Long-term software fault prediction with wavelet shrinkage estimation

Journal of Systems and Software 216 巻 112123- 頁 2024-06-07 発行
アクセス数 : 4
ダウンロード数 : 0

今月のアクセス数 : 4
今月のダウンロード数 : 0
ファイル情報(添付)
利用開始日 2026-06-07 17.3 MB 種類 : 全文 エンバーゴ : 2026-06-07
タイトル ( eng )
Long-term software fault prediction with wavelet shrinkage estimation
作成者
Wu Jingchi
収録物名
Journal of Systems and Software
216
開始ページ 112123
抄録
Wavelet shrinkage estimation received considerable attentions to estimate stochastic processes such as a non-homogeneous Poisson process in a non-parametric way, and was applied to software reliability estimation/prediction. However, it lacks the prediction ability for unknown future patterns in long term and penalizes assessing the software reliability in practice. In this paper, we focus on the long-term prediction of the number of software faults detected in the testing phase and propose many novel long-term prediction methods based on the wavelet shrinkage estimation. The fundamental idea is to adopt both the denoised fault-count data and prediction values, and to minimize several kinds of loss functions to make effective predictions. We also develop an automated wavelet-based software reliability assessment tool, W-SRAT2, which is a drastic extension of the existing tool, W-SRAT, by adding those prediction algorithms. In numerical experiments with 6 actual software development project data, we investigate the predictive performance of our long-term prediction approaches, which consist of 2,640 combinations, and compare them with the common software reliability growth models with the maximum likelihood estimation. It is shown that our wavelet shrinkage estimation/prediction methods outperform the existing software reliability growth models.
著者キーワード
Software reliability
Fault prediction
Non-homogeneous Poisson processes
Wavelet shrinkage estimation
Predictive performance
Tool development
内容記述
This work was supported by JST , the establishment of university fellowships towards the creation of science technology innovation, Grant Number JPMJFS2129.
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier
発行日 2024-06-07
権利情報
© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
This is not the published version. Please cite only the published version.
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
出版タイプ Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの)
アクセス権 エンバーゴ期間中
収録物識別子
[DOI] https://doi.org/10.1016/j.jss.2024.112123 ~の異版である
備考 The full-text file will be made open to the public on 7 June 2026 in accordance with publisher's 'Terms and Conditions for Self-Archiving