Nonlinearity of energy of Rankine flows on a torus
Nonlinear Analysis Volume 47 Issue 8
Page 5467-5477
published_at 2001-08
アクセス数 : 758 件
ダウンロード数 : 182 件
今月のアクセス数 : 2 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00020098
File |
NA_47-8_5467.pdf
434 KB
種類 :
fulltext
|
Title ( eng ) |
Nonlinearity of energy of Rankine flows on a torus
|
Creator | |
Source Title |
Nonlinear Analysis
|
Volume | 47 |
Issue | 8 |
Start Page | 5467 |
End Page | 5477 |
Abstract |
Westudy an ideal fluid flow on a torus described by the Weierstrass ζ-function. In spite of the analogy of this function to the Joukowski transformation on the plane the convex (planar) domain bounded by two streamlines passing through the stagnation points is not a disk. The energy of the flow outside the convex domain is generally nonlinear function of the strength of the dipole; in fact the energy is in only two cases a linear function of the strength, and otherwise it is a quadratic function.
|
Keywords |
Ideal fluid flows on a torus
Weierstrass ζ-function
Energy of a flow
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Elsevier
|
Date of Issued | 2001-08 |
Rights |
Copyright (c) 2001 Elsevier Science Ltd
|
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[ISSN] 0362-546X
[DOI] 10.1016/S0362-546X(01)00651-4
[NCID] AA00757060
[DOI] http://dx.doi.org/10.1016/S0362-546X(01)00651-4
|