Topological Aspects of Classical and Quantum(2+1)-dimensional Gravity
アクセス数 : 695 件
ダウンロード数 : 199 件
今月のアクセス数 : 5 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://doi.org/10.11501/2964193
ファイル情報(添付) |
diss_ko831.pdf
23.9 MB
種類 :
全文
|
タイトル ( eng ) |
Topological Aspects of Classical and Quantum(2+1)-dimensional Gravity
|
タイトル ( jpn ) |
古典及び量子(2+1)次元重力の位相的側面
|
作成者 |
早田 次郎
|
抄録 |
In order to understand (3+1)-dimensional gravity, (2+1)-dimensional gravity is studied as a toy model. Our emphasis is on its topological aspects, because (2+1)-dimensional gravity without matter fields has no local dynamical degrees of freedom. Starting from a review of the canonical ADM formalism and York's formalism for the initial value problem, we will solve the evolution equations of (2+1)-dimensional gravity with a cosmological constant in the case of g = 0 and g = 1, where g is the genus of Riemann surface. The dynamics of it is understood as the geodesic motion in the moduli space. This remarkable fact is the same with the case of (2+1)-dimensional pure gravity and seen more apparently from the action level. Indeed we will show the phase space reduction of (2+1)-dimensional gravity in the case of g = 1. For g ≥ 2, unfortunately we are not able to explicitly perform the phase space reduction of (2+1)-dimensional gravity due to the complexity of the Hamiltonian constraint equation. Based on this result, we will attempt to incorporate matter fields into (2+1)-dimensional pure gravity. The linearization and mini-superspace methods are used for this purpose. By using the linearization method, we conclude that the transverse-traceless part of the energy-momentum tensor affects the geodesic motion. In the case of the Einstein-Maxwell theory, we observe that the Wilson lines interact with the geometry to bend the geodesic motion. We analyze the mini-superspace naoclel of (2+1)-dimensional gravity with the matter fields in the case of g = 0 and y = 1. For g = 0, a wormhole solution is found but for g = 1 we can not find an analogous solution. Quantum gravity is also considered and we succeed to perform the phase space reduction of (2+1)-dimensional gravity in the case of g = 1 at the quantum level. From this analysis we argue that the conformal rotation is not necessary in the sense that the Euclidean quantum gravity is inappropriate for the full gravity.
|
内容記述 |
ABSTRACT / p3
CONTENTS / p4 1 Introduction / p5 2 ADM Canonical Formalism / p9 3 York's Formalism / p13 4 Evolution of the Geometry / p17 5 Phase Space Reduction / p23 6 Linearized Gravity / p27 7 Mini-superspace / p31 8 Quantum Gravity / p35 9 Conclusion / p44 Appendix A / p46 Appendix B / p48 Appendix C / p54 |
NDC分類 |
物理学 [ 420 ]
|
言語 |
英語
|
資源タイプ | 博士論文 |
権利情報 |
Copyright(c) by Author
|
出版タイプ | Not Applicable (or Unknown)(適用外。または不明) |
アクセス権 | オープンアクセス |
収録物識別子 |
・A. Hosoya and J. Soda, Mod. Phys. Lett. A4 (1989) 2539,
~を参照している
・J. Soda, to be published in Prog. Theor. Phys. Vol.83 No.4 (April),
~を参照している
・Y. Fujiwara and J. Soda, to be published in Frog. Theor. Phys. Vol.83 No.4 (April).
~を参照している
[DOI] http://dx.doi.org/10.1142/S0217732389002847
~を参照している
[DOI] http://dx.doi.org/10.1143/PTP.83.805
~を参照している
[DOI] http://dx.doi.org/10.1143/PTP.83.733
~を参照している
|
学位授与番号 | 甲第831号 |
学位名 | |
学位授与年月日 | 1990-03-26 |
学位授与機関 |
広島大学
|