Nonlinearity of energy of Rankine flows on a torus

Nonlinear Analysis Volume 47 Issue 8 Page 5467-5477 published_at 2001-08
アクセス数 : 758
ダウンロード数 : 182

今月のアクセス数 : 2
今月のダウンロード数 : 0
File
NA_47-8_5467.pdf 434 KB 種類 : fulltext
Title ( eng )
Nonlinearity of energy of Rankine flows on a torus
Creator
Source Title
Nonlinear Analysis
Volume 47
Issue 8
Start Page 5467
End Page 5477
Abstract
Westudy an ideal fluid flow on a torus described by the Weierstrass ζ-function. In spite of the analogy of this function to the Joukowski transformation on the plane the convex (planar) domain bounded by two streamlines passing through the stagnation points is not a disk. The energy of the flow outside the convex domain is generally nonlinear function of the strength of the dipole; in fact the energy is in only two cases a linear function of the strength, and otherwise it is a quadratic function.
Keywords
Ideal fluid flows on a torus
Weierstrass ζ-function
Energy of a flow
Language
eng
Resource Type journal article
Publisher
Elsevier
Date of Issued 2001-08
Rights
Copyright (c) 2001 Elsevier Science Ltd
Publish Type Author’s Original
Access Rights open access
Source Identifier
[ISSN] 0362-546X
[DOI] 10.1016/S0362-546X(01)00651-4
[NCID] AA00757060
[DOI] http://dx.doi.org/10.1016/S0362-546X(01)00651-4