The Finite Element Method on a Riemann Surface

アクセス数 : 694
ダウンロード数 : 171

今月のアクセス数 : 2
今月のダウンロード数 : 1
ファイル情報(添付)
diss_otsu1924.pdf 35.6 MB 種類 : 全文
タイトル ( eng )
The Finite Element Method on a Riemann Surface
タイトル ( jpn )
リーマン面上の有限要素法
作成者
原 平八郎
内容記述
Contents / p2
Introduction / p1
Chapter 1. Triangulation / p6
 §1.1. Collection Φ of local parameters / p6
 §1.2. Triangulation K associated to Φ / p7
 §1.3. Normal subdivision of triangulation K / p10
 §1.4. Naturalized triangulation / p11
 §1.5. Parametrization of lunar domains / p13
 §1.6. Area of lune / p14
Chapter 2. Spaces of differentials / p16
 §2.1. Subspace Λ of Γc / p16
 §2.2. Space Λ' / p17
 §2.3. Finite element interpolations / p19
 §2.4. Harmonic differentials on a lune / p19
 §2.5. Difference of norms of σh and σ'h / p20
Chapter 3. Finite element approximations / p24
 §3.1. Formulation of problems / p24
 §3.2. Finite element approximation ψh in Λ / p26
 §3.3. Finite element approximation ω'h in Λ' / p28
 §3.4. Lemma of Bramble and Zlámal / p29
 §3.5. Pointwise estimate / p29
 §3.6. Smoothness of ω on Ω / p31
 §3.7. Approximation by ψh / p33
 §3.8. Approximation by ω'h / p36
 §3.9. Estimate of ||ω'h - ω̂'|| / p39
Chapter 4. Determination of the periodicity moduli of Riemann surfaces / p41
 §4.1. Periodicity moduli of Riemann surfaces / p41
 §4.2. Calculation of periodicity moduli / p42
 §4.3. Numerical example 1(the case of a ciosed Riemann sueface) / p43
 §4.4. Numerical example 2(the case of acompact bordered Rimann surface) / p51
Chapter 5. Determination of the modulus of quadrilaterals / p60
 §5.1. Quadrilateral on a Riemann surface / p60
 §5.2. Formulation of problems / p60
 §5.3. Numerical example 3(the case of Gaier's example) / p62
 §5.4. Numerical example 4(the case of a riemann surface) / p68
 §5.5. Numerical example 5(the case of an unbounded domain) / p75
 §5.6. Numerical example 6(the case of a curvilinear domain) / p77
References / p81
NDC分類
数学 [ 410 ]
言語
英語
資源タイプ 博士論文
権利情報
Copyright(c) by Author
アクセス権 オープンアクセス
学位授与番号 乙第1924号
学位名
学位授与年月日 1989-12-08
学位授与機関
広島大学