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Abstract •E

We study an ideal fluid flow on a torus described by the Weierstrass ^-function.
In spite of the analogy of this function to the Joukowski transformation on the
plane the convex (planar) domain bounded by two streamlines passing through the
stagnation points is not a disk. The energy of the flow outside the convex domain
is generally nonlinear function of the strength of the dipole; in fact the energy is
in only two cases a linear function of the strength, and otherwise it is a quadratic
function.

Key words: Ideal fluid flows on a torus; Weierstrass ^-function; Energy of a flow

1. Introduction

The generalized uniformization theorem - orthe fundamental theorem in the
theory ofconformal mapping - provedby Koebe and Courant states that any
plane domain can be mapped onto a so-called minimal horizontal slit domain.
To be more precise, for any plane domain G and any point z0 on G there exists
a meromorphic function / such that

(i) / is univalent on G,
(ii) / has a single simple pole at z0, and

(iii) C \ f(G) consists of horizontal segments whose total area vanishes.
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Roughly speaking, the last condition states that Im / assumes a constant value
on each ideal boundary component of G. In terms of physics - in particular
those of hydrodynamics - the function / describes a dipole flow of an ideal
fluid on G with impenetrable boundary.

The above theorem is indeed a generalization of the celebrated mapping the-
orem of Riemann; we can use the Joukowski transformation

J(z):=z+-
z

to see the relation of the Riemann mapping theorem and the theorem ofKoebe-
Courant.

In hydrodynamics we have a notion of "Rankine ovoids". A Rankine ovoid
comes from a superposition of a uniform flow and a flow with a pair of sink
and source of the same strength. Rankine ovoids are thus phenomena linearly
produced, but they are connected with a nonlinear problem in the theory
of conformal mapping. In fact, the quantities with which we are involved
below - such as the coefficients of the resulting conformal mapping function
and the energy of the flow - donot depend on the summands linearly. The
dependence of the first Taylor coefficient of the regular part upon the places
and the strength of the sink and source is studied in [4].

In the present article we discuss similar problems for the case of genus one. To
this end we recall that the Joukowski transformation for the plane is a special
case of Rankine ovoids where the sink and the source coincide, that is, it is
the sum of the uniform flow z and a dipole flow 1/z. Now, let T be a torus.
We moveto the universal covering surface C of T to construct a flow on T.
The functions to be considered are thus of the form

Fn(z) := z+n<;{z), fi > 0,

where £ denotes the Weierstrass £ function. The function F^ with an appro-
priate fj, defines a potential flow on T, which will be called a "dipole Rankine
flow" on T. Each dipole Rankine flow on T splits into two flows as in the
plane case, one flow is limited in a neighborhood B^ of the dipole and the
other is a flow outside B^. The domain B^ is bounded by the streamlines
passing through the stagnation points. We call B^ a "dipole Rankine ovoid"
onT.

From the function-theoretic viewpoint, F^ is an analytic mapping of a noncom-
pact torus T\Bfl onto another. This is based on the fact that the function F^
has simultaneously automorphic and polymorphic properties. Among various
mapping properties of F^ we are particularly interested in the following prob-
lems: What kind of Riemann surface is the conformal image of the function



Fp? Can Bfj, be - asin the plane case - adisk?

The topics with which we are concerned here bring some new problems whose
prototypes cannot be found in the planar case (see [4]), for in nonplanar cases
wecannot do without the notion of moduli. We remark that a quite different
algebraic method from the one employed in this paper can be found in [3].

2. Preliminaries

To save space we skip over the general theory (see e.g., [7], [11]) of conformal
embedding of a noncompact Riemann surface of finite genus into compact Rie-
mannsurfaces of the same genus. Instead, we start with a concrete realization
of a noncompact torus. (For general results for the case of genus one, see [8],
[9]-)

Let u>i and u>3 be a pair of complex numbers with Im (u;3/a>i) > 0 and consider
the lattice

L[2uu2w3]:={ueC|u=2mwi+2nuz, m,neZ}

in the z-p\ane and the torus

T0 := C/Z,[2u;i , 2a;3].

Let

p(z) =p(z;Wl>W3) :=i+£'I^p-^}

be the Weierstrass £>function with the fundamental periods 2u>i and 2(^3,
where

£'= E

stands for the sum for all nonzero u (E L[2u\, 2ui3].

Now,let

., 1 v^/f 1 1 z\
2 *-' Iz-U U) Up-J

be the Weierstrass C-function. We know that



ceo=--r\pw-^\dz and p(*)=-cw-

As is well known, the complex numbers

Vkå =CM

satisfy the functional identities

£(z+2uk) = C{z) +2r]k

(k = 1,2,3), where U2 := -(uji +u3) as routine.

The results so far are all classical and thus the readers can be refered to any
textbooks on the theory offunctions. For the details, see [1] or [5] for example.

3. Dipole Rankine flows

In the following we can and often do normalize the periods so that

2o;i = 1 and 2uj3 =r0.

However, it is also convenient to continue using the general notation 2u3\ and
2^3 to see more clearly what we do.

Fix a positive real number // with

0<a*< -7-r

and consider the function

F^z) := z+iiC,{z), z e C.

The function F^ defines a potential flow on To := C/Z,[l,r0], since

f;W = i+/1('(z) =i-w(z)

is a singlevalued meromorphic function, that is, a complex velocity function,
on To. The flow will be called in this paper a dipole Rankine flow on To. For
further information on doubly periodic flows, see, for example, [2] and [13]
(esp. p. 263, Prob. 1427).
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Fig. 1. Dipole Rankine ovoids for u>\ = 0.5 and W3 = 0.4i. The values of /x are
0.01 (left) and 0.1 (right).

The flow has two stagnation points on To, which we denote by ±z0. They
satisfy the equation

0 = F'^zq) = 1 -np{zo).

Wemay assume that z0 > 0. Because of the assumption on /i we see that the
stream lines

L,,. : Im(z+nC{z)) = 0

passing through the stagnation points bound a domain B^ on To containing
the dipole. We call the domain B^ a dipole Rankine ovoid on the torus To. As
for illustrations, see Figure 1.

To observe F^ more function-theoretically, we first confine ourselves to the
upper half fundamental rectangle

Q+ :={zà¬C I |Rez| < l/2(=ut), 0<Imz<Imro/2(=lmu3)}

(cf. [13], loc. cit.).

Wedefine the lower half fundamental rectangle Q~ similarly. The flow on To
can then be obtained by symmetrization of Q+ in the real axis.

The dipole Rankine ovoid B^ on To is now realized as the union of two domains

B± :={z(=Q± \ ImFtl(z)$0}

and the open interval (-^0, -^0) on the real axis.

The function Fp is auto- and polymorphic; it satisfies

F^z+2uk) = (z+2W*) +nC(z+2ujk) = F^z) + (2uk+/i•E2%)

for each k = 1, 2, 3. This means that F^ gives a holomorphic bijection ofT0\B^,
onto a horizontal slit torus



i2o(/i) := To(Ai) \ Eo(/x),

where T0(fi) is a torus and Eo(/i) is a straight horizontal line segment on
To(/x). Here, the "straightness" is understood in terms of the metric of some
(equivalently, any) holomorphic differential on To(fi), and the "horizontal"
means that the slit can be realized on the plane as an interval on the real axis.

By the choice offj, and by the well known properties of the functions C and p,
we see that

F^i)>0 or ui+ht}\>0.

Taking this fact into account, we know that the modulus To(/z) of Tq{jj) is -
under our normalization 2cji = 1 and 2u3 = tq - given by

^3+A"fo _ tq+n•E2C(ro/2)
wi+a*»7i ~ 1+A»'2C(l/2) "

The length £o{/J,) of the slit Eo(aO 1S

2|FM(zb)| = 2\zo+rt(zo)\

1+A*•E2C(l/2) l+A*-2C(l/2)f

where the length is measured in comparison with the geodesic length 2^i = 1.
The energy of the dipole Rankine flow on To \ B^ is given by

«M-«-H?+*(?)H£+"(i)}-

while the energy of the flow inside B^ is always infinite.

Weshall later ask if the dipole Rankine ovoid can be a disk. We also want to
know how the energy of the dipole Rankin flows depend on the strength /i.
Before discussing these problems we see in the next section what kind of roles
the problems play in the theory of conformal mapping.

4. The span ofaslit torus

The slit torus Ro(fJ,) obtained in the previous section can be mapped onto
another slit torus, a vertical slit torus,

where Ti(/z) is a torus and Xq(ju) is a straight vertical line segment on Ti(/z).



The modulus Ti(n) of the torus Ti(ju) and the length of the slit Ei(/x) can be
computed explicitly in terms of elliptic functions. The length is again measured
compared with the geodesic length. See [12].

The quantity a := Im [ri(fj) - T0(fj,)] is known as the span of the noncompact
torus To \ B^. For the basic properties of the span, see [9]. Cf. also [12] and
[6].

To recall the importance of the span in the theory of conformal mapping we
quote here only the following three theorems([8], [9]):

Theorem 1. The horizontal slit torus Rain) (resp. the vertical slit torus
i?i(/i)) is minimal (resp. maximal) in the sense that its modulus has the mini-
mum(resp. maximum) imaginary part among all the (compact) tori into which
the noncompact torus Tq \ B^ is conformally embedded.

Theorem 2. The disk M whose diameter a is the closed interval [Imro(ju),
Imri(//)] on the imaginary axis describes the totality of all the possible con-
formal embeddings of the noncompact torus T0 \ Bli.

Theorem 3. The maximum of the omitted area among all the possible con-
formal embeddings of To \ B^ into tori - measured by the normalized holo-
morphic differential - is attained at the euclidean center of the disk M and
the maximum is equal to a/A.

In the above three theorems, any conformal mapping is supposed to preserve
the cycles corresponding to the periods 2wi and 2w3 respectively. As a matter
of fact we should have considered an abstract noncompact Riemann surface
R which is conformally equivalent to Tq \ B^. But we could actually choose
from the outset a noncompact torus which is obtained as the complement of a
dipole Rankine ovoid on a torus as one of such surfaces. Also we should have
carefully observed the correspondence of the homology basis of tori. In our
present case, however, the correspondence is rather obvious, so that we have
not been concerned with the complicated definitions. See, for the details, [7],
[8] and [9].

On the other hand, in the following theorem ([9]) we do not need to prescribe
any correspondence between homology groups, and hence the theorem is more
intrinsic.

Theorem 4. The ratio of the omitted area to the total area is maximized at
the hyperbolic center of the disk M and the maximumis equal to o"#/2, where



Im T! Ti
aH:= log = log-Im r0 r0

stands for the hyperbolic diamter of the (hyperbolic) disk M.

To explain the results hydrodynamically, we need a new definition. Let R be
a noncompact torus. An irrotational and solenoidal (two-dimensional) flow on
R will be called uniformly extendable, if there is another torus T containing
R as a subsurface such that the flow is the restriction of a uniform flow on T.

The following theorem follows at once.

Theorem 5. Any dipole Rankine flow is uniformly extendable, if it is re-
stricted to the outside of the dipole Rankine ovoid.

Nowwe ask: How large can the energy of a uniformly extendable flow be? To
eliminate the influence of a multiplicative factor, we consider the ratio

(Energy of the flow on R)/(Energy of the flow on T),

or, equivalently,

(Energy of the flow on T \ R)/(Energy of the flow on T).

For this question we have, for example,

Theorem 6. Let Eo be the energy of a uniformly extendableflow on a non-
compact torus R. Let Ei be the energy oftheflow outside R (that is, on T\R,
where T is as above). Then, Ei/Eq is maximized by a torus whose modulus is
located at the hyperbolic center of M.

5. Energy ofa dipole Rankine flow

The Weierstrass C-function is a kind of generalization of a dipole flow on the
plane. However, the function F^ is not so simple as the Joukowski transfor-
mation on the plane, as the following example shows.

Example. A dipole Rankine ovoid on a torus which is not a disk. Here, a set
on a torus is said to be a disk, if its lift to the universal covering surface C is
a euclidean disk.

This can be computationally verified. Figure 1 (with the aid of Mathematica)
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Fig. 2. The images of the concentric circles about the dipole. The second circle
passes through the stagnation points.

show that the dipole Rankine ovoid for a small [i looks like a disk, while this is
not the case for a large /x. We can more efficiently see this fact by considering
the circle C whose diamter is determined by the stagnation points. The image
of C, together with some other concentric circles about the dipole, are shown
in Figure 2, by which we can see the behavior of the mapping function F^ in
a neighborhood of C. For the area problem of the Rankine ovoid we can use
the results in §4 to verify the following property computationally:

The area of a dipole Rankine ovoid is an increasing function of the strength
H of the dipole. However, the area function is not linear in n, as the graph
(Figure 3) shows.
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Fig. 3. The nonlinearity of the area of a dipole Rankine ovoid.



Wecome back again to the situation in §3. That is, we start with a fixed torus
To and consider dipole Rankine flows on To with parameter p. (strength). We
recall

«w-f^<)HMD}-H2+«)-(i+«0
is the energy of the dipole Rankine flow on To \ B^.

In general the function £ is quadratic in /z. In the exceptional cases where

t?!=0 or 7/3=0,

we have by the Legendre relation

7T.

771^3 ~ JfeU/i = 7TZ
z

that

å Kl

7/3=--KI Or T/i=- TO

respectively, so that

-27r/i+Imfo if 7/i =0,
5(/z)=

27T/i+Imf0 if 7/3=0,

where tq and fo are the complex numbers such that

c (I.I2^=0 c^--^=oH2'2'2j U) H2'2'2j

resp ectively.

Hence we have

Theorem 7. The energy of a dipole Rankine flow is a quadratic function
of the strength fj, of the dipole, unless 7/17/3 = 0. In the exceptional cases the
energy is a linear function ofji.

The moduli ro(/i) of T0(/z) can be similarly considered. Since

W3+A*C(W3) W3+/Z7/3
To(fj) =

a>i+/xC(^i) ^1+fiT}i'

10



wehave, again by virtue of Legendre's relation,

so that we have

Theorem 8. Imro(/i) is a decreasing function of/z.
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