Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation
Scientific Reports Volume 6
Page 30955-
published_at 2016-08-03
アクセス数 : 479 件
ダウンロード数 : 86 件
今月のアクセス数 : 1 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00048638
File |
SciRep_6_30955.pdf
1.57 MB
種類 :
fulltext
|
Title ( eng ) |
Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation
|
Creator |
Iwase Ikuko
Yamasaki Yuki
Wu Yan
Matsuhisa Koji
Okuma Yasunobu
Watanabe Takeshi
Nomura Yausyuki
|
Source Title |
Scientific Reports
|
Volume | 6 |
Start Page | 30955 |
Abstract |
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism by which unfolded proteins that accumulate in the ER are transported to the cytosol for ubiquitin–proteasome-mediated degradation. Ubiquitin ligases (E3s) are a group of enzymes responsible for substrate selectivity and ubiquitin chain formation. The purpose of this study was to identify novel E3s involved in ERAD. Thirty-seven candidate genes were selected by searches for proteins with RING-finger motifs and transmembrane regions, which are the major features of ERAD E3s. We performed gene expression profiling for the identified E3s in human and mouse tissues. Several genes were specifically or selectively expressed in both tissues; the expression of four genes (RNFT1, RNF185, CGRRF1 and RNF19B) was significantly upregulated by ER stress. To determine the involvement of the ER stress-responsive genes in ERAD, we investigated their ER localisation, in vitro autoubiquitination activity and ER stress resistance. All were partially localised to the ER, whereas CGRRF1 did not possess E3 activity. RNFT1 and RNF185, but not CGRRF1 and RNF19B, exhibited significant resistance to ER stressor in an E3 activity-dependent manner. Thus, these genes are possible candidates for ERAD E3s.
|
Descriptions |
This study was supported by Grants-in-Aid for Scientific Research (KAKENHI) 15K21706, 26460099, 24300135, 22020032, 25251014, 15K15067, 15K20001, 15K18377 and 15K19516 from the Ministry of Education, Culture, Sports, Science and Technology, Japan and also supported by the Takeda Science Foundation. We thank H. Hishigaki and Otsuka GEN Research Institute for bioinformatic analysis. We also thank M. Minami and T. Uehara for the helpful discussions. We are grateful to T. Yoshikawa, T. Ike, Y. Maeoka, Y. Wada and Z. Cao for their technical assistance. The authors would like to thank Enago (www.enago.jp) for the English language review.
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Nature Research
|
Date of Issued | 2016-08-03 |
Rights |
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
|
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 2045-2322
[DOI] 10.1038/srep30955
[DOI] https://doi.org/10.1038/srep30955
|