Galois-theoretic characterization of geometric isomorphism classes of quasi-monodromically full hyperbolic curves with small numerical invariants
Journal of Algebra Volume 634
Page 480-511
published_at 2023-08-02
アクセス数 : 11 件
ダウンロード数 : 0 件
今月のアクセス数 : 11 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00056149
File |
available
2025-08-02
198 KB
種類 :
fulltext
エンバーゴ :
2025-08-02
|
Title ( eng ) |
Galois-theoretic characterization of geometric isomorphism classes of quasi-monodromically full hyperbolic curves with small numerical invariants
|
Creator |
Hoshi Yuichiro
|
Source Title |
Journal of Algebra
|
Volume | 634 |
Start Page | 480 |
End Page | 511 |
Abstract |
Let l be a prime number. In the present paper, we prove that the geometric isomorphism class of a quasi-l-monodromically full hyperbolic curve with small numerical invariants over a sub-l-adic field is completely determined by the commensurability class of the kernel of the associated pro-l outer Galois action.
|
Keywords |
Hyperbolic curve
Outer Galois action
Quasi-monodromically full
Monodromically full
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Elsevier
|
Date of Issued | 2023-08-02 |
Rights |
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
This is not the published version. Please cite only the published version.
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
|
Publish Type | Accepted Manuscript |
Access Rights | embargoed access |
Source Identifier |
[DOI] https://doi.org/10.1016/j.jalgebra.2023.07.026
isVersionOf
|
Remark | The full-text file will be made open to the public on 2 August 2025 in accordance with publisher's 'Terms and Conditions for Self-Archiving' |