On model selection consistency using a kick-one-out method for selecting response variables in high-dimensional multivariate linear regression

Communications in Statistics - Theory and Methods Page 1-15 published_at 2024-07-18
アクセス数 : 5
ダウンロード数 : 0

今月のアクセス数 : 5
今月のダウンロード数 : 0
File
available 2025-07-18 1.07 MB エンバーゴ : 2025-07-18
Title ( eng )
On model selection consistency using a kick-one-out method for selecting response variables in high-dimensional multivariate linear regression
Creator
Fujikoshi Yasunori
Source Title
Communications in Statistics - Theory and Methods
Start Page 1
End Page 15
Abstract
This article deals with the selection of non redundant response variables in normality-assumed multivariate linear regression, where the redundancy of the response variables is defined by conditional expectation. A sufficient condition for model selection consistency is obtained using a kick-one-out method based on the generalized information criterion under a high-dimensional asymptotic framework such that the sample size tends to infinity and the number of response variables and explanatory variables does not exceed the sample size but may tend to infinity. A consistent kick-one-out method using the obtained condition is proposed. Simulation results show that the proposed method has a high probability of selecting true, non redundant variables.
Keywords
Consistency
high-dimensional criterion
multivariate calibration
variable selection
Language
eng
Resource Type journal article
Publisher
Taylor & Francis
Date of Issued 2024-07-18
Rights
This is an Accepted Manuscript of an article published by Taylor & Francis in Communications in Statistics - Theory and Methods on 18 Jul 2024, available at: https://doi.org/10.1080/03610926.2024.2370914.
This is not the published version. Please cite only the published version.
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
Publish Type Accepted Manuscript
Access Rights embargoed access
Source Identifier
[DOI] https://doi.org/10.1080/03610926.2024.2370914 isVersionOf
助成機関名
日本学術振興会
Japan Society for the Promotion of Science
助成機関識別子
[Crossref Funder] https://doi.org/10.13039/501100001691
研究課題名
地球科学・化学・生物学的手法を組み合わせた土壌の採取地点推定に関する研究
Presumption of soil collecting point using geoscientific, chemical and biological method.
研究課題番号
19K21672
助成機関名
日本学術振興会
Japan Society for the Promotion of Science
助成機関識別子
[Crossref Funder] https://doi.org/10.13039/501100001691
研究課題名
説明変数・目的変数が高次元でも変数増減法の下で一致性をもつ変数選択規準の開発
説明変数・目的変数が高次元でも変数増減法の下で一致性をもつ変数選択規準の開発
研究課題番号
20K14363
助成機関名
日本学術振興会
Japan Society for the Promotion of Science
助成機関識別子
[Crossref Funder] https://doi.org/10.13039/501100001691
研究課題名
Fused-lassoによる広島・長崎の被爆に関する時空間リスク推定モデルの開発
Spatio-temporal risk models for Hiroshima and Nagasaki exposures by Fused-lasso
研究課題番号
20H04151
助成機関名
日本学術振興会
Japan Society for the Promotion of Science
助成機関識別子
[Crossref Funder] https://doi.org/10.13039/501100001691
研究課題名
高次元データの統計分析
Statistical Analysis of High-Dimensional Data
研究課題番号
16H03606
助成機関名
日本学術振興会
Japan Society for the Promotion of Science
助成機関識別子
[Crossref Funder] https://doi.org/10.13039/501100001691
研究課題名
高次元多変量データに対して一致性を持つ高速で簡便な変数選択法
A fast and simple consistent variable selection method for high-dimensional multivariate data
研究課題番号
18K03415
Remark The full-text file will be made open to the public on 18 July 2025 in accordance with publisher's 'Terms and Conditions for Self-Archiving'