Mapping herbage biomass and nitrogen status in an Italian ryegrass (Lolium multiflorum L.) field using a digital video camera with balloon system

Journal of Applied Remote Sensing Volume 5 Page 053562- published_at 2011
アクセス数 : 971
ダウンロード数 : 280

今月のアクセス数 : 7
今月のダウンロード数 : 5
File
JApplRemoteSens_5_053562.pdf 1.33 MB 種類 : fulltext
Title ( eng )
Mapping herbage biomass and nitrogen status in an Italian ryegrass (Lolium multiflorum L.) field using a digital video camera with balloon system
Creator
Sakuno Yuji
Lee Hyo-Jin
Lim Jihyun
Kurokawa Yuzo
Watanabe Nariyasu
Source Title
Journal of Applied Remote Sensing
Volume 5
Start Page 053562
Abstract
Improving current precision nutrient management requires practical tools to aid the collection of site specific data. Recent technological developments in commercial digital video cameras and the miniaturization of systems on board low-altitude platforms offer cost effective, real time applications for efficient nutrient management. We tested the potential use of commercial digital video camera imagery acquired by a balloon system for mapping herbage biomass (BM), nitrogen (N) concentration, and herbage mass of N (N(mass)) in an Italian ryegrass (Lolium multiflorum L.) meadow. The field measurements were made at the Setouchi Field Science Center, Hiroshima University, Japan on June 5 and 6, 2009. The field consists of two 1.0 ha Italian ryegrass meadows, which are located in an east-facing slope area (230 to 240 m above sea level). Plant samples were obtained at 20 sites in the field. A captive balloon was used for obtaining digital video data from a height of approximately 50 m (approximately 15 cm spatial resolution). We tested several statistical methods, including simple and multivariate regressions, using forage parameters (BM, N, and N(mass)) and three visible color bands or color indices based on ratio vegetation index and normalized difference vegetation index. Of the various investigations, a multiple linear regression (MLR) model showed the best cross validated coefficients of determination (R(2)) and minimum root-mean-squared error (RMSECV) values between observed and predicted herbage BM (R(2) = 0.56, RMSECV = 51.54), N(mass) (R(2) = 0.65, RMSECV = 0.93), and N concentration (R(2) = 0.33, RMSECV = 0.24). Applying these MLR models on mosaic images, the spatial distributions of the herbage BM and N status within the Italian ryegrass field were successfully displayed at a high resolution. Such finescale maps showed higher values of BM and N status at the bottom area of the slope, with lower values at the top of the slope. C (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
Keywords
balloon
digital video camera
herbage biomass
nitrogen status
spatial distribution
precision agriculture
NDC
Technology. Engineering [ 500 ]
Agriculture [ 610 ]
Language
eng
Resource Type journal article
Publisher
Society of Photo-optical Instrumentation Engineers
Date of Issued 2011
Rights
Copyright 2011 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 1931-3195
[DOI] 10.1117/1.3659893
[DOI] http://dx.doi.org/10.1117/1.3659893