Evaluation of surface roughness of metal films using plasmonic Fano resonance in attenuated total reflection

Physical Review B 101 巻 8 号 085414-1-085414-11 頁 2020-02-20 発行
アクセス数 : 259
ダウンロード数 : 86

今月のアクセス数 : 2
今月のダウンロード数 : 0
ファイル情報(添付)
PhysRevB_101_085414.pdf 2.06 MB 種類 : 全文
タイトル ( eng )
Evaluation of surface roughness of metal films using plasmonic Fano resonance in attenuated total reflection
作成者
Matsumoto Taisei
Koga Hiroya
Kosako Terukazu
収録物名
Physical Review B
101
8
開始ページ 085414-1
終了ページ 085414-11
抄録
Attenuated total reflection (ATR) by surface plasmon polariton (SPP) is a method for evaluating the dispersion relation of SPP from the position of a dip in the reflection spectrum. However, recent studies have shown that the dips are displaced from SPP resonance because they are produced by a type of Fano resonance, i.e., the interference between the resonant reflection process accompanied by resonant excitation of SPP and the direct reflection process without resonant excitation. This result suggests that the system properties difficult to be achieved in the dispersion relation of SPP can be characterized using the ATR method. In this study, we investigate the effect of surface roughness due to nanosized dimples created in the initial stage of pitting corrosion on the ATR spectrum, from the viewpoint of Fano resonance. Using the temporal coupled-mode method, it is shown that the Fano resonance in ATR is caused by the phase change of direct reflection because of the absorption on the metal surface, and the spectral shape is determined by this phase, along with the ratio of the external (radiative) decay rate to the total decay rate of the resonant mode. Moreover, it is clarified that the internal and external decay rates extracted from the ATR spectrum provide information on corrosion, such as the effective thickness of the metal film and the randomness in dimple distribution.
内容記述
This study was supported by JSPS KAKENHI Grants No. JP18K04980 and No. JP18K04979.
言語
英語
資源タイプ 学術雑誌論文
出版者
American Physical Society
発行日 2020-02-20
権利情報
© 2020 American Physical Society
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 2469-9950
[ISSN] 2469-9969
[DOI] 10.1103/PhysRevB.101.085414
[DOI] https://doi.org/10.1103/PhysRevB.101.085414