.
Lemma 2.3. $\lambda_{2}(\alpha)=C_{1}(1+o(1)) \alpha^{(p-1) / 2}$ for $\alpha \gg 1$.
Proof. Multiply u_{α} by (1.1). Then integration by parts yields

$$
\begin{equation*}
\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}+\left\|u_{\alpha}\right\|_{p+1}^{p+1}=\lambda(\alpha) \alpha^{2} . \tag{2.12}
\end{equation*}
$$

By this and (2.2), we obtain

$$
\gamma(\alpha)-\frac{2}{p+1} \lambda(\alpha) \alpha^{2}=\frac{p-1}{p+1}\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}
$$

By substituting (2.1) and (2.3) for this, we obtain

$$
\begin{equation*}
\gamma_{2}(\alpha)-\frac{2}{p+1} \lambda_{2}(\alpha) \alpha^{2}=\frac{p-1}{p+1}\left\|u_{\alpha}^{\prime}\right\|_{2}^{2} \tag{2.13}
\end{equation*}
$$

Then by this and Lemma 2.2, we find that γ_{2} satisfies the differential equation

$$
\begin{equation*}
\gamma_{2}^{\prime}(\alpha)-\frac{p+1}{\alpha} \gamma_{2}(\alpha)=h(\alpha):=-\frac{(p-1)\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}}{\alpha} . \tag{2.14}
\end{equation*}
$$

We see from Lemma 2.1 that $|h(s)| / s^{p+1} \leq C_{3} s^{-(p+1) / 2}$ for $s \gg 1$. This implies that for $\alpha \gg 1$

$$
\begin{equation*}
\int_{\alpha}^{\infty} \frac{|h(s)|}{s^{p+1}} d s \leq \frac{2}{p-1} C_{3} \alpha^{(1-p) / 2} \tag{2.15}
\end{equation*}
$$

Then we see that the solution γ_{2} of (2.14) is represented as

$$
\begin{equation*}
\gamma_{2}(\alpha)=I_{1}(\alpha)+I_{2}(\alpha):=\alpha^{p+1} \int_{\alpha}^{\infty} \frac{-h(s)}{s^{p+1}} d s+C_{4} \alpha^{p+1} \tag{2.16}
\end{equation*}
$$

We see from (2.15) that $I_{1}(\alpha)=o\left(\alpha^{p+1}\right)$ for $\alpha \gg 1$. By (1.4) and (2.4), we obtain $\left\|u_{\alpha}\right\|_{p+1}^{p+1}=$ $(1+o(1)) \alpha^{p+1}$ for $\alpha \gg 1$. Therefore, by (2.2) and Lemma 2.1, for $\alpha \gg 1$, we obtain

$$
\begin{equation*}
\gamma(\alpha)=\frac{2}{p+1} \alpha^{p+1}+o\left(\alpha^{p+1}\right) . \tag{2.17}
\end{equation*}
$$

By this and (2.3), we see that $\gamma_{2}(\alpha)=o\left(\alpha^{p+1}\right)$. Therefore, we find that $C_{4}=0$, and consequently, by (2.16), we obtain

$$
\begin{equation*}
\gamma_{2}(\alpha)=\alpha^{p+1} \int_{\alpha}^{\infty} \frac{-h(s)}{s^{p+1}} d s \tag{2.18}
\end{equation*}
$$

Then by this, Lemma 2.1 and l'Hopital's rule, we obtain

$$
\lim _{\alpha \rightarrow \infty} \frac{\int_{\alpha}^{\infty}-h(s) / s^{p+1} d s}{\alpha^{(1-p) / 2}}=\lim _{\alpha \rightarrow \infty} \frac{2\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}}{\alpha^{(p+3) / 2}}=\frac{4}{p+3} C_{1} .
$$

This along with (2.18) implies that for $\alpha \gg 1$

$$
\begin{equation*}
\gamma_{2}(\alpha)=\frac{4 C_{1}}{p+3} \alpha^{(p+3) / 2}+o\left(\alpha^{(p+3) / 2}\right) \tag{2.19}
\end{equation*}
$$

Now, by (2.13) and Lemma 2.1, for $\alpha \gg 1$, we obtain

$$
\begin{equation*}
\lambda_{2}(\alpha) \alpha^{2}=\frac{p+1}{2} \gamma_{2}(\alpha)-\frac{p-1}{2}\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}=(1+o(1)) C_{1} \alpha^{(p+3) / 2} . \tag{2.20}
\end{equation*}
$$

This implies our conclusion. Thus the proof is complete.

3 The third and fourth terms of $\lambda(\alpha)$

Taking (2.1), (2.3), (2.19) and Lemma 2.3 into account, we put

$$
\begin{align*}
\lambda_{3}(\alpha) & :=\lambda(\alpha)-\alpha^{p-1}-C_{1} \alpha^{(p-1) / 2} \tag{3.1}\\
\gamma_{3}(\alpha) & :=\gamma(\alpha)-\frac{2}{p+1} \alpha^{p+1}-\frac{4 C_{1}}{p+3} \alpha^{(p+3) / 2} . \tag{3.2}
\end{align*}
$$

Then by (2.11), (3.1) and (3.2), we have

$$
\begin{equation*}
\frac{d \gamma_{3}(\alpha)}{d \alpha}=2 \alpha \lambda_{3}(\alpha) \tag{3.3}
\end{equation*}
$$

The following estimate for $\left\|u_{\alpha}\right\|_{\infty}$ enables us to repeat the arguments in the previous section.
Lemma 3.1. For $\alpha \gg 1$

$$
\begin{equation*}
\left(\lambda(\alpha)-e^{-C_{5} \sqrt{\lambda(\alpha)}}\right)^{1 /(p-1)} \leq\left\|u_{\alpha}\right\|_{\infty}<\lambda(\alpha)^{1 /(p-1)} . \tag{3.4}
\end{equation*}
$$

Proof. Since the second inequality is known by Berestycki [1], we have only to prove the first inequality. We put $v_{\alpha}(t):=\lambda(\alpha)^{-1 /(p-1)} u_{\alpha}(t+1 / 2)$ and $w_{\alpha}:=1-v_{\alpha}$. By (1.1) and (2.6), we see that w_{α} satisfies:

$$
\begin{aligned}
w_{\alpha}^{\prime \prime}(t) & =\lambda(\alpha)\left(1-w_{\alpha}(t)-\left(1-w_{\alpha}(t)\right)^{p}\right), \quad t \in\left(-\frac{1}{2}, \frac{1}{2}\right) \\
w_{\alpha}(0) & =1-\left\|v_{\alpha}\right\|_{\infty}, \\
w_{\alpha}^{\prime}(0) & =0 .
\end{aligned}
$$

Since $0<v_{\alpha}<1$ in I by the second inequality of (3.4), we have $0<w_{\alpha}<1$ in $(-1 / 2,1 / 2)$. By (2.4), we see that $v_{\alpha} \rightarrow 1$ and $w_{\alpha} \rightarrow 0$ uniformly on $I_{\delta}:=[-\delta, \delta]$ as $\alpha \rightarrow \infty$, where $0<\delta \ll 1$ is a fixed constant. Therefore, for a fixed constant $0<\epsilon \ll p-1$, we obtain by Taylor expansion that for $\alpha \gg 1$

$$
\begin{aligned}
\lambda(\alpha)(p-1-\epsilon) w_{\alpha} & <w_{\alpha}^{\prime \prime}(t)<\lambda(\alpha)(p-1+\epsilon) w_{\alpha}, \quad t \in I_{\delta} \\
w_{\alpha}(0) & =1-\left\|v_{\alpha}\right\|_{\infty}, \\
w_{\alpha}^{\prime}(0) & =0 .
\end{aligned}
$$

Since $W_{ \pm}(\alpha, t):=(1 / 2)\left(1-\left\|v_{\alpha}\right\|_{\infty}\right)\left(e^{\sqrt{(p-1 \pm \epsilon) \lambda(\alpha) t}}+e^{-\sqrt{(p-1 \pm \epsilon) \lambda(\alpha) t}}\right)$ satisfy

$$
\begin{aligned}
W_{ \pm}^{\prime \prime}(\alpha, t) & =\lambda(\alpha)(p-1 \pm \epsilon) W_{ \pm}(\alpha, t), \quad t \in I_{\delta} \\
W_{ \pm}(\alpha, 0) & =1-\left\|v_{\alpha}\right\|_{\infty} \\
W_{ \pm}^{\prime}(0) & =0
\end{aligned}
$$

we easily see that $W_{-}(\alpha, t) \leq w_{\alpha}(t) \leq W_{+}(\alpha, t)$ for $t \in I_{\delta}$ and $\alpha \gg 1$. This implies that as $\alpha \rightarrow \infty$

$$
\frac{1}{2}\left(1-\left\|v_{\alpha}\right\|_{\infty}\right) e^{\sqrt{(p-1-\epsilon) \lambda(\alpha) \delta}} \leq W_{-}(\alpha, \delta) \leq w_{\alpha}(\delta) \rightarrow 0
$$

This yields $1-C_{6} e^{-\delta \sqrt{(p-1-\epsilon) \lambda(\alpha)}} \leq\left\|v_{\alpha}\right\|_{\infty}$. Hence, there exists a constant $C_{5}>0$ such that for $\alpha \gg 1$

$$
\begin{aligned}
\left(\lambda(\alpha)-e^{-C_{5} \sqrt{\lambda(\alpha)}}\right)^{1 /(p-1)} & \leq \lambda(\alpha)^{1 /(p-1)}\left(1-C_{6} e^{-\delta \sqrt{(p-1-\epsilon) \lambda(\alpha)}}\right) \\
& \leq \lambda(\alpha)^{1 /(p-1)}\left\|v_{\alpha}\right\|_{\infty}=\left\|u_{\alpha}\right\|_{\infty}
\end{aligned}
$$

Thus the proof is complete. I

Next, we study the asymptotics of $\lambda_{3}(\alpha)$. To this end, we prove the following lemma.
Lemma 3.2. For $\alpha \gg 1$

$$
\begin{equation*}
(p+3) \gamma_{3}(\alpha)-4 \lambda_{3}(\alpha) \alpha^{2}=\eta_{0}(\alpha) \alpha^{2} \tag{3.5}
\end{equation*}
$$

where $\eta_{0}(\alpha) \rightarrow C_{1}^{2}$ as $\alpha \rightarrow \infty$.

Proof. For a fixed $\alpha>0$, it is easy to see that $L(\alpha, t):=\lambda(\alpha) t^{2} / 2-t^{p+1} /(p+1)$ is strictly increasing for $0 \leq t \leq \lambda(\alpha)^{1 /(p-1)}$. Therefore, by Lemma 3.1, we obtain

$$
\begin{equation*}
L\left(\alpha,\left(\lambda(\alpha)-e^{-C_{5} \sqrt{\lambda(\alpha)}}\right)^{1 /(p-1)}\right) \leq L\left(\alpha,\left\|u_{\alpha}\right\|_{\infty}\right) \leq L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right) \tag{3.6}
\end{equation*}
$$

First, we study the asymptotics of $L\left(\alpha,\left\|u_{\alpha}\right\|_{\infty}\right)$. By (2.2) and (2.12), we have

$$
\begin{align*}
\left\|u_{\alpha}^{\prime}\right\|_{2}^{2} & =\frac{p+1}{p-1}\left(\gamma(\alpha)-\frac{2}{p+1} \lambda(\alpha) \alpha^{2}\right) \tag{3.7}\\
\left\|u_{\alpha}\right\|_{p+1}^{p+1} & =\frac{p+1}{p-1}\left(\lambda(\alpha) \alpha^{2}-\gamma(\alpha)\right) \tag{3.8}
\end{align*}
$$

Integrate (2.8) over I. Then by (3.7) and (3.8), we obtain

$$
\begin{align*}
\frac{1}{2} u_{\alpha}^{\prime}(0)^{2} & =\frac{1}{2}\left\|u_{\alpha}^{\prime}\right\|_{2}^{2}-\frac{1}{p+1}\left\|u_{\alpha}\right\|_{p+1}^{p+1}+\frac{1}{2} \lambda(\alpha) \alpha^{2} \tag{3.9}\\
& =\frac{p+3}{2(p-1)} \gamma(\alpha)+\frac{p-5}{2(p-1)} \lambda(\alpha) \alpha^{2}
\end{align*}
$$

By substituting (3.1) and (3.2) for (3.9), we see from (2.8) that

$$
\begin{align*}
L\left(\alpha,\left\|u_{\alpha}\right\|_{\infty}\right)= & \frac{1}{2} u_{\alpha}^{\prime}(0)^{2} \\
= & \frac{p-1}{2(p+1)} \alpha^{p+1}+\frac{1}{2} C_{1} \alpha^{(p+3) / 2}+\frac{p+3}{2(p-1)} \gamma_{3}(\alpha) \\
& +\frac{p-5}{2(p-1)} \lambda_{3}(\alpha) \alpha^{2} . \tag{3.10}
\end{align*}
$$

Secondly, we study the asymptotics of $L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)$. By (3.1) and Taylor expansion, for $\alpha \gg 1$, we obtain

$$
\begin{align*}
L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right) & =\frac{(p-1)}{2(p+1)} \lambda(\alpha)^{(p+1) /(p-1)} \\
& =\frac{p-1}{2(p+1)}\left(\alpha^{p-1}+C_{1} \alpha^{(p-1) / 2}+\lambda_{3}(\alpha)\right)^{(p+1) /(p-1)} \\
& =\frac{p-1}{2(p+1)} \alpha^{p+1}\left(1+C_{1} \alpha^{(1-p) / 2}+\lambda_{3}(\alpha) \alpha^{1-p}\right)^{(p+1) /(p-1)} \tag{3.11}\\
& =\frac{p-1}{2(p+1)} \alpha^{p+1}\left\{1+\frac{p+1}{p-1}\left(C_{1} \alpha^{(1-p) / 2}+\lambda_{3}(\alpha) \alpha^{1-p}\right)\right. \\
& \left.+\frac{p+1}{(p-1)^{2}}\left(C_{1} \alpha^{(1-p) / 2}+\lambda_{3}(\alpha) \alpha^{1-p}\right)^{2}+o\left(\left(C_{1} \alpha^{(1-p) / 2}+\lambda_{3}(\alpha) \alpha^{1-p}\right)^{2}\right)\right\}
\end{align*}
$$

Note that $\lambda_{3}(\alpha)=o\left(\alpha^{(p-1) / 2}\right)$ by (3.1) and Lemma 2.3. By using this and (3.11), we obtain

$$
\begin{align*}
L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)= & \frac{p-1}{2(p+1)} \alpha^{p+1}+\frac{1}{2} C_{1} \alpha^{(p+3) / 2}+\frac{1}{2} \lambda_{3}(\alpha) \alpha^{2} \tag{3.12}\\
& +\frac{1}{2(p-1)} C_{1}^{2} \alpha^{2}+o\left(\alpha^{2}\right)
\end{align*}
$$

Finally, we study the asymptotics of $L\left(\alpha,\left(\lambda(\alpha)-e^{-C_{5} \sqrt{\lambda(\alpha)}}\right)^{1 /(p-1)}\right)$. By (1.4) and Taylor expansion, for $\alpha \gg 1$, we have

$$
\begin{align*}
& L\left(\alpha,\left(\lambda(\alpha)-e^{-C_{5} \sqrt{\lambda(\alpha)}}\right)^{1 /(p-1)}\right) \tag{3.13}\\
& =\left(\lambda(\alpha)-e^{-C_{5} \sqrt{\lambda(\alpha)}}\right)^{2 /(p-1)}\left(\frac{p-1}{2(p+1)} \lambda(\alpha)+\frac{e^{-C_{5} \sqrt{\lambda(\alpha)}}}{p+1}\right) \\
& =\lambda(\alpha)^{2 /(p-1)}\left(1-\frac{e^{-C_{5} \sqrt{\lambda(\alpha)}}}{\lambda(\alpha)}\right)^{2 /(p-1)}\left(\frac{p-1}{2(p+1)} \lambda(\alpha)+\frac{e^{-C_{5} \sqrt{\lambda(\alpha)}}}{p+1}\right) \\
& =\lambda(\alpha)^{2 /(p-1)}\left(1-\frac{2 e^{-C_{5} \sqrt{\lambda(\alpha)}}}{(p-1) \lambda(\alpha)}+\frac{(3-p) e^{-2 C_{5} \sqrt{\lambda(\alpha)}}}{(p-1)^{2} \lambda(\alpha)^{2}}+o\left(\lambda(\alpha)^{-2} e^{\left.-2 C_{5} \sqrt{\lambda(\alpha)}\right)}\right)\right. \\
& \times\left(\frac{p-1}{2(p+1)} \lambda(\alpha)+\frac{e^{-C_{5} \sqrt{\lambda(\alpha)}}}{p+1}\right) \\
& =\frac{p-1}{2(p+1)} \lambda(\alpha)^{(p+1) /(p-1)}-\frac{1}{2(p-1)}(1+o(1)) e^{-2 C_{5} \sqrt{\lambda(\alpha)}} \lambda(\alpha)^{(3-p) /(p-1)} \\
& =\frac{p-1}{2(p+1)} \lambda(\alpha)^{(p+1) /(p-1)}-O\left(e^{-2 C_{7} \alpha^{(p-1) / 2}} \alpha^{3-p}\right) \\
& =\frac{p-1}{2(p+1)} \lambda(\alpha)^{(p+1) /(p-1)}-o\left(\alpha^{2}\right) .
\end{align*}
$$

Therefore, by (3.10), (3.12) and (3.13), we obtain (3.5). Thus the proof is complete.
Lemma 3.3. $\lambda_{3}(\alpha)=(1+o(1)) C_{1}^{2} /(p-1)$ as $\alpha \rightarrow \infty$.
Proof. By (3.3) and (3.5), we obtain

$$
\begin{equation*}
\gamma_{3}^{\prime}(\alpha)-\frac{p+3}{2 \alpha} \gamma_{3}(\alpha)=-\frac{\eta_{0}(\alpha) \alpha}{2} . \tag{3.14}
\end{equation*}
$$

By solving this equation, we see that

$$
\begin{equation*}
\gamma_{3}(\alpha)=\alpha^{(p+3) / 2} \int_{\alpha}^{\infty} \frac{\eta_{0}(s)}{2 s^{(p+1) / 2}} d s+C_{8} \alpha^{(p+3) / 2} \tag{3.15}
\end{equation*}
$$

$\gamma_{3}(\alpha)=o\left(\alpha^{(p+3) / 2}\right)$ by (2.19) and (3.2). Moreover, the first term of the right hand side of (3.15) is also $o\left(\alpha^{(p+3) / 2}\right)$. Therefore, we see that $C_{8}=0$. Moreover, by l'Hopital's rule, we have

$$
\lim _{\alpha \rightarrow \infty} \frac{\int_{\alpha}^{\infty} \eta_{0}(s) /\left(2 s^{(p+1) / 2}\right) d s}{\alpha^{(1-p) / 2}}=\lim _{\alpha \rightarrow \infty} \frac{\eta_{0}(\alpha)}{p-1}=\frac{1}{p-1} C_{1}^{2}
$$

This along with (3.15) implies

$$
\begin{equation*}
\gamma_{3}(\alpha)=\frac{1}{p-1} C_{1}^{2}(1+o(1)) \alpha^{2} . \tag{3.16}
\end{equation*}
$$

Then by (3.5) and (3.16), we obtain

$$
\begin{equation*}
\lambda_{3}(\alpha) \alpha^{2}=\frac{p+3}{4} \gamma_{3}(\alpha)-\frac{1}{4}(1+o(1)) C_{1}^{2} \alpha^{2}=\frac{1}{p-1} C_{1}^{2}(1+o(1)) \alpha^{2} . \tag{3.17}
\end{equation*}
$$

Thus the proof is complete.
Taking Lemma 3.3 and (3.16) into account, we put

$$
\begin{align*}
\lambda_{4}(\alpha) & :=\lambda_{3}(\alpha)-\frac{1}{p-1} C_{1}^{2} \tag{3.18}\\
\gamma_{4}(\alpha) & :=\gamma_{3}(\alpha)-\frac{1}{p-1} C_{1}^{2} \alpha^{2} \tag{3.19}
\end{align*}
$$

Then by (3.3), (3.18) and (3.19), we obtain

$$
\begin{equation*}
\frac{d \gamma_{4}(\alpha)}{d \alpha}=2 \alpha \lambda_{4}(\alpha) \tag{3.20}
\end{equation*}
$$

LEMMA 3.4. $\lambda_{4}(\alpha)=(5-p)(9-p)(1+o(1)) C_{1}^{3} \alpha^{(1-p) / 2} /\left(24(p-1)^{2}\right)$ as $\alpha \rightarrow \infty$.
Proof. By (3.10), (3.18) and (3.19), we obtain

$$
\begin{align*}
L\left(\alpha,\left\|u_{\alpha}\right\|_{\infty}\right)= & \frac{p-1}{2(p+1)} \alpha^{p+1}+\frac{1}{2} C_{1} \alpha^{(p+3) / 2}+\frac{1}{p-1} C_{1}^{2} \alpha^{2} \tag{3.21}\\
& +\frac{p+3}{2(p-1)} \gamma_{4}(\alpha)+\frac{p-5}{2(p-1)} \lambda_{4}(\alpha) \alpha^{2} .
\end{align*}
$$

By the same argument as that to obtain (3.12), by (3.1), (3.18) and Taylor expansion, for $\alpha \gg 1$, we obtain

$$
L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)=\frac{p-1}{2(p+1)} \lambda(\alpha)^{(p+1) /(p-1)}
$$

$$
\begin{align*}
= & \frac{p-1}{2(p+1)}\left(\alpha^{p-1}+C_{1} \alpha^{(p-1) / 2}+\frac{1}{p-1} C_{1}^{2}+\lambda_{4}(\alpha)\right)^{(p+1) /(p-1)} \\
= & \frac{p-1}{2(p+1)} \alpha^{p+1}+\frac{1}{2} C_{1} \alpha^{(p+3) / 2}+\frac{1}{p-1} C_{1}^{2} \alpha^{2}+\frac{1}{2} \lambda_{4}(\alpha) \alpha^{2} \tag{3.22}\\
& +\frac{9-p}{6(p-1)^{2}} C_{1}^{3} \alpha^{(5-p) / 2}+o\left(\alpha^{(5-p) / 2}\right)
\end{align*}
$$

Therefore, by (3.6), (3.13), (3.21) and (3.22), we obtain

$$
\begin{equation*}
(p+3) \gamma_{4}(\alpha)-4 \lambda_{4}(\alpha) \alpha^{2}=\frac{9-p}{3(p-1)}(1+o(1)) C_{1}^{3} \alpha^{(5-p) / 2} \tag{3.23}
\end{equation*}
$$

This along with (3.20) implies

$$
\begin{equation*}
\gamma_{4}^{\prime}(\alpha)-\frac{p+3}{2 \alpha} \gamma_{4}(\alpha)=\eta_{1}(\alpha) \alpha^{(3-p) / 2} \tag{3.24}
\end{equation*}
$$

where $\eta_{1}(\alpha) \rightarrow(p-9) C_{1}^{3} /(6(p-1))$ as $\alpha \rightarrow \infty$. Then by the same calculation as that to obtain (3.15), we obtain

$$
\begin{equation*}
\gamma_{4}(\alpha)=\alpha^{(p+3) / 2} \int_{\alpha}^{\infty} \frac{-\eta_{1}(s)}{s^{p}} d s=\frac{9-p}{6(p-1)^{2}}(1+o(1)) C_{1}^{3} \alpha^{(5-p) / 2} \tag{3.25}
\end{equation*}
$$

Then by (3.23) and (3.25), we obtain

$$
\begin{align*}
\lambda_{4}(\alpha) \alpha^{2} & =\frac{p+3}{4} \gamma_{4}(\alpha)-\frac{9-p}{12(p-1)}(1+o(1)) C_{1}^{3} \alpha^{(5-p) / 2} \tag{3.26}\\
& =\frac{(5-p)(9-p)}{24(p-1)^{2}}(1+o(1)) C_{1}^{3} \alpha^{(5-p) / 2}
\end{align*}
$$

This implies our assertion.

4 Proof of Theorems

In this section, for $i, k, \mathrm{~m} \in \mathbf{N}_{0}$, the notation (4.m) $)_{i=k}$ means "(4.m) for the case $i=k$ ". By using the arguments in Section 3, we prove Theorem 1 by showing the following Proposition 4.1.

Proposition 4.1. There exist polynomials $\left\{B_{i}(p)\right\}_{i \geq 0}$ of p (deg $\left.B_{i}(p) \leq i\right)$ such that for any $n \in \mathbf{N}_{0}$, the following asymptotic formulas (4.1) and (4.2) hold as $\alpha \rightarrow \infty$:

$$
\begin{equation*}
\lambda(\alpha)=\alpha^{p-1}+C_{1} \alpha^{(p-1) / 2}+\sum_{j=0}^{n} \frac{a_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} \alpha^{j(1-p) / 2}+o\left(\alpha^{n(1-p) / 2}\right) \tag{4.1}
\end{equation*}
$$

$$
\begin{align*}
\gamma(\alpha)= & \frac{2}{p+1} \alpha^{p+1}+\frac{4}{p+1} C_{1} \alpha^{(p+3) / 2}+\sum_{j=0}^{n} \frac{b_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} \alpha^{2+j(1-p) / 2} \tag{4.2}\\
& +o\left(\alpha^{2+n(1-p) / 2}\right),
\end{align*}
$$

where

$$
\begin{align*}
a_{i}(p) & :=\frac{4+i(1-p)}{2(i+1)} B_{i}(p) \quad(0 \leq i \leq n), \tag{4.3}\\
b_{i}(p) & :=\frac{2}{i+1} B_{i}(p) \quad(0 \leq i \leq n) \tag{4.4}
\end{align*}
$$

For example, we know from Lemmas 3.3 and 3.4 that

$$
B_{0}(p)=\frac{1}{2}, B_{1}(p)=\frac{9-p}{6}, a_{0}(p)=1, a_{1}(p)=\frac{(5-p)(9-p)}{24}, b_{0}(p)=1, b_{1}(p)=\frac{9-p}{6} .
$$

To prove Proposition 4.1, we need the following Lemma 4.2, which is the extension of (3.22). For $1 \leq i \leq k$, we put

$$
\begin{align*}
\lambda_{i+3}(\alpha):= & \lambda(\alpha)-\alpha^{p-1}-C_{1} \alpha^{(p-1) / 2}-\sum_{j=0}^{i-1} \frac{a_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} \alpha^{j(1-p) / 2} \tag{4.5}\\
\gamma_{i+3}(\alpha):= & \gamma(\alpha)-\frac{2}{p+1} \alpha^{p+1}-\frac{4}{p+3} C_{1} \alpha^{(p+3) / 2} \tag{4.6}\\
& -\sum_{j=0}^{i-1} \frac{b_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} \alpha^{2+j(1-p) / 2}
\end{align*}
$$

Lemma 4.2. Let $k \in \mathbf{N}$ be fixed. Assume that (4.1) $)_{n=k-1}-(4.4)_{n=k-1}$ are valid. Then there exists a polynomial $B_{k}(p)$ of $p\left(\operatorname{deg} B_{k}(p) \leq k\right)$ determined by $a_{0}(p), a_{1}(p), \cdots, a_{k-1}(p)$ such that the following asymptotics holds as $\alpha \rightarrow \infty$:

$$
\begin{align*}
L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)= & \frac{p-1}{2(p+1)} \alpha^{p+1}+\frac{1}{2} C_{1} \alpha^{(p+3) / 2}+\frac{1}{2} \lambda_{k+3}(\alpha) \alpha^{2} \tag{4.7}\\
& +\sum_{j=0}^{k-1} \frac{A_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} \alpha^{2+j(1-p) / 2} \\
& +\frac{B_{k}(p)}{(p-1)^{k+1}} C_{1}^{k+2} \alpha^{2+k(1-p) / 2}+o\left(\alpha^{2+k(1-p) / 2}\right)
\end{align*}
$$

where

$$
\begin{equation*}
A_{i}(p)=\frac{8+5 i-i p}{4(i+1)} B_{i}(p) \quad(0 \leq i \leq k-1) \tag{4.8}
\end{equation*}
$$

Proof. We prove the assertion by the mathematical induction with respect to $k \in \mathbf{N}$.
The case $k=1 .(4.7)_{k=1}$ follows from (3.22) with $A_{0}(p)=1, B_{0}(p)=1 / 2$ and $B_{1}(p)=$ $(9-p) / 6$. (In this case, we do not have to assume $(4.1)_{n=0}-(4.4)_{n=0}$, since they follow from Lemma 3.3 and (3.16).) Thus the proof of the case $k=1$ is complete.

The case $k \geq 2$. Assume that $(4.1)_{n=k-1}-(4.4)_{n=k-1}$ hold. Clearly, $(4.1)_{n=k-1}-(4.4)_{n=k-1}$ imply (4.1) $n_{n=k-2}-(4.4)_{n=k-2}$. Therefore, by the induction assumption, we have (4.7), in which k is replaced by $k-1$. The proof of (4.7) is divided into three steps.

Step 1. We define $A_{k-1}(p)$ by $(4.8)_{i=k-1}$. Then we obtain by (4.3) $)_{0 \leq i \leq k-1}$ and $(4.4)_{0 \leq i \leq k-1}$ that for $0 \leq i \leq k-1$

$$
\begin{equation*}
A_{i}(p)=\frac{1}{2} a_{i}(p)+B_{i}(p)=\frac{p-5}{2(p-1)} a_{i}(p)+\frac{p+3}{2(p-1)} b_{i}(p)=\frac{8+5 i-i p}{4(i+1)} B_{i}(p) . \tag{4.9}
\end{equation*}
$$

This implies $(4.8)_{0 \leq i \leq k-1}$. By (4.1) $)_{n=k-1}$ and (4.5 $)_{i=k, k-1}$, for $\alpha \gg 1$, we obtain

$$
\begin{equation*}
\lambda_{k+3}(\alpha)=\lambda_{k+2}(\alpha)-\frac{a_{k-1}(p)}{(p-1)^{k}} C_{1}^{k+1} \alpha^{(k-1)(1-p) / 2}=o\left(\alpha^{(k-1)(1-p) / 2}\right) \tag{4.10}
\end{equation*}
$$

Substitute (4.10) for (4.7), in which k is replaced by $k-1$. Then by (4.9) $)_{i=k-1}$, we obtain

$$
\begin{align*}
L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)= & \frac{p-1}{2(p+1)} \alpha^{p+1}+\frac{1}{2} C_{1} \alpha^{(p+3) / 2}+\frac{1}{2} \lambda_{k+3}(\alpha) \alpha^{2} \tag{4.11}\\
& +\sum_{j=0}^{k-1} \frac{A_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} \alpha^{2+j(1-p) / 2}+r_{k}(\alpha)
\end{align*}
$$

where $r_{k}(\alpha)=o\left(\alpha^{2+(k-1)(1-p) / 2}\right)$. Therefore, to prove (4.7), it is sufficient to show that

$$
\begin{equation*}
r_{k}(\alpha)=\frac{B_{k}(p)}{(p-1)^{k+1}} C_{1}^{k+2} \alpha^{2+k(1-p) / 2}+o\left(\alpha^{2+k(1-p) / 2}\right) \tag{4.12}
\end{equation*}
$$

Step 2. To derive (4.12), we calculate $L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)$. We put

$$
g_{k}(x):=1+h_{k}(x):=1+C_{1} x+\sum_{j=0}^{k-1} \frac{a_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} x^{j+2}
$$

Furthermore, let $g_{k}(k+2, x)$ denote the Taylor expansion of $g_{k}(x)^{(p+1) /(p-1)}$ of $(k+2)$-th order, which is denoted by

$$
g_{k}(k+2, x)=1+c_{1}(p) x+c_{2}(p) x^{2}+\cdots+c_{k+2}(p) x^{k+2}
$$

Then by (4.5) $)_{i=k}$ and Taylor expansion, we have

$$
\begin{align*}
& L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)=\frac{p-1}{2(p+1)} \lambda(\alpha)^{(p+1) /(p-1)} \tag{4.13}\\
& =\frac{p-1}{2(p+1)} \alpha^{p+1}\left(1+h_{k}\left(\alpha^{(1-p) / 2}\right)+\lambda_{k+3}(\alpha) \alpha^{1-p}\right)^{(p+1) /(p-1)} \\
& =\frac{p-1}{2(p+1)} \alpha^{p+1}\left\{1+\frac{p+1}{p-1}\left(h_{k}\left(\alpha^{(1-p) / 2}\right)+\lambda_{k+3}(\alpha) \alpha^{1-p}\right)\right. \\
& \quad+\sum_{j=2}^{k+2} \frac{(p+1) 2(3-p) \cdots(j-(j-2) p)}{j!(p-1)^{j}}\left(h_{k}\left(\alpha^{(1-p) / 2}\right)+\lambda_{k+3}(\alpha) \alpha^{1-p}\right)^{j} \\
& \left.\quad+o\left(\alpha^{(k+2)(1-p) / 2}\right)\right\} .
\end{align*}
$$

Let $2 \leq j \leq k+2$ be fixed. We denote by $\left\{z_{l, j}(\alpha)\right\}_{l}$ the terms of the expansion of $\left(h_{k}\left(\alpha^{(1-p) / 2}\right)+\lambda_{k+3}(\alpha) \alpha^{1-p}\right)^{j}$ which contain $\lambda_{k+3}(\alpha)$. Then by (4.10), for $\alpha \gg 1$, we obtain

$$
\left|z_{l, j}(\alpha)\right| \leq C \alpha^{(j-1)(1-p) / 2} \cdot\left(\lambda_{k+3}(\alpha) \alpha^{1-p}\right)=o\left(\alpha^{(k+j)(1-p) / 2}\right)=o\left(\alpha^{(k+2)(1-p) / 2}\right)
$$

Then by this and (4.13), we obtain

$$
\begin{align*}
& L\left(\alpha, \lambda(\alpha)^{1 /(p-1)}\right)=\frac{p-1}{2(p+1)} \alpha^{p+1} \tag{4.14}\\
& \times\left\{1+\frac{p+1}{p-1} h_{k}\left(\alpha^{(1-p) / 2}\right)+\sum_{j=2}^{k+2} \frac{(p+1) 2(3-p) \cdots(j-(j-2) p)}{j!(p-1)^{j}} h_{k}\left(\alpha^{(1-p) / 2}\right)^{j}\right. \\
& \left.\quad+o\left(\alpha^{(k+2)(1-p) / 2}\right)\right\}+\frac{1}{2} \lambda_{k+3}(\alpha) \alpha^{2} \\
& =\frac{p-1}{2(p+1)} \alpha^{p+1}\left\{1+c_{1}(p) \alpha^{(1-p) / 2}+c_{2}(p) \alpha^{2(1-p) / 2}+\cdots+c_{k+2}(p) \alpha^{(k+2)(1-p) / 2}\right\} \\
& +\frac{1}{2} \lambda_{k+3}(\alpha) \alpha^{2}+o\left(\alpha^{2+k(1-p) / 2}\right)
\end{align*}
$$

Then by noting $\alpha^{p+1} \cdot \alpha^{(k+2)(1-p) / 2}=\alpha^{2+k(1-p) / 2}$, we see from (4.11) and (4.14) that

$$
\begin{equation*}
r_{k}(\alpha)=\frac{p-1}{2(p+1)} c_{k+2}(p) \alpha^{2+k(1-p) / 2}+o\left(\alpha^{2+k(1-p) / 2}\right) \tag{4.15}
\end{equation*}
$$

Step 3. $(k+2)!c_{k+2}(p)$ is given by the $(k+2)$-th derivative of $g_{k}(x)^{(p+1) /(p-1)}$ at $x=0$. We recall that the n-th derivative of a composite function $z(x)=Z(y)$ and $y=\psi(x)$ is

$$
\frac{d^{n}}{d x^{n}} z(x)=\sum \frac{n!}{\left(\beta_{1}\right)!\left(\beta_{2}\right)!\cdots\left(\beta_{h}\right)!} \frac{d^{m} Z}{d y^{m}}\left(\frac{y^{\prime}}{1!}\right)^{\beta_{1}}\left(\frac{y^{\prime \prime}}{2!}\right)^{\beta_{2}}\left(\frac{y^{\prime \prime \prime}}{3!}\right)^{\beta_{3}} \cdots\left(\frac{y^{(h)}}{h!}\right)^{\beta_{h}}
$$

Here, the symbol \sum indicates summation over all solutions in non negative integers of the equation $\beta_{1}+2 \beta_{2}+\cdots+h \beta_{h}=n$ and $m=\beta_{1}+\beta_{2}+\cdots+\beta_{h}$. By using this formula for $n=k+2$, we obtain

$$
\begin{aligned}
c_{k+2}(p)= & \left.\frac{1}{(k+2)!} \frac{d^{k+2}\left(g_{k}(x)^{(p+1) /(p-1)}\right)}{d x^{k+2}}\right|_{x=0} \\
= & \sum \frac{1}{\left(\beta_{1}\right)!\left(\beta_{2}\right)!\cdots\left(\beta_{h}\right)!}\left(\frac{p+1}{p-1}\right)\left(\frac{2}{p-1}\right)\left(\frac{3-p}{p-1}\right)\left(\frac{m-(m-2) p}{p-1}\right) \\
& \times\left(C_{1}\right)^{\beta_{1}}\left(\frac{a_{0}(p) C_{1}^{2}}{p-1}\right)^{\beta_{2}} \cdots\left(\frac{a_{h-2}(p) C_{1}^{h}}{(p-1)^{h-1}}\right)^{\beta_{h}} .
\end{aligned}
$$

Then we first find that the exponent of $(p-1)$ in the denominator of $c_{k+2}(p)$ is $m+\beta_{2}+$ $2 \beta_{3}+\cdots+(h-1) \beta_{h}=k+2$. Secondly, $c_{k+2}(p)$ contains $C_{1}^{\beta_{1}+2 \beta_{2}+\cdots+h \beta_{h}}=C_{1}^{k+2}$. Thirdly, since deg $B_{i}(p) \leq i$ for $0 \leq i \leq k-1$, we know from (4.3) $)_{0 \leq i \leq k-1}$ that deg $a_{i}(p) \leq i+1$ for $0 \leq i \leq k-1$. Therefore, we see that the degree of the numerator of $c_{k+2}(p)$ is at most $m-1+\beta_{2}+2 \beta_{3}+(h-1) \beta_{h}=k+1$. Finally, since the numerator of $c_{k+2}(p)$ contains the term $(p+1)$, we see that

$$
\begin{equation*}
c_{k+2}(p)=\frac{(p+1) C_{1}^{k+2} \tilde{c}_{k+2}(p)}{(p-1)^{k+2}} \tag{4.16}
\end{equation*}
$$

where $\tilde{c}_{k+2}(p)$ is a polynomial of p with $\operatorname{deg} \tilde{c}_{k+2}(p) \leq k$. Then by (4.12), (4.15) and (4.16), we obtain $B_{k}=\tilde{c}_{k+2} / 2$. Now (4.7) follows from (4.11) and (4.12).

Now we prove Proportion 4.1.
Proof of Proposition 4.1. We prove (4.1)-(4.4) by mathematical induction with respect to $n \in \mathbf{N}_{0}$.

The case $n=0$. By (3.1), (3.2), Lemma 3.3 and (3.16), we see that $(4.1)_{n=0}-(4.4)_{n=0}$ are valid with $a_{0}(p)=b_{0}(p)=1, B_{0}(p)=1 / 2$. Thus the proof of the case $n=0$ is complete.

The case $n=k$. Assume that (4.1) $)_{n=k-1^{-}}(4.4)_{n=k-1}$ are valid. Then it follows from (4.3)
$)_{0 \leq i \leq k-1}$ and (4.4) $0_{0 \leq i \leq k-1}$ that

$$
a_{i}(p)=\frac{4+i(1-p)}{4} b_{i}(p) \quad(0 \leq i \leq k-1) .
$$

By this, (2.11), (4.5) $)_{i=k}$ and (4.6) $)_{i=k}$, we obtain

$$
\begin{equation*}
\frac{d \gamma_{k+3}(\alpha)}{d \alpha}=2 \alpha \lambda_{k+3}(\alpha) \tag{4.17}
\end{equation*}
$$

Substitute (4.5) $)_{i=k}$ and (4.6) $)_{i=k}$ for (3.9). Then by (3.10) and (4.9) $)_{0 \leq i \leq k-1}$, we obtain

$$
\begin{align*}
L\left(\alpha,\left\|u_{\alpha}\right\|_{\infty}\right)= & \frac{p-1}{2(p+1)} \alpha^{p+1}+\frac{1}{2} C_{1} \alpha^{(p+3) / 2}+\sum_{j=0}^{k-1} \frac{A_{j}(p)}{(p-1)^{j+1}} C_{1}^{j+2} \alpha^{2+j(1-p) / 2} \tag{4.18}\\
& +\frac{p+3}{2(p-1)} \gamma_{k+3}(\alpha)+\frac{p-5}{2(p-1)} \lambda_{k+3}(\alpha) \alpha^{2}
\end{align*}
$$

By this, (3.6), (3.13) and (4.7), we obtain

$$
\begin{equation*}
\frac{p+3}{2(p-1)} \gamma_{k+3}(\alpha)-\frac{4}{2(p-1)} \lambda_{k+3}(\alpha) \alpha^{2}=\frac{B_{k}(p)}{(p-1)^{k+1}}(1+o(1)) C_{1}^{k+2} \alpha^{2+k(1-p) / 2} \tag{4.19}
\end{equation*}
$$

Then by (4.17) and (4.19), we obtain

$$
\begin{equation*}
\gamma_{k+3}^{\prime}(\alpha)-\frac{p+3}{2 \alpha} \gamma_{k+3}(\alpha)=\eta_{k}(\alpha) \alpha^{1+k(1-p) / 2} \tag{4.20}
\end{equation*}
$$

where $\eta_{k}(\alpha) \rightarrow-B_{k}(p) C_{1}^{k+2} /(p-1)^{k}$ as $\alpha \rightarrow \infty$. By (4.2) $)_{n=k-1}$ and (4.6) $)_{i=k}$, we see that $\gamma_{k+3}(\alpha)=o\left(\alpha^{2+(k-1)(1-p) / 2}\right)=o\left(\alpha^{(p+3) / 2}\right)$ for $\alpha \gg 1$. Therefore, by solving (4.20), we obtain

$$
\begin{equation*}
\gamma_{k+3}(\alpha)=\alpha^{(p+3) / 2} \int_{\alpha}^{\infty}-\eta_{k}(s) s^{(k(1-p)-(1+p)) / 2} d s \tag{4.21}
\end{equation*}
$$

Then by l'Hopital's rule, we obtain

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \frac{\int_{\alpha}^{\infty}-\eta_{k}(s) s^{(k(1-p)-(1+p)) / 2} d s}{\alpha^{(k+1)(1-p) / 2}}=\frac{2 B_{k}(p)}{(k+1)(p-1)^{k+1}} C_{1}^{k+2} \tag{4.22}
\end{equation*}
$$

This along with (4.21) implies

$$
\begin{equation*}
\gamma_{k+3}(\alpha)=\frac{2 B_{k}(p)}{(k+1)(p-1)^{k+1}} C_{1}^{k+2}(1+o(1)) \alpha^{2+k(1-p)) / 2} \tag{4.23}
\end{equation*}
$$

By putting $b_{k}(p)=2 B_{k}(p) /(k+1)$, we obtain (4.4) $)_{n=k}$. Then we obtain (4.2 $)_{n=k}$ by (4.4) $)_{n=k}$, $(4.6)_{i=k}$ and (4.23). Now, by (4.19) and (4.23), we obtain

$$
\begin{align*}
\lambda_{k+3}(\alpha) \alpha^{2} & =\frac{p+3}{4} \gamma_{k+3}(\alpha)-\frac{B_{k}(p)}{2(p-1)^{k}}(1+o(1)) C_{1}^{k+2} \alpha^{2+k(1-p) / 2} \tag{4.24}\\
& =\frac{(4+k(1-p)) B_{k}(p)}{2(k+1)(p-1)^{k+1}}(1+o(1)) C_{1}^{k+2} \alpha^{2+k(1-p) / 2}
\end{align*}
$$

By putting $a_{k}(p)=(4+k(1-p)) B_{k}(p) /(2(k+1))$, we obtain (4.3) $)_{n=k}$. Then we obtain $(4.1)_{n=k}$ by $(4.3)_{n=k},(4.5)_{i=k}$ and (4.24). Thus the proof is complete.

Now we get Theorem 1 from Proposition 4.1. Theorem 2 is a direct consequence of (2.5), (3.6), (3.10), (3.13), $(4.7)_{k=n+1}$ and (4.24) $)_{k=n+1}$. Finally, Theorem 3 is a consequence of Lemma 3.1 and Theorem 1. Thus the proofs of Theorems 1-3 are complete.

We conclude this section by the proof of Corollary 4. We note that $u_{m, \alpha}$ satisfies

$$
\begin{align*}
-u_{m, \alpha}^{\prime \prime}(t)+u_{m, \alpha}^{p}(t) & =\lambda(m, \alpha) u_{m, \alpha}(t), \quad t \in(0,1 / m) \tag{4.25}\\
u_{m, \alpha}(t) & >0, \quad t \in(0,1 / m) \tag{4.26}\\
u_{m, \alpha}(0) & =u_{m, \alpha}(1 / m)=0 . \tag{4.27}
\end{align*}
$$

We put $s=m t, \beta:=m^{-2 /(p-1)} \alpha$ and $w_{m, \beta}(s)=m^{-2 /(p-1)} u_{m, \alpha}(t)$. Then $\left\|w_{m, \beta}\right\|_{2}=\beta$ and $\left(\lambda(m, \alpha) / m^{2}, w_{m, \beta}\right)$ satisfies (1.1)-(1.3). Then by Theorem 1 , for $\alpha \gg 1$, we obtain

$$
\begin{align*}
\frac{\lambda(m, \alpha)}{m^{2}}= & \beta^{p-1}+C_{1} \beta^{(p-1) / 2}+\sum_{k=0}^{n} \frac{a_{k}(p)}{(p-1)^{k+1}} C_{1}^{k+2} \beta^{k(1-p) / 2} \tag{4.28}\\
& +o\left(\beta^{n(1-p) / 2}\right)
\end{align*}
$$

This along with the definition of β implies (1.11). Next, by noting

$$
\begin{align*}
w_{m, \beta}^{\prime}(0) & =m^{-(p+1) /(p-1)} u_{m, \alpha}^{\prime}(0), \tag{4.29}\\
\left\|w_{m, \beta}\right\|_{\infty} & =m^{-2 /(p-1)}\left\|u_{m, \alpha}\right\|_{\infty}, \tag{4.30}
\end{align*}
$$

we easily obtain (1.12) by Theorem 2 and (4.29). Finally, (1.13) follows from Theorem 3 and (4.30).

Acknowledgments

The author should like to thank the referee for his helpful comments that improved the manuscript, and in particular, for suggesting that Corollary 4 should be included in the revised version of the manuscript. This research has been supported by Japan Society for the Promotion of Science.

References

[1] H. Berestycki, Le nombre de solutions de certains problèmes semi-linéares elliptiques, J. Functional Analysis 40 (1981), 1-29.
[2] A. Bongers, H.-P. Heinz and T. Küpper, Existence and bifurcation theorems for nonlinear elliptic eigenvalue problems on unbounded domains, J. Differential Equations 47 (1983), 327357.
[3] J. Chabrowski, On nonlinear eigenvalue problems, Forum Math. 4 (1992), 359-375.
[4] R. Chiappinelli, Remarks on bifurcation for elliptic operators with odd nonlinearity, Israel J. Math. 65 (1989), 285-292.
[5] R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinear term, Nonlinear Anal. TMA 13 (1989), 871-878.
[6] R. Chiappinelli, Constrained critical points and eigenvalue approximation for semilinear elliptic operators, Forum Math. 11 (1999), 459-481.
[7] J. M. Fraile, J. López-Gómez and J. C. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations 123 (1995), 180-212.
[8] H.-P. Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987) 263-300.
[9] H.-P. Heinz, Nodal properties and bifurcation from the essential spectrum for a class of nonlinear Sturm-Liouville problems, J. Differential Equations 64 (1986) 79-108.
[10] H.-P. Heinz, Nodal properties and variational characterizations of solutions to nonlinear Sturm-Liouville problems, J. Differential Equations 62 (1986) 299-333.
[11] M. Holzmann and H. Kielhöfer, Uniqueness of global positive solution branches of nonlinear elliptic problems, Math. Ann. 300 (1994), 221-241.
[12] P. Rabinowitz, A note on a nonlinear eigenvalue problem for a class of differential equations, J. Differential Equations 9 (1971), 536-548.
[13] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.
[14] T. Shibata, Asymptotic behavior of the variational eigenvalues for semilinear Sturm-Liouville problems, Nonlinear Anal. TMA 18 (1992), 929-935.

