Franck-Condon factors based on anharmonic vibrational wave functions of polyatomic molecules

Journal of Chemical Physics 125 巻 1 号 014109-1-014109-9 頁 2006-07-07 発行
アクセス数 : 674
ダウンロード数 : 257

今月のアクセス数 : 5
今月のダウンロード数 : 5
ファイル情報(添付)
JChemPhys_125_014109.pdf 162 KB 種類 : 全文
タイトル ( eng )
Franck-Condon factors based on anharmonic vibrational wave functions of polyatomic molecules
作成者
Rodriguez-Garcia Valerie
Yagi Kiyoshi
Hirao Kimihiko
Hirata So
収録物名
Journal of Chemical Physics
125
1
開始ページ 014109-1
終了ページ 014109-9
抄録
Franck-Condon (FC) integrals of polyatomic molecules are computed on the basis of vibrational self-consistent-field (VSCF) or configuration-interaction (VCI) calculations capable of including vibrational anharmonicity to any desired extent (within certain molecular size limits). The anharmonic vibrational wave functions of the initial and final states are expanded unambiguously by harmonic oscillator basis functions of normal coordinates of the respective electronic states. The anharmonic FC integrals are then obtained as linear combinations of harmonic counterparts, which can, in turn, be evaluated by established techniques taking account of the Duschinsky rotations, geometry displacements, and frequency changes. Alternatively, anharmonic wave functions of both states are expanded by basis functions of just one electronic state, permitting the FC integral to be evaluated directly by the Gauss-Hermite quadrature used in the VSCF and VCI steps [Bowman et al., Mol. Phys. 104, 33 (2006)]. These methods in conjunction with the VCI and coupled-cluster with singles, doubles, and perturbative triples [CCSD(T)] method have predicted the peak positions and intensities of the vibrational manifold in the X̃ 2B1 photoelectron band of H2O with quantitative accuracy. It has revealed that two weakly visible peaks are the result of intensity borrowing from nearby states through anharmonic couplings, an effect explained qualitatively by VSCF and quantitatively by VCI, but not by the harmonic approximation. The X̃ 2B2 photoelectron band of H2CO is less accurately reproduced by this method, likely because of the inability of CCSD(T)/ cc-pVTZ to describe the potential energy surface of open-shell H2CO+ with the same high accuracy as in H2O+.
著者キーワード
Franck-Condon factors
vibrational states
wave functions
SCF calculations
configuration interactions
harmonic oscillators
molecular electronic states
coupled cluster calculations
perturbation theory
photoelectron spectra
water
positive ions
organic compounds
spectral line intensity
potential energy surfaces
言語
英語
資源タイプ 学術雑誌論文
出版者
American Institute of Physics
発行日 2006-07-07
権利情報
Copyright (c) 2006 American Institute of Physics.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0021-9606
[DOI] 10.1063/1.2209676
[NCID] AA00694991
[DOI] http://dx.doi.org/10.1063/1.2209676