Phase field method to optimize dielectric devices for electromagnetic wave propagation
Journal of Computational Physics 257 巻 A 号
216-240 頁
2014-01 発行
アクセス数 : 868 件
ダウンロード数 : 297 件
今月のアクセス数 : 1 件
今月のダウンロード数 : 1 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00035702
ファイル情報(添付) |
JCompPhysic_257-A_216.pdf
3.41 MB
種類 :
全文
|
タイトル ( eng ) |
Phase field method to optimize dielectric devices for electromagnetic wave propagation
|
作成者 | |
収録物名 |
Journal of Computational Physics
|
巻 | 257 |
号 | A |
開始ページ | 216 |
終了ページ | 240 |
抄録 |
We discuss a phase field method for shape optimization in the context of electromagnetic wave propagation. The proposed method has the same functional capabilities as the level set method for shape optimization. The first advantage of the method is the simplicity of computation, since extra operations such as re-initialization of functions are not required. The second is compatibility with the topology optimization method due to the similar domain representation and the sensitivity analysis. Structural shapes are represented by the phase field function defined in the design domain, and this function is optimized by solving a time-dependent reaction diffusion equation. The artificial double-well potential function used in the equation is derived from sensitivity analysis. We study four types of 2D or 2.5D (axisymmetric) optimization problems. Two are the classical problems of photonic crystal design based on the Bloch theory and photonic crystal wave guide design, and two are the recent topics of designing dielectric left-handed metamaterials and dielectric ring resonators.
|
著者キーワード |
Phase field
Shape optimization
Electromagnetic system
Sensitivity analysis
Topology optimization
Level set
|
NDC分類 |
電気工学 [ 540 ]
|
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
Elsevier
|
発行日 | 2014-01 |
権利情報 |
Copyright (c) 2013 Elsevier Inc. All rights reserved.
|
出版タイプ | Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版) |
アクセス権 | オープンアクセス |
収録物識別子 |
[ISSN] 0021-9991
[DOI] 10.1016/j.jcp.2013.09.051
[NCID] AA00696013
[DOI] http://dx.doi.org/10.1016/j.jcp.2013.09.051
|