マルチポート固有空間法
部分空間法研究会 Subspace 2006
7-15 頁
2006-07 発行
アクセス数 : 927 件
ダウンロード数 : 218 件
今月のアクセス数 : 5 件
今月のダウンロード数 : 5 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00017333
ファイル情報(添付) |
ss2006-012.pdf
239 KB
種類 :
全文
|
タイトル ( jpn ) |
マルチポート固有空間法
|
作成者 |
天野 敏之
|
収録物名 |
部分空間法研究会 Subspace 2006
|
開始ページ | 7 |
終了ページ | 15 |
抄録 |
本稿では、多様体の教師付き問題としての姿勢パラメータ推定手法である「マルチポート固有空間法」[1],[2]について議論する。これは欠損画素の輝度値を推定して画像を補間するBPLP[3],[4]を基にしており、群の回帰問題を空間への投影という線形演算で行うものである。まずマルチポート固有空間法の内容を説明し、その主要部分は連立方程式による最小ノルム推定であることを示す。またその方程式による空間への投影がどのようなものかを説明し、学習とサンプル数の影響について述べる。
In this paper, we discusson Multi-port Eigenspace Method[1], [2], an supervised manifold learning of pose parameters. This method is based on BPLP[3], [4], a method of intensity interpolation, and operates a linear mapping of projection to a subspace as a regression to a group. First we describe the method, and show that the important part of it is a least norm solution of a system of equations. Then we illustrate the projection by the system, and the effect of the number of learning samples.
|
著者キーワード |
パラメトリック固有空間法
マルチポート固有空間法
多様体学習
教師付き学習
回帰
固有空間
線形写像
EbC
parametric eigenspace method
multiport eigenspace method
manifold learning
supervised learning
regression
eigenspace
linear mapping
|
NDC分類 |
電気工学 [ 540 ]
|
言語 |
日本語
|
資源タイプ | 会議発表論文 |
出版者 |
部分空間法研究会
|
発行日 | 2006-07 |
権利情報 |
Copyright (c) 2006 by Author
|
出版タイプ | Version of Record(出版社版。早期公開を含む) |
アクセス権 | オープンアクセス |
収録物識別子 |
[URI] http://ir.lib.hiroshima-u.ac.jp/00023537
|