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AI3STllr\C1' 

I n order to u nde rstand (3+ 1 )-dinlensional gravi ty) (2+ 1 )-dil11ensional gr avi t y 

IS studied as a toy 111ode!. Our emphasis IS on its topological aspects because 

(2+ l)-dinlensional gravi ty wi thou t lTIat ter fields has no local dynamjcal degrees 

of freedonl. Starting from a review of the canonical ADrvl fornlalisn1 and York's 

formalism for the initial value problem) we will solve the evolution equations of 

(2+l)-dimensional gravity with a cosmological constant in the case of 9 = 0 and 

9 = 1) where 9 is the genus of Riemann surface. The dynamics of it is understood as 

the geodesic motion in the moduli space. This remarkable fact is the same with the 

case of (2+1)-dimensional pure gravity and seen more apparently [rOITI the action 

level. Indeed we will show the phase space reduction of (2+1)-dinlensional gravity 

in the case of 9 = 1. For 9 2: 2, unfortunately we are not able to explicitly perform 

the phase space reduction of (2+1)-dimensional gravity due to the conlplexity of 

the Hamiltonian constraint equation. Based on this result) we will attempt to 

incorporate matter fields into (2+1)-dimensional pure gravity. The linearization 

and mini-superspace methods are used for this purpose. By using the linearization 

Dlethod: we conclude that the transverse-traceless part of the energy-1110nlentuI11 

tensor affects the geodesic motion. In the case of the Einstein-NIaxwell theory) 

we observe that the Wilson lines interact with the geometry to bend the geodesic 

motion . We analyze the mini-superspace n~odel of (2+1)-dimensional gravity with 

the matter fields in the case of 9 = 0 and 9 = 1. For 9 = 0) a wormhole solution 

is found but for 9 = 1 we can not find an analogous solution. Quantum gravity 

is also considered and we succeed to perform the phase space red uc tion of (2+ 1)

dimensional gravity in the case of 9 = 1 at the quantunlle\'e l. From this analy~i s W e' 

argue that the conformal rotation is not necessary in the sense that the Euclidean 

quantum gravity is inappropriate for the full gravity. 
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1. Introduction 

Our understanding of the UIllverse has been steadily improved. On the basis 

of standard theory of cosmology~IJ the inflationary uIliverse scenario was proposed 

to answer the important coslllological questions and has been developed by Inany 

physicists~2J In order to make this inflationary universe theory more self-contained, 

we need quantum cosmology which may possibly give the initial conditions of our 

universe on the basis of quantulll gravity. The Hartle-Hawking proposal PJ for 

the quantum state of the universe has been well studied semi-classically, and in 

some models this leads to inflation. These progresses have been achieved mainly by 

studying the so-called mini-superspace Illodels, in which the gravitational and mat

ter variables have been red uced to a fini te number of degrees of freedolll. Obviously 

this is an oversimplification~~J To be more realistic, a thorough understanding of 

full quantum gravity is necessary. However, our present understanding of quantulll 

gravity is still very poor in spite of the endeavor of many people. The superstring 

theories [5J have been investigated as a most promising candidate for it. Indeed, 

the superstring theories have many attractive features, e.g. a possibly ultraviolet 

fini te theory, unification of all forces etc.) which led many young physicis ts to this 

field of research. Although we agree to the importance of superstring theory, we 

must seek various alternatives to achieve the true theory of gravity. For example , 

the recent work by Ashtekar[6 J revives our interest in the canonical quantization 

of gravi ty. Of course, since a pioneering paper by De Wi t t (7J we have pursued this 

quantization method and have encountered many difficulties~IIJ For instance. to 

define a quantum theory, it is necessary to construct the Hilbert space at each time 

slice . Ironically the gravitational theory has the general coordinate invariance, so 

the time coordinate has no invariant meaning. Hence, even if we quantize the grav

i tatioll al theory followi ng Di rac ~'JJ we can not properly in terp ret the w i1XC fll llC tioll 

which is the ::;ollltiull of the \Veelcr-De\Vitt eqllatioll ~iJ Besidcs this C()!lCcptllili 

problem, there are rnany technical difficulties. For examplc, the factor orderillg 

problem of the \Veeler-De\Vitt eqllation is not yet solved ill the operato[ furllli1i

i:->I11. \Vhell we ll:->C the fllI1ctiollal integrill ll1et hod, t hc i:->:"Ile whet hC'r we :--itoldcl 11:--(' 

thc Lorcntziltn or Euclidean formalism is lIot yet settled. E\'e/l if the EIIClidci1l1 
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, [J J, 1 I 1 I I ' I' f I q ll a ll tu l1l grl1 \ 'It.y I S 11( oplec, (l n c w pro) c m ;HI SC'S: t l a t I S. ( 1\' c r gc ll Cl' 1' 0 111 t I e 

confor n1a l fac to r ~IOJ As a n alt crna t ivc, a ll att cmpt. t.o rcJu cc th e phas e spacc before 

q II all tization has becn lnadc . II owever we agai n lnee t wi t h the d i ffic til ty that the 

ILuniltonian co ns traint cquation is diffi cult to soh'c , ~Ioreo\' er the rcsultant. t.heory 

would have no gene ral coordinate invariance, As rnentioned above , we necessarily 

h ave the conceptual and technical difficulties. Then , to get rid of the technical 

d ifficulties as Inuch as possible , we take (2+1)-dimensional gravity as a toy model 
[111 

By investigating this model , we hope to be able to understand the essential 

point of quantum gravity. 

On the other hand, physicists have long been fascinated by the possibility 

of processes involving a change in the topology of space ~1:l1 Recent speculation 

by Coleman [lJ) that topology changing processes have something to do with the 

vanishing of the cosmological constant made our interest in these processes renew . 

T o attack this problem, (2+ l) -dimensional gravity is also advantageous , because a 

mathematical knowledge about the 2-dimensional compact manifold is available~H) 

The Einstein gravity in three space-time dimensions exhibits some unusual 

features, which can be deduced from the properties of the Einstein field equations 

and the curvature tensor. Einstein 's equation for general relativity reads 

(1.1 ) 

o r is expressed in terms of the Ricci tensor as , 

( 1.:2) 

Here 1\ , f\, and TJw are cosn10logical constant , the gravitational coupling constant 

and energy- lllon1en t U In te I1sor of the mat tcr fields , rcs pec t i vely, On t he other hand , 
[I ~J 

L he n ie ll1 cUlll tenso r c an bc w ri LL e II iII ter ms of t h c R.i cci tc nsor a..::i 

1 n = (I R + n R - (1 R - (1 R - - R( (1 n - n (1) (1 3) 
IlVA P ·J /I ,\ vp JVp 11. A ·J llp vA ,J VA liP :2 JllAJVP JllpJ VA ' " 

[ j sillg rq,( 1,'2) ill the right h(lild :-;ide of eq,( 1, :3) :-;hows that th e I(}ral g C<JIlletry I~ 

co mpletely de tcrmiIlcd by thc mCl.ltcr e1i ,triolltioll aIlJ the cosll1ologi cfll COIlstaIlt 
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:\ . Thi::; Il1 C;Ub thClt. t he re ar e 11 0 dynami c(11 deg r ee~ of fr eed o m (o rre,,", po lldil1g to 

gravit.cl,tional waves. III regions which are free of matter , space-time is loclllly flat 

(1\ = 0), de-Sitter (1\ > 0) or anti-de-Sitter (1\ < 0), depending on the value of 

the coslnological const.ant. The lack of dYllcUllics in three diIllensional Einstein 

gravity can also be seen frorn the canonical point of view by counting degrees of 

freedoD1. The two dilllensional spatial rnetric and its conjugate each contains three 

algebraically independent components. Of these six cOD1ponents, one is used to 

specify the choice of space-like hypersurfaces, while the other two are used to spec

ify coordinates on these two dimensional hypersurfaces. Finally, there are three 

initial value constraints which completely determine the remaining components. 

Thus, one might consider that there is nothing left in the Einstein gravity in three 

space-tin1e dinlensions. However, lIlany researchers have studie~ . the Einstein grav

ity in three space-time dimensions, because of the eXistence of the global effects 

in the three din1ensional Einstein gravity. Straruszkiewicz was the first to give 

geometrical arguments, showing that a three dimensional space-tilne wi th a point 

source is obtained by removing a "wedge" from Minkowski space and identifying 

points across the wedge ~16] Deser, J a~ki wand 't Hooft have confirmed this descrip

tion by explici tly solving the three din1ensional Einstein equations with A = 0 for 

b · b f . . [11] an ar Itrary m.2.m er 0 statIc pOInt masses. 

In this thesis we will investigate another global aspect in the three dimensional 

Einstein gravity. That is, the global deforn1ation of the spatial manifold. Although 

there exists no graviton, which represents the local deformation of the spatial man

ifold, there exists the global deformation of the spatial manifold. At first sight, one 

might consider that we are about to study a very peculiar lllodel which has noth

ing in common with the physical (3+1)-diITlensional gravity. However it should be 

noted that the global deformation of the spatial manifold is most important even 

I n the case of (:3+ 1 )-dilnension al gravi ty. The similar si t uation can be obsen·ed 

III the \Ia.xwell t.heory. The ~raxwell theory ill two space-time dilllClbioll s i:-; Lhe 

Lopological fielJ theory which has only Lhe globed modes .[16
1 As we know, however, 

it. reveals the e~senti;ll point.s of the dynami'cs of the glohal modes of the \lax\\,pll 

t lIeur)' theory in ,t dimellsiolls. Therefore we call expect to obtain the illlport.allt 

illforlllatioll frolll our Illude!. 



This global aspect of ('2+ I)-dimensional grit\'ity i~ r1bo th e point 111 (he nohle 

approa.ch by \Vitten~19J which is similar to Ashtckar'~ forll111Ii1Jioll of 

(3+ 1 )-dimensional gravi ty~6J There the z wei bei nand spi nor con ncction ,He treatcd 

as independent variables, The Einstein-Hilbcrt action turns out to be a, purely 

I I S t 
('1 OJ 

topologica C lern- i nlons erm. o n ceo n e f 0 rIn u I ate s (2 + 1) -dim ells ion al g r a\'-

ity as the Chern-Simons theory~'llJ the dynanucal variables become J 50(2,1) flat 

connections whose number is finite. As we previously elnphosized , in the Ct:lse of 

(2+ 1 )-dimensional pure gravi ty, only the global lnodes or topological 1110cies are 

ilnportant. Witten has extracted this aspects elegantly. vVe naturally expect that 

the conventional approach to (2+ 1 )-dimensional gr avi ty also exhibi ts the global or 

topological aspect, though the relation between the two approaches is ·not obvious. 

In this thesis we shall mainly study (2+1)-dimensional grav.ity using the standard 
, ' 

ADM method~22J In this approach, the spa'ce:.ti~e is pictured as a foliation of 

space-like manifolds and the deformation process along the time-like direction is 

formulated as a Hamiltonian system. Fron1 this point of view , the geo111etrical 

meaning of the dynamical variables is clear. Therefore when we wish to consider 

the topology changing phenomena, the canonical approach has an advantage to 

visualize the process. 

The conventional method for (2+ 1 )-dimensional gravi ty is reviewed in Sec. 2. 

U sing this formulation, Hosoya and Nakao [23J discovered the fact that the dynamics 

of the Einstein gravity becornes the geodesic motion in the nl0duli space in the case 

of 9 = 1, where 9 is the genus of a Riemann surface. l'vioncrief[25] independently 

analyzed this system as an initial value problem and concluded that there exists 

a unique solution of the const rain t equations in the case of !J 2:: l. These are the 

subjects of Sec.3 , Sec.t! and Sec.5 . In Sec.3 we review York )s formalisnl which is 

important to understand the canonical struct ure of gravity. In Sec.4 we will solve 

the e\'olution of the geometry in (2+1)-dimensioIlal gravity wit.h a cosmological 

("C)JlSt.itllt, [II, c..) thc csscIIce of thc dYllaIllics of (2+ 1 )-diIl1clI:-;ioIlitl pllrc gril\'ity is 

rc \,(~(llcd by ph ase space reJ uc tioll. Up to this s togc, on I y the pu re grt:l\'i Ly will be 

COll. iclered as a first step to a rcalistic qllitl1tlIlll cosmologicitl model. III t he stan

d a r d et p p r () etC h to Cj \I a. n t II III g r a \. i t y. i lis ~ t. r a i g h l f 0 war d t. 0 i 11 cor p () rat (' I 11 itt t c r f i f' I d :-; . 

It i:-, at tiJis poillt thaL IlCW approach to qlI;lIltlIlIl grilViLy sllch it..; \\·iLtcll·. ' [orI1111-
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\atiOIl will mect with t.hc difflclllt.y hecC1u,:,;(' the tilcor.Y i~ [orll1l1lC1(cd C1~ hackground 

independcnt WC1.y, alt hough thc new appro;lch has grcC1.t. Sllcc('sses ill purc gravity. 

This is one of the reasons why we great.ly focus on t.he convent. ional appro(lch . As 

C1. mod cst step, we shall analyze t he lin crtrizccl gr(lsity in (~+ i)-dimensions and 

consider the matter effec ts on the geodesic motio n pcr t ur bC1.ti \·e ly. Thcse arc dis

cussed in Sec .6. To reveal another aspect of gravity coupled with Il1atter fields. a 

n11nl-S uperspace approach is used in Sec. 7. In Sec. 8 qu a nt II In gravi ty is J isc llssed 

using a functional integral method. The final section is devoted to discussions of 

various issues which we Inust solve to reach the final goal. rvlathematical tools is 

explained in Appendix A . '-IVe present the field theory in topologically non-t rivial 

space as a selni-classical theory in Appendix B. To complen1ent the n1ain text, other 

approaches to (2+ 1 )-clinlensional gravi ty are reviewed in Appendix C. 

2. ADM Canonical Formalisn1 

Although the whole analysis in this section is merely a recapi tulation of the well

knO\·\,n resul ts in (3+ 1 )-climensional gr avi ty and its str aightforward adap tation to 

the (2+1)-dimensional gravity, we shall start with the canonical ADivl fonnalisnl 

to make this paper self-contained. 

The canonical theory begins with the following decomposition of the lnetri c 

tensor ; 

wh erc IL , l/ rC1.Ilgc ovcr 0,1.2 and i, j range over] ,2. lI cre the lap::,e ftlll ctio n 1\' C1. !Id 

t.he :-;hift. vcc tor !Vi arc 1I 0t. ciYI1C1.mi cC1 1. I1C1t.h cr t.hc hp;-;c ftlll c ti on dct('rillillc:-; th e 

foliatioIl of spatial lIlanifolds in thc whole spacc-timc C1.l1d thc :) !Jift vccto r se rvcs 

thc coo rdin;ttc choicc OIl CC1.ch tilllC sli cc . This dcco mpositi on of th c 1l1ct ri c IC<lds lIS 

to th e' rCfOrl111llilt.ioll of thc geller;ll rrl;lliviLy ,,;-; thc' illiti ;d \·,,111(' problplll alld t.1}(~ 

C ;\.11 ell y p r () b Ie III . 

~ ) 



Civen the Einst.ein-Hilbert. (lCt.iOIl, 

there is it stitnclard prescription for obt.aining a Hitlniitoniall forl1l11litt.ioll. Using 

the (2+1) decolnposition of the 111etric (2.1), we obtain 

(2.3 ) 

where I{ ,. = 2N
1 (h. , 0 - N 'j' - lV'j') is the extrinsic curvature and I{ Ie, h l) IS 

1) 1) J t ) 1 J 1) 

its trace. R(3) and R(2) denote the three and two dimensional scalar curvatures , 

respec tively. The stroke indicates the covariant deri vati ve wi th respect to the spatial 

metric h". Here we have discarded the surface term, because we shall concentrate 
~ . 

on the (2+1)-dimensional space-time 1\;1 = R x l:= where l:= is a cOlnpact closed 

orientable two manifold. The canonical conjugate moment urn il ij to h, is given by 
2) 

.. .. 
= Vh(I{2) - h2) ]{). (2.4) 

The ADJ'vI action for Einstein's theory of gravity takes the form , 

(2.5) 

(2.6) 

..... ( (')-) 

with IT = "i = -Vhf;:. Here, as ind icated in the above, the lapse function LV and 

the shift vector LVi conle into the action as the Lagrange multipliers. Note that the 

Hamiltonian constraint can be rewritten as 

II - r· _ij _kI 1/ I? ( 2) 
-u ijk ," "-VI . 

1 I 

G ' k' = -h-'1(h· k h, + h .,h k - 2h .. h k ,) 
1) . 2 t·) t) . I)' 

171 This tensor. G . 1./' is thp. so-called sllpermetric on SlIperSpilCp. 
') "-

the signature (-, +, +) iII the :3-dimensiollal metric space . 

- 10 -
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The c \'ollltio ll cq llflti ons obtaincd frolll ('.2 . .)) fl1'C 

u h .. .) lV 
;.)t) = -II (IT .. - h .. IT) + .V.

I
. + iV .

I
., 

u f v]. 1) I) t ) ) 1 
(2.10) 

U IT i j _ IV I i j (ki ~ ~ ) '2 . V ( i k j i j) J I ( ~ r Ii) I ij ~ r k ) 
-- - --;- t IT IT 1./ - II - I IT IT I. - IT IT + L 1 ~ - 1 ~ II. ut '2v h " vh" ~ 

( k i j ) ki j kj i + iV 7r II.: - 7r lVlk - IT ,tVlk' (2.11) 

For later convenience we further rewrite these equations as follows ; 

8h.. ~ 
_t_) _ -N}'I _ '">N} ' \7 ~ T \7;-' }' - \ L. _ \ .. + v .i v .+ v .i v ., at t) I) 1) ) t 

8 J~ . . ~ I. ~ 1 ~ I. ~ I. I.' 

__ 2) = -2N J\t J\k ' - (V .\1. - -h .. 6.) lV + (A"tVl.: iV. + J\)"V I.JV. - lV"V I.:J\ .. ), 8t ) 1) 2 1) '· . ) ,.;. t • ~) 

8 J( (2) I.: at = - 6.. N + R + J( lV + N V k J(, 

(2.12) 

where J{ . . is the traceless part of the extrinsic curvature. COlnbining the co ns train t 
t) 

equations, 

H = 0, (2.13) 

(2.14) 

with the evolution equations '(2.10) and (2.11) ,we obtain a cOlnplete set of Ein

stein 's equations equivalent to the covariant expression RJ.'/I = O. The equations 

('2.1.3) and (2.14) are nothing but the Gauss-Coddazzi eq uati o ns givin g the ll eccs

sary and s uffi cient conditions for the embedd ing o f a hypers urffl ce wit II t.he secolld 

fundamental forrn J\ .. in a locally flat space-time. In Dirac's terrl1illology~')1 (2.1.3) 
t) 

and ('2.1 ,1) arc the first class constraints which forn1 the followin g algebra: 

{ I I ( x ), I { ( f )} = .(/ b ( x ) II cI ( .r ) () !J b ( .r. . :i:) - (j - .r) , 

{ II cl ( x) , II ( i; )} = 1-1 ( x ) iJ(1 f> ( x , i; ) , 

{ [['1 ( j ). 1[& ( .1: )} = [[ b ( x ) rJ» ( .r. . .r) - ( j - f. (L - I)) . 

Ilere the ClIrly brackets imply th(~ Poisso ll brackets. 
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The Cll ll Oll icC1 i Clppro(lch to gcnerC1i rciC1ti\'ity (';\11 he IlIHler::stood ;1~ C1 deforlllat.ion 

theory of the Hi el11anniClll I11Clllifold ~. The deformatioll process i::s gO\'crned hy t.he 

cvolution cCj\lations (2.l0) and (2.11). \Ve ask the <lllcstion: what is deformed? 

L c t R i e771 ( ~ ) b c the s p ClC e 0 f n i e III C1.11 n i C11l rn e t ric son ~ Cl n d D iff ( ~) the g r 0 \l P 

of diffcornorphisms of~. In the coordinate language, a "point)) of Rie7n(~) is 

determined by giving three functions h .. (x) of two variables (x) = (xl' x')), being 
t) _ 

subject to the constraints h .. = h .. and h = deth .. > O. Each element of Dif f(~) 
t) ) t 1] 

nlaps Riern(~) into itself by the transfornlation law for covariant tensors and hence 

Dif f(~) acts as a transformation group on Riem(E). The orbit of each point of 

Riem(~) under the action of Dif f(E), the gauge orbit, is identified with a point 

in the superspace 5(E). In other words, as the general relativity is a kind of gauge 

theory, the Inomentulll constraint (2.14) generates the gauge transformation' which 

is nothing but Diff(~) . Therefore a formeiJ definition of the superspace is given 

by 

5(~) = Riem(~). 
Dif f(~) 

(2.15) 

The defornlation process may be viewed in this superspace whose point is a 2-

geolnetry. As is well known in quantum cosmology, however, 2-geonletry is the 

carrier of information about time ~26J This time is unders tood as the gauge degree 

of freedom w hose transformation is generated by the Hamiltonian constraint (2.13) . 

This extra variable is identified with the confornlal factor. Then what we would like 

to know is a defornlation of conformal Rielnannian manifolds which is characterized 
- 1 

by h .. = h-"2h .. in (2+1)-dimensions. This is the so-called "confonnal superspace ;l 
~J 2J 

which is defined by the superspace modulo conformallnappings Conf(=). 

- Riem(E) 
5(E) = . 

Dif f(=) x Conf(=) 
(2.16) 

ill the C;b(' ()f()rielltal)/e closed CO IllPC1Ct :-;pC1ccs,i./'.H.ielllllilIl ::;urfllce~. thi:-- c()llforlllill 

' llperspace is !lothing but the moduli spClce for Riemann surfaces. For exalllple. in 

the CiL':ie of gCIlII~ .r; = 1, the shaded p;ut in rig . 1 repre:-;enl~ the modllii :-;pace. 

- I L -



3. York's Fornlalisnl 

In this chapter wc shall rcview York's formalisn/
16

] which is useful to invcstigate 

t he canon ical quaIl t iz ation of ge ne ra! reI a.ti \'i ty. In ord i nary pa.r ticle 111echanics 

wc are able to freely specify thc initial conditions which detcrmine its dynall1icctl 

evolution. There is, however, a class of systen1S which have SOIne constraint.s for 

initial values. These systems are called constrained systems. The general relativity 

is included in this category. It is not trivieD to give a set of initial data which satisfy 

the constraints. It is at this stage that York's lnethod works. Before entering the 

general relati vi ty, Ie t us recall the elec trornagnetism as a simple ill us tration. In flat 

or in curved Rien1annian spaces one can uniquely decompose an arbi trary vector 

potential or one-fonn into a sum of exact, co-exact and harrnonic forms. Phyc;ically, 

tllis proced ure leads to the identification of the true canonical degrees of freedom of 

the electromagnetic field and to the identification of the gauge, or non-dynanlical 

variables. Especially harmonic one-forn1S represent the global structure of gauge 

fields which reflects the cohomological structure of space. The spirit of York s 

method lies on this line. He gave a conformally invariant, orthogonal, covariant 

decomposition of symmetric tensors on a positive definite Rien1annian nlanifolds 

into transverse-traceless, logitudinal, and pure trace parts. This decoinpositioll 

enables us to set the initial-value problem of general relativity as a system of three 

second-order elliptic equations for three unknown functions. 

First we note that the TT-decomposi bon of a symmetric tensor '!/Jab is defined 

by 

,I.ab _ l ab + / ab + _I.ab 
CiJ - 'l/-'TT . 'llJL CiJTrl (:3. 1 ) 

w he re the longi t udin al part is 

;l.lId the ( r<lce parL i:-; 

l ab l;l1b l I;)Tr = ~ L 1;), 

OIJr 1I('xt t;I.'.;k is to determinc the cOllformal property of this d('corllpo~iti()1l liltlt 

Lurns oilL to l)c cs:-.cllLi;t/ for York's lllethod. :\ ~p;lCC conforll1al!y rcLttcd t() (.\/. Ii) 

- l:~ -



IS (J/ , II ), wh e re 

(.J. ·1 ) 

Therefore , we ha.ve for the connection coefficients , 

r- a _ r a + 1 ( {' (1 ). + {' (l ). I f , (1 ) 

be - be - U b If' e U e 'f' b - ~ b9 I C) , a 
~ , 

(3.5) 

with ¢(x) an arbitrary real scalar function. Using this formula., we can easily show 

that 

-2cp, /,ab 
e 'f'TT (3 .6) 

becomes the transverse-traceless tensor on M. Thus by identifying this 2-tensor 

density with the canonicallTIomentum ir ab
, we can solve the In0l11entum constraint 

on the orbit of a conformally equivalent class as we shall see below . 

The initial value problem is to construct a space-like RielTIannian two manifold 

(!VI I h) and a symnletric tensor densi ty of weight one , "ab, such that 

-ab 0 
11"'lb = , 
- - 1.. _ _ ab - 2 - 1.. -
h 2(ltablt -,,) - h2R = 0: 

(3 .7) 

(.'3.8) 

where the covariant derivative is defined with respect to hab and R is the scalar 

c urV(1,ture of (AI, h) . The conformal approa.ch to this problem is to soh'e (:3.1) in (1, 

confoIInaUy invariant Inanner, then to choose the confornlal factor ¢ in such a way 

as to satisfy (3.8). 

In gell e rill, we C ('tll perfo rlll the following orthogona.l decompositiol1. 

where r; '!U repre::;cllb a. trillls\'erse-tra.celess tellsor deIlsity itlld T 
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111 0 111 en t II 111 COl1:-> t r (l i 11 t. (:3. () tell:-> 11:-> t h (l t ll' II mil ~ t :-; ill i : .. ;fy 

~ (L~V)(lb = _~~clT 
b :2' 

(:3.10) 

or equivalently t.he two elliptic equat.ions, 

(3.11) 

On the other hand , the Harniltonian constraint takes the fonTI, 

These elliptic equa.tions, (3.11) and (3.12), are not easy to study in general. As we 

can choose the lapse function freely, from eq. (2.12) we can also choose T ar bi trarily. 

So we consider the sirnplest choice of slicing, i.e., 

T = constant over the space. (3.13) 

This is called York's time slice. In this case, the vector elliptic equations becon1e 

t ri vial and the scalar one reduces to 

).. 7 -1 ab - -i-. 1 ') -i-. - £:,. lfl + R = L () () e 'I' - - T - e'l' 
ab 2 (.3.14) 

The existence, uniqueness and linearization s tabili ty of ini tial data of this equation 

has already been established in the literature [24]. 

As an illll str(tt i o n~ 2!J we shall a.ppl)' York's m et hod to the case:-> that th spacc 

rnanifolcl i'1y! is a. :2-dimensional compact manifold withollt boundary. It is a well

known fact that such ma.nifolds are classined into its topological equivalence classes. 

\ Ve c (l n cl iiS S i f y the 111 by its g e n II s !J. ~ 1 (l i Il at t c Il t i 0 11 is f 0 C II sed () 11 the t w () c a -; e s : 

(l)!J = 0 or il sphere ilnd (2)!J = lor il torlls. III fact they (trr th e ollly CilSC:-; for 

which the illitial-\'alue problcm call be explicitly solved. l'o r!J ~ :2. it is Ilot C(l.."Y 

to (~x plicitly rcdllcc t.h(~ pl!ibC spilce of (:~+ I ) - diIlH~ llsi()Il(\. 1 gravity to the physicid 

olle. This CilllS('S;\ t('chllic(ll diffi cl iity to work 011t it (llli1lltlI111 tll!lory of tit" Iliu,l!r'r 

gellll:-> S lJ rLlcr. 



rir~t o /" (\.11. wc borrow somc known f;t c ts froll1 IlI;tth c ll1<1ti cs. Tile sp;t CC of 

the second r(lnk transverse-traceless tcnsors ~ b or ': ll oloI ll orp lli c qllCl(lratic differ-
a 

c nti als" is locally isomorphic to R2 for g = 1 and R6
g-

6 for g ~ 2. \Ve furt.h e r 

obsc [\'e t.hat ={lb is constant evcry wh e rc o n (l torllS (g = 1) whilc ~(lb is simply zero 

O Il a sphere (g = 0). For a higher genus case, ~ab must havc ·lg - ,i zcro points 

somew here on i'vI which are the origi n of the diffic ul ty for sol vi ng the i 111 t.i cd val ue 

problcm for 9 ~ 2. Now it is easy to solve t.he constrain ts for 9 = 0 and 9 = l. 

(1) sphere 5 2(g = 0) 

Take as our starting h ab a standard metric induced on the surface of a constant 

radius sphere e mbedded in the 3-dilnensional Euclidean space. The scalar curvature 

R for this lnetric is set equal to 1. Our starting Eab 111ust he zero as 111entioned 

above. Then the Hamiltonian cons.traint. equation becon1es 

(3~15) 

This equation has no solution. This n1eans that we cannot foliate the j'vIinkowski 

space by 2-spheres. Inclusion of a cosn1ological constant will change the situation 

as will b e shown in the next chapter. 

(2) torus T2 (g = 1) 

'vVe con str uct a torus by identifying the two pairs of opposi te sides of a square 

w hose coordinates (x , y) are as shown in Fig. 2 . The starting n1etric can be taken 

a 

(3.16) 

o n a torus. Of co urse, In genernl , o llr s t.arting m e tri c for solving t.he initial \'cllue 

problem C(l ll l)c t(lkcn 

~) (:3. 17) 

III the coordinates ill J"ig.2. Note thi1t \\'(' Cilll ;tlwi1Ys tr(lIlsforIl1 this Ill e tri c to (h,? 

form C.L IG) wit.h ill1 adcqllatc o rthogonal trallsfo rlllation and a. coo r<iilli1t c rc:'.> c a.ling . 
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Of cO llr~ e t he boundary cO Il<Jiti oll in the llew cO (Hdilli\t.e~ is different. frolll I he Ulle ill 

the origi nal coordi nates. However, becau~,e the eyolut.ion equations are local. after 

solving the evolution we can transforrn the 111etric back into t.he original coord inate 

system. Thus we can CO llcentr(tt.e only OIl t.he sil11ple~t CClSe. The :-;c(11ar Cllr\·at. ure 

R for this 111etric hub vanishes. As we ,dread), obsen'ed t.he traceless trall~verse 

tensor ~ ab is constant on a torus, and so is 

'1 - \' " a b _ .) ( \' ~ + \' ~ ) 1'y - L.J ab Li - .... --J xx --J xy ' (.3.18) 

vVe write iv[ = 2n],~ where a parameter m IS a constant. The Harniltonian 

constraint now becolnes 

(.3.19) 

A ppealing to Moncrief's theorem;25] we flind that a trivial sol u tion , 

(.3.20) 
T 

IS the UnIque solution. Using these initial data we ca,n easily solve the evolution 

equations and find the geodesic Inotion in the conformal superspace~2J] 

4. Evolution of the Geon1etry 

In this section, we shal l explicitly solve the evolution equations of ('2+ 1)-
1211 dilllellsionClI gravit,y with a coslllologic<11 constant As wc IC<1 rn cd how to sel 

lip the initial vailles, it is easy to oht(1i ll the illiliClI d;lt,a Oil il sphere ;lIld Ull ;1 t.orllS. 

(1) time evolution of il sphere 

FrOlll 1I0W Oil. it is cOIl\'ellicllt to write the lillle e\'oilltioll eqlJ;tliolls for 

( Ii 1'2..:'(U), nul, for (Ii , /\-(/U) where ~ b is the tr;tccless part of !\- I' HCC;llbC \\'(' 
<lu «(U'I /lu 



helVc adoptcd York ':s :s li cc, :s llb bccome:s t hc t rall :s ye r::;e-t racek::; from t hc O ll bet. 8y 

::;omc manipulatio ns we can rearrange the time cyolution CCl:s.(2.10) anJ (2.11) (1~: 

The relation between the York's time 7 and the parameter is deduced froln 

eq.(2.12) as 

07 b 1 ~ - = -6.N + (~ ~a + -7~ - '2A) iV + lVaV T at ab '2 a 
(4.2) 

Because we take 7 = constant on each spacEdike hypersurface , the last ter.m drops 

out. 

First we choose the lapse function and the shift vector. 'vVe set the shift vector 

equal to zero. This choice implies that our initial coordinate frame is the comoving 

frame. Secondly the lapse function is set equal to one. Note that our time slice 

is not exactly the same as York 's time slice (see ref.[2SJ) , though T = 1{ is still 

constant on the spacelike hypersurface . 

Because of our choice of the lapse function and the shift vector , the tin1e evo

lution equations are cast into a sin1ple forn1, 

oh ab _ 
~ - -7h b' ui a 

( 4 . .3) 

T he transverse- trace less part of the extrinsic curvature ~tlb IDust be zero as we 

m entioned earlier. \Ve also have 

rit 
( .1. .\ ) 

Thc Hamiltoniall co nstraint reads 

I ~ . 9 
~6- 1 - (-T - 21\) C = O. 

. ) 
(. 1. .J) 
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:\ tri\'i(ll soilltion o t" this cqu(lt.ion is (l CO Il~t(lllt O. 

Note that _T
2 + 41\ 111Ust be positive. This condition implies that the time 

decreases (lS T increases. So we rewrite eq.(4.4) by reversing the direction of time 

t - -t so that 

dT 
dt 

__ T 2 + 4A 

2 

Integrating eq.( 4.7), the tinle coordinate transfonnation between t and T is 

sinh at 1 2a + T 
T = 2a or t = - log ---

cos hat ' 2 a 2 a - T' 

(4.7) 

( 4.8) 

w here a = VA. As T runs from TO to 2a, t increases fronl to (the corresponding to 

TO ) to (x). Inserting eq.(4.8) into eq.(4.3) (the direction of t reversed), 

oIL b sinh at 
_a_ = 2a h. at cosh at ab 

(4.9) 

Assuming a homogeneous solution hab = A(t)hab(t = to) , we can inllllediately see 

that the scale factor A(t) is (1/a 2) c05h 2 at. The resulting 3-geonlctry is 

(-1.10) 

where (() , 1;) is the ordinary polar coordinat.es on the s phere . This is the well known 

de-Sittcr .-';Ollltioll. 

('2) time e\·olllt.ioll of il torllS 

As in thc prcviolls cctiOll. we fix the gilllgC il.S V = I ;wd ,\'/1 = D. The 

latt(~r choic'(, lllC;U1S that otlr coordillittcl fr;ullc (x.y) is;t COllt()\' illl!, fr;111H' , ~() ;11 1 the 

illforl[lalioll of the geollletry of the tortls is cOlltailled III the '2-lIlclric 0111\', 
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8('C;1Ibl? ()f n\lr li1p:-;c fllnctioll i111d :-;hift H'ctor choice. the till1 l? (' \ 'O lllti o ll cq ll<1-

L ion s can be c ib t. i 11 to i1. S i 111 pic for 111 , 

()IL h 
_,_I = -Th _.) 

i)t <16 -~<lb l 

OY' 
~ab __ ')/ cd" " Ol - ~ L ~ac~bdl 

(·1.11) 

with 

dT ') 
- = T~ - 4A. 
dt 

(4 .12) 

Integrating eq.(4.12) we obtain 

cosh 2at 1 T - 2a 
T = - 2a or t = -log , 

sinh 2at ' 4a T + 2a 
(4.13) 

w here a = VA and A is henceforth supposed to be posi ti ve . As T runs froln TO to 

(X) , t goes from t o( < 0) to O. Notice that the range of t is t ::; O. 

Eliminating .....Jab from the above time evolution equations, we can obtain a non

linear second order differential equation which contains the metric on ly_ That is 

( <:l:. 1 <:l:) 

ow let us look for a solution of this equation in the diagonal form. 

h = (A(t) 0) 
ab 0 B (t) . 

(4 .1.5) 

rL '2 ..1 1 ( (1: I ., co :-> It '2 (L l rl ,,1 .,., 
--., -- -)-+'2([. .· I--·\cr.·\ - , 
rlt- : \ rlt ~Illh ·:'ot rlt 

Cl. l b) 

;llld ;t :-;illlilar cCtlli1Lion for H. 



\ \. c t 1I r 11 tot h c i 11 i t. i C11 \ . {' I 0 cit. .y 0 r t h (' 111 (' t r1 C. Fro III (' q . ( ·L 1 1) 0 r t h (' d cf i 11 i t. i () 11 

or t.he ext rin::;i c C\J[ \,i\. ture; 

all. 1 
_ '_Ib = -'2(~ + -II bT ). 

;) l 'Ib ,) (I 

so t hat we h ave the i ni ti al vcloci ty as 

To keep the metric diagonal all the tirne , we need hry = 0, i.e. () 

Choosing () = 0 , the initial veloci ties for A and B are writ ten as 

8hrx = dA = --'2(rn + ~ f3T ) 
at dt '2 0 

cosh '2ato + 1 
= 2f3a - h') , 

SID ~at 0 

8hlJY dB r cosh 2ato + 1 
-- = - = _~Ba------'O...---

at dt . h') t SID .... a 0 

w here the ini tial values for A and B are A = B == f3. 

(4.18) 

O. or IT. 

(4.19) 

0."ow we are ready to . olve the time evoluti on eq.« l.l G). :'-oting that thi .- Ci\. l1 

be rewritten as 

d 1 dA . ? • 
-( -- sI11h 2a.l) = 4(£- sInh 2al, 
ell A rtl 

we C;Ul integ rCll e it to get 

1 riA , cosh '2al + c1 - - = 2(1 _____ --C.. 

:1 (U :-;illh '2([ 1 

(-1.20) 

(-l.~l) 

where (:1 IS all illt(~gra. Lio11 COl1sta.IlL. (;1 is c1etcfrllin ed to lw I l>y (ISIIlg th e initial 
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conditions (-l.10). Int.egrating eq.( ,1. 2l) ol1cr ll1orr. We' nhtai l1 the ~()lllti()!1 for .'1. 

. I') .A = c ') sin 1- al, (-1.2~) 

where c:? is a n integration constant. Again llsing the initial condition , wc haye 

f3 

B (t) can be sol ved in a similar way. Thus we arrive at the sol u tions: 

A = f3 ( ~inh at )2, 
sInh ata 

B = f3 ( cos hat ) 2 . 

cosh at a 

(,1.23) 

( 4 .24) 

Because eqs. (4.11) and (4.12) defines a well-posed Cauchy problen1 , we can convince 

ourselves that this diagonal solution is the unique solution that satisfies the initial 

conditions for () = o. 

The resulting 3-geometry is 

d ') d') f3 [( sinh at )')d ') (coshat )'ld 'l] s- = - t- + - x- + - y- . 
sinh ata cosh aia 

(4.2.5) 

An interesting feature of this result is the ratio of the lengths of the two cycles , 

sinh at / cos h ai 

sin hal a cos hal a 

tflnha! 

tanh ata . 
(<!.26) 

Recall Lh ilt / gocs fr o m to < 0 to O. In the lillut l - -cx::; , thc ab o\'c rct.tio asymp

/.()tically t C' lld:-; to ;l cO I1:-;tf1.!1L - II tallh ([/ 0' whik th e ()\'crall :-; c;dc fflctor iIl c rC;l.-; C::; 

exp o ll e lltially . This ::; impl c solutioIl is ce rtainly t.he gcodcsic iIi t.hc Ill odllli ::;P;lCC. 

The gcneral geodesics arc ohtnincd by c()n~ideriIlg the gencrCll S()lllt.i()ll~ f) #- 0 ~"3J 
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5. Phase Space Reduction 

'rVe have been discussing the dynanucs of (2+1)-dimcnsiol1al pure gra\'ity frolll 

the AD0.1 C<l.l1onical point of vicw. In t.hc l1n111ysi-.;, York's timc ~licil1g has IllcH.lc 

the problern tractable. It is relllarkable that thc uynam.ics reduccs to that of finite 

degrees of freedorn in the lilllited cases, !J = 0 and !J = 1. Although our analysis 

of the sol u tion have revealed the interes ti ng propert ies of (:2 + 1 )-cli mcnsion al gr a \'

i ty, it Inay be I110re appropriate to consider this problenl at the ac tion Ie ve 1. In 

the electromagnetic case, in the Hamiltonian formalism, we first solve the initial 

value problem. Then we study the dynamics by solving the evolution equation. 

It becolnes clearer to see this process at the ac tion level. In the proce-.;ses, the 

orthogonal decolnposition of an arbitrary vector into a sum of transverse, longi

tudinal and global modes is essentially used. In the gravitational case, when we 

attempt to reduce the phase space at the action level, we lnust also heavily use 

York's method. From now on we shall perform phase space reduction of (2+1)-

d· ' al . [27J ImenSlon graVl ty. Before going through this procedure, we have to keep in 

mind the limitation of our method. In higher genus cases, as will be hown later, 

we have a difficulty for the reduction of phase space because of the c0111plexity of 

the Hamiltonian constraint equation. If we can get rid of this difficulty which has a 

similarity wi th that of (3+ 1 )-dimensional gravi ty, we would gain SOlne insight into 

the (3+1)-dimensional gravity, In the spherical topology case, it is trivial to reduce 

the phase space . Thus we shall concentrate our attention on the totoidal case for 

a while. The phase space action of (2+ 1 )-dimensional gravity takes the fOrIn 

(.s.1) 

or In tcrms of the cxtrinsic cllrvatllfe, 

III York\ slice, it is cOII\'cnicllt lo dccornpo:-;r. thc cxtrill:-;ic CII [\·;\.tll r('. [\'/). into t IJ(~ 

:n 



t r C1 c e Ic:):-\ pelf t C1 f1 d the t r C1 c epa r t as 1'0 II 0 \\' :-:; 

(.5.3 ) 

Then the action beC0l11eS 

It is at this stage that we use York's slice, T = - I{ = constant over the spatial 

manifold . '-IVe should remark that this gauge condition implies the spatial constancy 

o f the lapse function fl (see eq.(2.12)). Therefore we can rewrite the action as 

In this form, we can easily solve the InOlnentum constraint equation by expanding 

~ij in terms of the basis of the quadratic differentials ¢J(o:)ij, 

~ij = LP(o:)¢(O:)ij /2v , 
( 0:) 

with v = J i2 xJh. The deformation of h .. is represented as 
lJ 

8h . op(a) 
~ = ~ _~J-J.-l(1 \ .h

l
· + rlif f eo .. 

Dl L of a)!} 

(a) 

(5 .6) 

(.5.7) 

This eq uati o n defi nes the Teichmliler peuameter:-:; p (a) a.nd the correspoIlding Bel

tri.ulli diffe rc ilti ells JL ~rr) 7' \Ve substitllte t.he exprl11SiollS (.J.G) (l ll d (.=:;.7) fo r :':1) a nd 

~ . I . (- -) ' I I I) l I () I 1 Il tot 1 C il( tI 0 II .) . . -) 1 Il t 1 e p 1 as e spa c e . II e to t fl e s pee i Cl gall g e . \. = . V ( L) 

t h Cl.t we chose ) the Gn al fo r In of the (lC ti OIl bec ollles 

I 'J (1'1) 'J . ( f) ( I ' -. ' ' r ( 1 .).) 
,~= dt[~l) -. -+7-. -.\(~l) II .. r/ ) ') -1 '-'-)]' . L (I e) ()t iJt L (I l ) (/1) 
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where 

Here 

/I = J c1' xJh, 

\T = !V j'] ('. 
(.S.0 ) 

(.5.10) 

is the vVeil-Petersson metric~HJ FrOln this result, the geodesic rnotion in the con

formal superspace is apparent. This result is significant, because we have many 

technical utilities about the geodesic n10tion at our hand. In our case, the confor

mal superspace is the con1pact negative constant curvature space, then the geode ic 

motion is necessarily chaotic according to the standard arguil1ent abou t dynalnical 
[29J 

systems. 

It 111ay be appropriate at this point to show that the reduc tion of phase space 

for (2+1)-climensional gravity in the case of g ~ 2 is complicated. Using York's 

slice and the momentum constraint, it is possible to obtain the action 

(5 .11) 

It is at this stage that we encounter the difficulty that the lapse function jV is 

necessarily a function of the spatial coordinates . D\le to this fact, we cannot extract 

the standard kjnetic term for the global rnodes. To get rid of this sp(ltial coordinate 

dependence froln the }\ JIi.....J l.....J a6 term , we introdllce il conformal fCl e t. o r n ib 
au 

jV = v(l)O(t , x) : 

h I . = 0 (l X) Ii I· 
au (IU 

The cOllforllled trilllsforlllCttiollS of :=(16 ;lIld l? ilre 

(.=>.12) 



\V(' rewrit e (.), 11 ) ;1:-> 

5 = I i3J.: [vil, ~ij ii,' - /\'(0.)11) - vV/~~ , ~ij 
I ) 1) 

1 'J . 'J' •• • 

+ 2 /! 0. - !\ -V II + IJ n (R - ~ 10:10. ) V II ] 

= j d3x[ viL~ij ii', - vvi1t ,~ij + ~vD2 !\,2 vii. + vD( it - 6/0[lD)Vi1 J 
1) 1) 2 

( .s . l ·l ) 

- j dtI{i; + j v{3(j d'x,}itll - [I) , 

The last term is the Lagrange multiplier term which constrains n as 

j d'x,jhll = v. (5.15) 

From (5 .14) it is obvious that D under the constraint (.s.15) is not dynanlical so 

that we can eliDlinate it froIn the action by using the Euler equation , 

') ~ ~ 1 ~ 
n 1{ ~ + R - 6l 0 9 n - - 6 D + f3 = O. 

0. 
(5.16) 

vVhat we have to do is to solve this equation and to put the result into the ac

tion . The solution of eq . (5.16) depends on 1{'f3 , and R. Then we must solve the 

Halniltonian constraint to further reduce the phase space. It is at this point that 

the c0I11plexity I11entioned before arises because of the momentuD1 dependence of 

its solution . Thus if we want to reduce the phase space to the physical one , we 

c nco unter a [orlllidablc but t echnical difficulty . 

. '21; -



G. Linearized Gravity 

The mcLin purpose o[ this chapt.er is to analyze the effects o[ mat t.er fields on the 

I . [Jo) 0 I' . geoc esic motlOll. lIr .;;tCLnc Ing pOint is t.he [ollowing. \Ve pick lip an arbitrary 

poi II t. ill t he con [ormal supers pace and look at t. he in fi ni tesi mal neigh bor hood o[ 

the point. From t.his point of view the geodesic 1110tion is a straight line. The 

effects o[ 111atter fields can also be easily seen. To do this we shall start from the 

linearized theory of gravi ty and then incorporate the 111at ter fields pert urbati vely. 

Our strategy is to adopt the approximation in which gravity is assun1ed to be 

"weak". In the context of general relativity this n1eans that the space-ti111e Inetric 

is nearly flat. The criterion of the weak gravity does not seem to a.pply to Ollr case, 

because the Einstein equation in (2+ 1 )-dilnensions implies that the space-ti111e is 

locally fiat. Globally, however, there are "topological degrees of freedom" to be 

taken into account. 

Le t us s tart with analyzing the pure linearized gravi ty. For the 1110lnen t, we 

simply assume that the deviation, hj1.//' of the actual space-time metric 

( 6.1) 

from the flat Inetric 77j1./1 is "small" . \;Ve mean by " linearized gravity" the approx

imation to general relativity which is obtained by substituting equation (6.1) for 

gj1.11 in the Einstein-Hilbert action and retaining only the terms quadratic in hj1.//' 

The result is gi ve n by 

(6.2) 

S· - I dJ [ I . I . i j - J' 2 I' I"' .- r I"' / ') ( I - I )] • - X \ . . \ \ + .. I. I. ' . . I. I. ... + 1/ - L I. I. . } . 1 1 , 
! } ! } " "J ! ! " " } } 1 " " . ! ! 1 ,,' . 1 ". 

(b. :q 

I' .. ,11 = II alld A = lio . To C;l."il t hi:-i ;\ctioll illlu;\. fir~t ()r<ic'r [orlil. 
(1) uu I I 
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let \b d('lillc thc 11101l1CIlttllll. 

(6 .·1 ) 

ThcIl, we get 

5 - J L3 { ijl' -[ ij __ 2+r r -r r + ')jV ij+ /')(1 -I )]} - (X 'iT ~ . . 'iT .. 'iT /I .. I. I. ' . . I. I. .. . ~ . 'iT . n - /. I. I. .. ~ . '- . I. • 
I) I) I)"; ";)1 I";"; j)l I . j ";"; , 11 1"; .1"; 

Our next task is to solve the constraint equations, 

7f1~ = 0, 
J 

h I. k . . - h. I. . I. = 0, ,,; . ,n ~,,; ,t,,; 

(6.S) 

(6 .6) 

In contrast to the full gravity, the constraint equations are the linear equations 

which are easily solvable. To sol ve thenl , we Llse the following deconlposi tion ; 

'iT
ij = 7r~T + (L V) ij + 1 /277ij 'iT , 

h .. = hT)T + (LvV) .. + 1/2TJ .. h, 
~) 1) 1) 

(6.7) 

where (LV)ij = aivj + 8j Vi - 77 ij 8 Vk Here hTT and 7r
ij represent transverse-

k ' 1) TT 

traceless parts of h . . and 7r
t
), respectively. The general solution of the constraint 

t) 

eq uations are 

7fl) = /liT - 01 8J (Ii /6.) + 7/) Ii, 

/ _ / TT _ 1 / 'I / ~ ~j k ' () ;.j J.: ' 
/ .. . - 11J _7] .. 1+ t ' I.UU 0 + t.l. u 9, 

LJ lj J"; ~ ~,,; J 

(6.8 ) 

where rp is an arblLrary functi on. Inserting t.hese into the action, we obtain the 

11 k 
. (J 1) 

we - ' nown actlOn, 

((;.0) 

\ote that th IIamiltollian is po~iti\'c defInite'. ~() wc can qllantize this systcrll 

CO lbi. · tC'lllly . ~t;Htillg froll1 this fa c l. ILHtlc alld ~(hlci(h ~h()\\"('d the ll;ltllr;lIIlC:; .-i of 

the cO llforIlI;ti ruL;l.liull pre::,cripliull by Gibboll:; , ILtwking ;tlld P(~rry . \()w let lIS go 
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hitck 10 the chssicClI ClIlCllysis. III I he lopologicC1II!' I ri\·iClI ~pClce n o t bing hClppells. 

Let us consider the torlls case. T here h ~T ClI1d 711T cue spCltiC1l\y COIlStC1Ilt. :)t) 

we get the following Clction by using the Beltr c:uni diffe rentials for t.he backgrouIld 

geometry, 

(6.10) 

Note that the vVeil-Petersson n1etric gCt l3 does not depend on qCt in contrast to the 

full gravity. This fact is understood as follows . As we regard the deviation frorn 

the background lnetric as slnall, we are on the tangent space at son1e point in the 

conformal superspace. As a consequence the geodesic nlotion is along a straight 

line. This sounds natural, because any geodesic trajectory is locally straight. At 

this point we would like to emphasize that the clear-cut result for the case of 9 = 1 

heavily depends on the constancy of hfyT. vVe cannot expect that the Teichmuler 

motion is the geodesic motion in the con.formal superspace in the case of 9 ~ 2. 

vVe are now in a position to discuss the effects of matter fields on geodesic 

n10tion. Our action to consider is 

(6.11) 

To analyze this system, we assurne that the i'vlaxwell fields are sufficiently small so 

that quartic terms are negligible . Then the full action reduces to 

c - J d~3 · (rav[A [Av[a) 1 I ,:3'F F'.LV +' J L3 11 alIT .,) - .1 A va - v a /\ - 4', ( . .1, fl v ( X 2' I a II 

-J 3 iJ . - ij 2 - d X {IT h .. - [II .. IT - IT + [ .. /. [ I ... - ['/'/' [ ... J 
IJ IJ IJI>: I>:)t II>:I>:))1 

. . 1 
+ i\'.('2'iT!) - To·) + 1// '~(h, /, .. - h ./. ' /' + Too) + - h .. T } 

! ,) t A' 1>: , 1! ! 1>: , I I>: '2 ! J ! J 

(6.12 ) 

J
. " 1· I · J ~ ! _! ,--' !) .~ . _I + rL.r[II : l.--(/lIT . +-1 I .. )+/lnu"l) . 

1 '2 I '2 1) I 

The pcrtllrba.tioll terril Cilll be writtell l1S 

rr - ·T T /, ' ./, 'J' - . r 
hi] 'Fi) = hI] 1 i) + II i) J 1) + hI) j i) . (G.rq 



Solvillg the cOIl~traiIlt equation:), w('can ohtain the longitudill<11 <111<1 tile trace peUh 

of h .. which are rel)resented b)' Ill(ltter fields. Because Tr~ and Tr are alreculy 
!J IJ 1) . 

quadra.tic of nlatter fields, its contribution to eq.(6,13) is higher order effects which 

we disregard in our approximation ~chellle. Finally reta ining the rele\'allt parts 

only, we obta.in 

(6.14) 

where Fa = J d2XfL~Tij ' This is our n1ain result~30J The geodesic Inotion In the 

conformal superspace is deviated by the transverse-traceless parts of the energy 

momentum tensor,i.e.its global mode part. Note ·that the final formula need not 

assume specific matter fields. The reason why we concentrate on the lvIaxwell fields 

d 11 fi 1 I [I d J U' h b . . is the exis tence of gio ba.l rna es of ~Iaxwe e (S on torus. SIng t e aSls In 

Appendix B, the gauss law constraint is solved as 

(6.1.5) 

and the vec tor potential decomposes to 

(6.16) 

wh re D is the Laplacian and '7 and ~ (lre dual basis of the harnlonics (see Ap

pendix.B), [sing this result, we C(l n obtain t he spatial part of the ellergy lllOlnen-

t unl tensor as 

\\'e pick tIP t h· IIl O:--t illteresting t '[illS I.e., tho::ic which COllt<11ll the gl()I);t! Illude:, 



7i,.'t q\l(\dr<lt iCfllly, 

1 'T - ('(,3 rt,3 
.. - -7J. . 1f ",If J77'. 7],. - 1f ..... 1f ,~7JI· 7J ., 
1) '2 I) c. p "'''' '.' iJ ) 

(t; . IS) 

alld substit.ute this expression int.o the fonnula (6.1,1). T he r('~ult is 

(6.19) 

In the case of the Einstein-~lax: well theory, the vVilson loop degrees ITO' bend the 

trajectory of the global degrees of gravity. This is understood as follows: The 

vVilson loop winds the non-trivial cycles of the torus, then the free motion of the 

torus is disturbed by its tension. 

7. Mini-superspace 

In the previous chapter , we appealed to a perturbative method to grasp son1e 

feeling of classical dynamics of (2+ I)-dimensional gravity. Our aim in this chapter 

is to see another aspect of (2+ 1 )-dimensional gravity coupled with matter fields 

using a minisuperspace method. Let us begin with the Einstein-i'vIaxwell theory, 

(7.1 ) 

T he AD tvI (2+ 1 )-decomposi tion is easily carried ou t as follow s; 

s = J d t / d2 
X { 7r i j i L. . + 7r i "i. - /\ r f f - IV i [[ . + A 0 i) IT i } , 

1) 1 I 1 

H = ~ (lf ij IT .. - 1T2] - JII n ( 2 ) + +1T 1
7i + ~JhF . F i

) , 
V II 1) '2 V h 1 ,1 1) 

( - r)) 1._ 

ff - _')-r) + -r) F . - -11 '1' /I . . • 
1 I ) I) 

For the time being, we flSSllme the spilce hits spherical topology. Theil we Cil ll solve 

:31 -



the C()Jl~lr;lillt. cqll;\lio ll . 

(1.:3 ) 

Cll1d the ~olllt.ion I S g l\'c n hy 

(1.4 ) 

The vec tor potential decoIl1poses to 

(7 .5 ) 

where cP, X are the arbitrary scalar functions and the magnetic field IS gIven by 

B = F
12

. After inserting these formula into the action , we obtain 

(7.6) 

This action is apparently equivalent to that of the Einstein-scalar theory. Now 

we are going to study a wormhole solution of this action. The condition that 

the electric field is zero and the magnetic field is constant over the 2-sphere is 

equivalent the homogeneity of the scalar field cP o Under this condition, we can 

adopt the nlinisuperspace approach. There we can see the essential features of the 

w hole theory probably except for topology changing phenomena. * 

Putting the following allsatz of t.he rnetric. 

(7. i) 

we oht.clin t.he <lctioll, 

(I.S) 

[Il q 'liUlt 1lf11 >-;ritvity this is it s"ri'-)Ils , lis ;uL·i L!lt ; t~,· . I[ ,) \ ... ·' ; \·' · r w'· II'-) \\' Stll.Jy til" "\; L,> si (~;d 

iLSp'.:cts o f >-;rilvity, hence we postpon'.: this probkm Ilntil we study qUiI.ntlllll >-;r il\·ity. 
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Cxt.relnizCltioll of (I.S) yiclds the eqllCltiol1~ of Illotion, 

.. \ 1 G' : ~ 0 a-! a+'1'iT l'ao = , (1.0) 

The solu tion of these Lorentzian equations is 

(7.10 ) 

and this leads to an Euclidean wormhole solution , 

(7.11) 

This solution is the same as the one obtained by Hosoya and Ogura in the Einstein

Maxwell theory~32] 

N ext we are going to seek a similar solution in the case of toroidal space . Our 

parametrization of 2-metric in the case of 9 = 1 is the following, 

(7.12) 

where d, ~ and TJ depend only on t . From this parametrization , it is easy to calculate 

the Einstein- Hil bert action , 

1 J 2'2 1 2 ~~ + ~~ 2 d2 
. 2 5=--, dt{--(d --d --.,-)-2A1Vd + 87rG-<;6 }. 

167rG N 4 7r N 
(7.13) 

From this (lction, we can rcad off thc De\Vitt rnctri c(7] for the minisllp rspClce. The 

conformal superspace part of this metric is nothing but thc \Veil - Pctersson mctric. 

For simplicity lct llS furthcr rcducc our modcls by sctting ~ = O. As wc m c ntioned 

in SCC.{1. gcncral solutions (Cln he obtClif1('d from t.his ~irnple (1.-;(>. Th (' r(,fo r(' thi~ 

sirnplification ncvcr loses any gcncrCllity. 

- ~n -



Fro m this ll1illi~llp e r s pa ce "ppro(1 ch we C;111 reprodll ce (1\\ of (h(' \)J" (' \·i O llS rC':'ll\ts . 

For eX<1lnpl e) i 11 l he c a.:::;e of pll re gr asi t.y, we ohta.i 11 1. he me t ric. 

(I . l·l) 

w he re a periodic boundary condi tion is irnposed on x, y. This soil! tion coi ncides 

with the one which is obtained by Hosoya and Nakao !23 1 The geodesic 111otion , 

7](t) = t) (7 .15) 

is a part of their results. However it is ea.sy to reproduce all of the geodesic rnotions 

b . 1 d' c [2il y Inc u lng ~. 

Inclusion of the cosmological constant is interesting from a coslTIological point 

of view. The solution is simply 

? 21.2 21 ? 2 
ds~ = -dt + H sInh Ht dx + H cosh- Ht dy , (7.16) 

and the moduli, 

7](t) = tanhHt, (7.17) 

asymptotically stops its motion at TJ = 1 as t ~ 00. Finally we shall exaffilne 

whether there exist wormhole solutions in the case of!J = 1, or not. The equation 

o f motion are the following; 

(7.1S) 

(1.10) 

(7.20) 

(1 .21 ) 



lll~ertil1g eq.(7 .20) (lild cq .(7.21) with CO ll~t.lll1h of illtegrllt.i o ll , 171 lllld n , \\' > ohtain 

a. single eq II a.tion, 

The sol u tion of this equation is quali tati vely similar to the previous one, eq. (1.1 I). 

Therefore the wormhole solution in the case of g = 1 does not exist. 

8. QuantU111 Gravity 

It was a great success to discover the quantum mechanics which was a conceptu

ally revolutionary theory. Now no one doubts that the quantum theory is a correct 

theory which account for the laws of nature. Indeed, the electro-weak theory or the 

Weinberg-Salam theory, shows us the surprising agreement with the experimental 

results. Quantum chromodynamics is also considered to be a correct theory for 

strong interaction. Thus these theories are called the standard theory. In our uni

verse, however, there exists the gravitational force as well as the ones mentioned 

above. The standard theory of gravitation is the general relativity which is not 

only mathematically beautiful but also explains many phenomena in our universe. 

Therefore we may say that we have found all of the theories. There are, however, 

two unsatisfactory points. One of them is based on the ideology that the unified 

theory of nature should exist. Another reason is more serious one that the lack of 

the conceptual consistency between the standard theory which is a quantum theory 

and the general relativity which is a classical theory. So we have to incorporate the 

quantum theory into the general relativity to get a conceptually consistent theory. 

As a prelilrunary step to quantization, we need to put Einstein's equations for the 

gravi tational field into the Hamil tonian form. The Hamil tonian form forces us to 

specify a physical state at a certain time. In the usual quantum theory, the physical 

:-;lilt.e is determined by the Schrodinger eqll(ltion. In ollr ((1.,';r, the (orr('spollding 

equations are 

1/0 = O. 

H . ~I = O. 
I 

(S . 1 ) 

U3.2 ) 



The eq uation (8.2) ~ iIl1ply expresses that t ' mllst he i!1\'(1ri(1!1t Ilnd e r the ~pi1(i(d dif

feomorph ism . To get IjJ to satis fy th is eq u ation is t h liS not di fflc til t, \\' hi Ie to satis [y 

eq.(S.l) is co nsiderably difficu lt because it is a functional differential equation. \Ve 

rnight be ab le to circllrnvent this situation by fix.ing the gauge before ql1(1Ilt.izi1tioll. 

The complete fixation of the gauge degree of fre edo m is, however , non-trivial in the 

case of ge neral relativity, because the Han1iltonian constraint includes a quadratic 

forrn of the moment urn. To w hat extent can we fix the gauge degree at the classical 

level? In Sec.5, we have explicitly reduced the phase space by using York 's tirne 

slicing. Our proposal is that we should start to quantize from the action (5.8) using 

functional methods . Functional methods are particularly useful in the development 

of theories which have certain invariances, such as gauge theories or parametrized 

theories, because they allow these invariances to be displayed explicitly. One ex.

pects these methods to be especially useful in the' search for a quantum theory of 

gravity, which has invariances of both types. Indeed, Euclidean functional inte

grals for amplitudes have been proposed (3J as the fundamental starting point of a 

quantum gravitational theory, an idea which has many noble consequences. This 

program immediately encounters a difficulty. The Euclidean Einstein action is not 

positive definite and the path integral will diverge. As Gibbons et a1. [lOJ showed, 

the Euclidean functional integrals can be made convergent by a conformal rotation. 

There is, however , no direct analog of the conformal rotation in the ordinary gauge 

theories such as electrodynamics. The actions of gauge theories are typically pos

itive semi-definite when expresse'd in terms of the natural Euclidean variables . In 

view of this lack of analogy between Einstein gravitational theories and ordinary 

gauge theories, it would be helpful to have a more physically sound motivation for 

t he Euclidean gr avit ational in tegrals in their conformally rotated form. Fort u nately 

we know that a conformal rotation is needed to construct the Euclidean functional 

integrals o f linearized gravity which is well defined when expressed in terrns of its 

phy~ical d eg rees o [ [reedo lll. IIartle and Schleich hi1.\'c ::;]l OWll[JJJ that the cOllfor

Inally rotated linearizeJ Euclidean functional integral [or a quantum amplitude can 

be deduced from the functional integral for that cunplitude expresscd in terms of 

the physi ca l degrec ' o [ freedom . Their strategy is the [ollo\ving . Bcginning with the 

c1a.ssical theory (~xpre .. sed in its Illanifestly gauge invariant [orlll, OIle fir::;t i.()la.tcs 



the physi cal degrees of freedom and expres:-;es the dynamics ill terms of theIl! . OI1 P 

next forrl1ulates the quantull1 theory as functional integrill~ in the phy -ical \·a ria.hles 

weigh ted by t he appropriate physical ilC t.ion. Fi 11 ally, one in trod uces a cer tai Il n u 111-

ber of integrations over the redundant vilriables t.o reco\'er the lnanifest in\'ariance 

expressed in the full set of variables, The re~trlting parametrized functional integral 

is equivalent to those originally given in terD1S of the physical variables, 

The essence of their arguDlents Dlay be illustrated by a siInple quantuDl me

chanical model. The configuration space of the model consists of the physical degree 

of freedom, q(t), and two variables ¢J(t) and .\(t) which represent the redundant 

variables. The Lagrangian is given by a SUIn of the Lagrangian for the physical 

degree of freedom and the Lagrangian for the redundant variables, 

1 ,? I,? 
L = -q- - V(q) + -J-L(¢ - .\)-, 

2 2 
(8.3 ) 

This exhibits a simple model of gauge invariance, Actually the total Lagrangian is 

invariant under gauge transformations, 

¢(t) ~ q)(t) + A(t), 

.\(t) -'- )\(t) + A(t). 
(8.4) 

Let us study this model in its Halniltonian form:
9
! Reflecting the fact that .\ is not 

a dynamical variable, there is a primary constraint on the system, 

8L 
PA = ' f)~ = o. (8 . .s ) 

One finds that the Hamiltonian corresponding to (8 .. 1) is 

(S .G) 

w her e ;r = I L (¢ - .\) an J ]J (l) is the COil j \.I gat e III 0 me II t til n to (I ( l ). S i 11 C e the s y s t e In 

- :r;" -



has a gauge il1\'ariance, the secondary cO l1 str(l int exists: 

{ P A I }f} = IT = O. (S. () 

On the constrai nt su rface, the Hamiltonian becomes 

(S.S) 

We have explici tly red uced the dynalTIical degrees of freedom in this model to the 

physical ones. We can now proceed to construct quantum amplitudes as SUITIS over 

histories of physical variables . The transi tion amplitude or the propagator is then 

given by 

J dpdq exp i J dt[pq - HphyJ (8.9) 

One can readily introduce the integrations over the redundant variables to recover 

the manifest invariance expressed in the full set of variables. The result is 

dpdqd7rd¢dAb(<I>(¢)) I-I expz dt[pq+7r¢ __ p2_V(q)--7r2-AITJ. (8.10) J b<I>. J . . 1 1 
b¢ 2 2J-l 

Or equivalently we have 

J b<I> J 1 2 1 · 2 d q d ¢ dAb ( <I> ( ¢ )) I b ¢ I e xp i d t [ 2 q - V ( q) + 2 Jl (¢ - A) ], (8 .11) 

w here integration over the momentum variables is performed. 

To make clear the logic of Hartle-Schleich, we shall follow the same procedure 

as the Euclidean method. The Euclidean phase space path integral has the form 

J dpdqexp J dT[ipq - ~p' - V(q)J. (8.12) 

If we wish to recover the original invariance, the following mani pulation would be 

necess ary 

where we do not specify the sign of the kinetic term of the redllndallt \'iuiahlc , If 

IL ha..-; a positive sign, we choose a negativc sign for the kinetic tcrm a.nd then we 

- Jo -



obtain Cln expression of Euclidean co nfl gurCltion space path integral: 

(S .1-1) 

Howe\·er , if It has a negCltive sign, we wo uld reach Cl different expression 

J I 8 <I> J 1 ') 1 · ') 
dqdcpd)"8«I>(¢)) I 8¢ I exp - dT[2 q- + V(q) - "211(¢ - ).,)-J . (S.lS) 

This is nothing but the simplified version of the notorious conformal rotation . The 

key criterion of choosing the sign is the convergence of the Gaussian integration. 

In the case of 11 < 0, the action which results from the Euclidean path integral in 

terms of the physical degrees of freedolTl has the saIne gauge invariance with the 

original action, however it differs from its original fonn with t = -iT (see eq.(S.3)). 

In the case of the linearized Einstein gravity, one can demonstrate the natural 

ness of the conformal rotation in a simiLu way. Having obtained some experience, 

we are going to discuss the role of the conformal rot ation in the context of (2+ 1)

dimensional gravity in which we do not use the linearization approximation. Before 

proceeding to our main subject , one more exercise is necessary. In a topologically 

non-trivial situation that we wish to study, the reduced phase space of the system is 

not so easy to identify and we must be careful to precisely define the path integral. 

As an illustration , we shall perform this program in the case of 

(1 + 1 )-dimensional Max:well theory on a circle. Starting from the action , 

(S. 16) 

one can isolate the physical degrees of freedom by sol vi ng the Gauss law constraint, 

dE := 0. ( I...' 1- ' \). I) 

Its sollltion is given by E = p(l) . further we impose the gilllge condition. 

(0. 1 ~) 



The ~{) ll1ti o n bccomc~ ,, \ = (J(I). CO ll ~cqllellt. ly we ohtCl.ill the phy~ic(ll (\ctioll (\:; 

5 = J rltfpq - ;r Rp'] (8.19) 

where R is the raJius of the circle. Let us quantize this systerll by path integration. 

:L J DpDq exp i J dt[pq - ,,- Rp'] . 
wtndtng 

(8. ~O) 

Here the summation over the winding number arises due to the spatial topology. To 

make the invariance of the system manifest, we must add the redundant variables 

using the identi ty, 

1 = J dX6(6X) 1 del6 1 . (8 .21) 

The expression (8.19) becomes 

J DpDqdXdry6( 6X)6(6ry) 1 del6 12 exp i J dldx[pq - ~p2] (8.22) 

vVe can rewrite this expression by adding zero to the action , 

J DpDqd(8x)d(8ry)6(6X)6(6ry) 1 del6 1 

x expi J dldx[(p + ory)(q + OX) - ~(p + 07/)'] , 
(8.23) 

and by setting A = q + fJv. and E = p + ch], we obtain 

J J 
. 1 ') 

DADE6(fJA)6(fJE) I det{fJA , fJE} I exp i dtdx[EA - 2' E wJ . (8 .24 ) 

III th e ;\ \)nvr. C' xampl e. the spitce-time topology is the cyliIlder. It C t\ll:-;~:-; :-;ome 

complicati o ns in th e pt\th integration . Thitt is. the summation o\'er th e winJing 

numbers . 

In the CCl. ·e of the torus univcr ' e. we do not know how to flJnctionCl.II.\' integratl? 

the reJuced action due to the complexity of the integratioIl regiolls . 

- l O .. 



The formed pa.th intcgral representat.i o n o[ the torus universe is given h\· 

(8.25) 

II is, however, dimc ult to perform the pa.th integration, because the integration 

region is very cOlnplicated. Alternatively we shall start from the \Nheeler-DevVitt 

equation, 

(8.26) 

Then we define the path integral representation by its solution. It is our starting 

point to recover the full sYlnmetry of the theory. Separating variables, we can easily 

find a solution of eq.(8.26) as 

(8.27) 

Here I( is the modified Bessel function which approaches zero exponentially when 

its argument goes to infinity. The number n has to be an integer due to the 

periodici ty x -,>- x + 1 E 5 L (2, Z). Of course (8 .27) itself is not invariant under the 

full SL(2, Z) . We have to superpose (8.27) so that the result satisfies the SL(2, Z) 

Invanance; 

(8.28 ) 

The coefficien ts P l/ (n) have not been analytically gi ve n and the discrete eigen val ues 

l/ are known only numerically. However, their properties are fairly well studied 

by Il1athematicians in number theory~j~1 The automorphic [tinction (8.'28) is callcd 

the ~lcl.a.ss form . :';ote that we ha\'e excluded H = 0 [rolll the :-:illm ( .'28), 1)(~C(l.ll:-'(' 

we have thc bound;uy condition Ul/(s, x, y) - 0 as y - O. That is, we demand 

the si ng ul ar u ni vcrsc has no ch ancc to Cl. ppear. Thc idca behind this houndary 

I· · . " 1 II I I II k' . PI COIl( Itlon IS simi ;u to art e all( aw 'Ing s. In a :-:iCI1:'lf', t he singularity o[ t IIf' 

space-timc is circulllvented in quantllm cosmology o[ thc torus llIllvcrse. 

'1 I -



IIere we a~sume t.hat the path illtegrcti C'XIHeS~ I O Il (8.25) co ntCli11S the abo\'C' 

111 ell t i 0 11 e d co 11 ten t s. :\ 5 we h a\' e fi 11 ish edt 0 de fi 11 e the p Cl t h i n t e g r ell rep r e::) e n t. ( t t i O! 1 

(8.25), we s hall proceed to recover the original symmetr.Y of ('2+ l)-dimensional pure 

gravity. ~ow we Clre about to perform Clll id enti cCl I rewriting of t.h e pClt.h integral . 

Therefore we shall reverse the process here. \Ve shall start frolll the path integra.l~J61 

J DJ{ij Dh .. 8(H)8(H.)8(J{ -k(t)) 1 det{J\ , H} 1 exp i J dtd~xjh(J\'ij -J{ hij)h . .. 
1) 1 1J 

(8.29 ) 

First we notice that the following orthogonal elecoD1posi tion is useful, 

. . . . 
D1{lJ = D"L/J D(LWr) Dl\' 

1. 1 .. . , 

=1 detL I L 12" DEl) DWt D 1\' 
(8.30 ) 

and 

1. 1 - . 

Dh .. =1 detLIL 12 Dh .. D'I/Dd:> . 
l) t) ' 

(8.31) 

The path integral becomes 

J DEij Dhij Dk(t)Dq,8(H¢) I det{K, H"'} I 

x expi J dtd2x[y'hEijhij - K ~(y'he"')], 
(8.32) 

where the integration over W t is done and the gauge volume element Dv l is factored 

out. Here 

(8.3.'3) 

U ing the iden ti ties , 

(8.Tl) 

it11d 
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we obta.in t.he expression. 

J Dr;,j Dj"JDk(I)Dv(t)D<pDE(I)8(H~ - E(I))8(J d'xji,e~ H~) 

x 8(v-J(tx J ite¢)v I det{I\- , JI9} I eXPiJdtd~.x[Jh~ijil ... -1\-~(Jh e 9)] . 
I) rtl 

(8.36) 

Performing the integration of ¢ and E(t), we get 

J DE,j Dh,jDk(t )Dv(t)Dn(t)v I det{ 1(, H¢} I 

expi J dtd 2x[jhr;,jh,j - 1( ~(jhe¢) - njhe¢H¢], 
(8.37) 

where ¢ is supposed to be the solution of the inhomogeneous part of the Hamiltonian 

constraint equation. After the simple transformation of variables and the expansion 

by global basis, we reach the final resul t , 

J Dp"D p" DT DvDn I det{ 1(, H¢} I exp i J dt[p"p" + TV - n[g"i3p"p i3 - T'V']] 

(8 . .38 ) 

N ow we are in a position to discuss the role of the conformal rotation. The conclu

sion which we have reached is that the conformal rotation seems irrelevant in quan

tum gravity, at least in the case of our m.odel. To say more precisely, it is necessary 

to remark that our insertion of the delta function is meaningless in the Euclidean 

region and furthermore our standing point was th~ Wheeler-DevVitt equation that 

ha no solution in the Euclidean region when we perform the 'conformal rotation. 

\Ve conclucle that the introcluction of the conformal rotation is a complete illusion 

in the case of the full gravi ty from our analysis. 

- 1:\ -



9. Conclusion 

In t h i::; t hes is, th e w ho le at tcn tion is paid for the to pological (1S pec t::; of (2+ 1)

d ime ns ional g ravity in the conventional AD~r approach . Fir::;t we shall summa

riz e Ollr ana.l ys is . As is shown in Sec.2 , t.he ADi\.1 canonical fOrInalism o f (2+1)

dimensional gravi ty is parallel to the one of (3+ 1 )-dimensional gr avi ty. However, 

as (:2+1)-dimensional gravity has a special property; l.e. the space-time is locally 

flat and there are no local gravi tational wave modes , we can expect son1e tech

nical advantages in the analysis of the global aspects of gravi ty. Indeed we have 

succeeded to reduce the phase space of (2+1)-dimensional gravity in the case of 

9 = 1. It is beau tifully formulated as the geodesic motion in the conformal su per

s pacc. In this analysis, York's slicing is essentially in1portant. vVe have also made 

the difficulty for 9 2 :2 cases apparent. It is necessary to incorporate matter fields 

into (2+1)-dimensional gravity for discussing cosmological significance of the global 

modes. For this purpose the linearization method is used and we have concluded 

that the transverse-traceless part of energy-momentum tensor bends the geodesic 

motion. In a special example , the Einstein-Nlaxwell theory, we observed that the 

vVilson line interac ts wi th the geon1etry and modifies the geodesic motion. As an 

alternative approach we used the minisuperspace method. In the case of pure grav

i ty with toroidal and spherical topologies for the spatial surfaces , we reproduced 

the same results with the one of the full gravity. For the spherical topology, we 

incorporated mat ter fields and deri ved a wormhole solution which is related to the 

Coleman theory ~lJI For the toroidal topology, we have not found a wormhole so

I u tion. As we succeeded to iden tify the physical yariables in the case of 9 = 1, we 

can quantize this systern. \Ve studied the fornlal path integral representation of 

the wavefunction of universe. 

\Vhat have we learned from our model analy:;;is ? At least , in the case of the 

t o nI ' IllliH'r sc we hase co mplctely analyzed its classic al and qllallt II 111 strll c tllrc:;. 

However , we could not make concrete statements abollt !J ~ '2 Ilniverses. \Ve think 

that this di -crcpa.ncy between 9 = 1 and 9 ~ '2 i:-, the kcy for llndcrstanding ( .1+1)

dimcnsional gra\·ity. The Illain difficulty was t he' complexity of t hr ILlIlliltonial1 

constraint cqllatioll . In the case of !J = 1, we ha\"(~ explicitly :-:)olvcd thc 1l1()lllell-
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tUlll constraint equation and t he inhomogcncoll:-' part of t.he Hal1liltoniilll (on:-,trilillt. 

equation , hence the quantization becomes t.rilctahlc. As t.he result rcdtlcc~ to the 

well-known relativistic particle systcm we can construct the Hilhert spacc. How

ever, the probability density is not positive definitc, whi ch mjght Icad tiS t.o the third 

quantization of gravity. The n10st in1port.ant observation which we made from Ollf 

analysis is that the Euclidean quantun1 gravity is inappropriate . Specifically we 

showed that the conformal rotation cannot be justified. 

What about the topology changing phenomena? All we can say concerning to 

the Coleman theory is that the only spherical topology is permitted as the spatial 

section of the wormhole sol u tion in (2+ 1 )-dimensions. 'rVe have so rne spec ul ations 

abou t the topology changing phenomena itself. There are at least two approachcs to 

this issue. One of which is the summation over the histories method and another 

is the third quantization of the gravity. The former one is used in the strin a 

theories which are beautifully formulated as the geometrical theory .P71 In the case 

of quantum gravity, we also expect that it has a nice geometrical structure that is 

helpful to calculate the topology changing amplitudes. Indeed , vVitten proposed 

that the topology changing amplitudes can be calculated as the Ray-Singer analytic 

torsion~Jl!1 However, as we have not yet understood the relation between the Witten 

theory and the conventional theory, we do not understand in what sense he says 

the topology is changing. If we succeed to understand the relation between the two 

approaches , the relation between the Ashtekar theory and the conventional theory 

in (3+ 1 )-dimensions will be clarified readily. Once this relation is established , the 

topology changing problem reduces to a rnathematical problerl1. On the ot her hand 

the latter one, i.e. the third quantization of the gravit.y, is attractivc, because we 

can use the technique of the field theory. The problem is how to construct the 

action of the theory. 'vVe have no basic principle to construct the action. Once 

the act ion i~ gi\'en, the calculati on o f the topology chan gi ng amplitud,s is rat her 

s t raigh t forward. 

Finally wc would likc to mcntion the relation bctwccn thc convcntiollal .'\D!\l 

canonical formalism and the new fo rll1;1Ii ~ m . i.c. t hc rC'\ali on bctw('c!1 th e CO ll\'C' Il-

tional AO\1 canonical formalism and \Viucn 's formalism in (2+ I)-dimensio ll ' and 



(he relation between t he cO Ilventio nal AD)'{ canonical formalisrn and Asht.ekar's 

formali::.nl in (.1+ I)-dirnensions. It is this parallelism between (2+ I)-dime nsions 

and (3+1)-dilnensions that is use ful for undestanding (.1+1)-dimensional quantllrn 

gravity by studyi ng (2+ l)-clirnens ional quantum gravity. C lassically, the essential 

difference between the conventional AD~v1 callonical formalisrD and the new fornlal-

ism is that the new formalism permits a degenerate rnetrie. lvloving to quantuID 

gravi ty, for instance in (2+ 1 )-dimensions , this difference makes qllant urn gravity 

renormalizable and fini teo In a sense, the new formalism may reveal the new phase 

which must be realized in the Planckian region. Our future task is to connect the 

new theory in the Planckian region with the ordinary theory in the low energy 

s tage. Anyway (2+ l)-dirnensional gravity will be an illuminating playground to 

understand (3+ 1 )-dimensional gravity. 
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APPENDIX A 

One of the reasons why we study (2+ 1 )-dimensional gravity is the existence 

of a lot o f mathematical res ults for 2-dimensional manifold. Especia.lly, wh e n con

centrating on the closed orientable compact lnanifold, we know many useful fac ts. 

Here we briefly summarize these results . Topologically the 2-dimensional closed 

manifold ca n be completely classified by the Euler number. 

(A 1) 

The g en u - !J 0 f the Ri email n ~ 11 r fa c cis rei ate d tot h e E ul e r 11 U III I w r a:'i \ = '2 - '2.(} . 

["i xing thc genus. we havc differcnt surfaces which are not related by dilfcolllUrphisrIl 
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and the \Vey l transformation. To charC1cterize these different manifold:::; c alled the 

Riemann surfaces the concept of t.he IlllOdllli is lI~eful. \Ve now Ilx t.he t.opology, 

i.e. , the nun1ber of handles of the spatial manifold \1 . An infinitesirllal deforn1ation 

bgmn of a n1etric is a s),rnmetric two-tensor, and the nC1tural nonn for b!Jmn is 

(A2) 

We ask whether all modes of gmn can be gauged away with the help of diffeomor

phism. There relnains the conformal n10de and it is a classic theorem of Gauss 

that in any simply connected patch on the surface the metric can indeed be made 

conformally Euclidean by diffeomorphisln. Whenever the topology is non-trivial , 

however , the diffeomorphisms of different patches need not match and there may 

be topological obstructions. To see this , we note that the action of diffeon10rphism 

on the metric is given by 

b h .. = (L b v ) .. + (V k b vk) h .. , 
Z) t) . 2) 

(A3) 

w here the operator L sends vectors into symmetric traceless two-tensors , 

(Lbv) . . = V .bv. + V .bv. - h .. Vkbvk, 
t) t J J 2 tJ . 

(A4) 

and describes the traceless piece of the deformation coming from diffeomorphism by 

the vector field bv m
. Thus the only metric deformations bgmn that are not gotten 

by diffeomorphism and are not related to the conformal modes are in (Rang eL )1-. 

this means that any diffeomorphism is given by the decomposition orthogonal 

under eq.(A.2) ; 

(AS) 

where the action of PIt on symmetric traceless two-tensors is given by 

(AG) 

and we have used the result that we have the identillcation 

(:\ 7) 

The way to dcterIlli!lc the !lumber of zero Illode:::; of thcsc o p e rators is to a.ppea.l to 
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(lll index t heorelll, which gives t.he difference between the Ilumber of zero lll ()de~ of 

the opera,tor and its adjoint in terms of a t.opological in\·cuiant. In t he present case, 

zero lnodes of L (lre just conformal hilling vectors, the topological invariant is the 

Euler character istic, and the index t heorem reciuces to the foll owillg version of the 

Rien1ann-Roch theo re n1 : 

dimJ(erL - dimJ\erLt = 3X( 111). (AS) 

For the sphere, the conformal Killing transformations form the 5 L(2, C) so that 

dimI{ er L = 6. For the torus, it is the group of translations that has dimension 

2. For higher genus, there are no conformal Killing vectors on a surface without 

boundary. Thus we conclude that 

{ 

0, 9 = 0 

dimI(erLt= 2, g=l 

6g - 6, 9 ~ 2 

(A9) 

Elements of J{ erL are called real quadratic differentials or moduli deformations. 

APPENDIX B 

As a preliminary attempt to quantum gravity, the field theory in curved space

time has been investigated . In this thesis we have stressed on the topological 

aspects of quantum gravity. Therefore we sha1l present here a quantum field theory 

in topologically non-t riv1(l1 spa,ce as a se mi-classi cal theory of the quantum gravity 

in which non- trivial topology is incorporated. 

Let us start from the ivlaxwell theory as an illustration. Given the action In 

the curved s prt.ce, 

s = -~ J dD 
X JgFlllIFllLI 

·1 

J L J ,[) -1 ( i \' I (I I I / I [~ 1 ~ i) ) 1) i ) = ( I ( :r 7i .' . - - / 7i . -;r + - V I' . + " () ( 7i , 
I '2 v II I '2 I] I 

~ 

- ·ie -
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t he Ca, ll~s I aw co ns t faj II t bcc omcs 

( B'2) 

where h. . is thc spatialmct ri c o n ~ alld II = det(h. .. ). Eq.( B·2) is writt. c n il~ 
!) I) 

(B3) 

where 6 is a co-derivative in space I:: . In general this constraint eq. (B3) is sol ved 

as [.H} 

(B4) 

where ¢ is sonle 2-forn1 in space and 77 (Ct) E Hi (1\/) . Owing to Hodge 's decolnpo

si tion theorem, the vee tor potential is written as 

A = dX + 6w + ~ q(Ct) c / L.-t ~ (Ct)' (B.s ) 
(Ct) 

where ~( ) are the dual of TJ(Ct), i.e. J TJ (Ct) I\*~ = 6(Ct) and w is also a 2-form. 
Ct (/3) (13) 

The theory becomes trivial in the (1 + 1 )-dimensional Nlinkowski space , since there 

exists no 2-form~' in space. Now as Hodge's decomposition is orthogonal , the gauge 

degree of freedom, dX, decouples. So eq.(Bl) becomes 

5 = Jdt{J8¢1\*8w-~J(8¢1\*8¢+FI\*F)+ ~p q(Ct)_ ~ ~!J (Ct)(f3)p p } 
2 L.-t (Ct) ~ 2 (Ct) (13)' 

(B6) 

where g(er )(f3) = J 77 (Ct) 1\ * 1"/ 13) and t mean s spat.ial cO lnponents o[ F. \Ve have 

separated the global modes [ronl the 10caLi Ouctuation Illodes. Then the canonical 

quantization can be carried out completely in a standard way. 

As a c1elnonstration we shall study t.hc (2+1)-dimensional ~laxwcll th eo ry on 

T'!. x n. wh e re T~ reprr~e Ilts a tOftlS. ill grcater dctail. [n thi s thco[\'. th e <1.C ti()ll is 

givcn hy 

(87 ) 

w hcrc B = F
1

:. . IIcre \VC takc thc [\itt IIlct.ric on t Ilc tOrtlS . 



Le t 1I :' reca ll thc sc \·cral elcmcnt a ry fac t:-; ah()l lt th c l\i CI11 C1 l1n :-;llri"il CC ::' .1 11 1 In 

t he co mpl ex no tation, th e Ab elian dirre rcl1ti <l1 w sa ti s fl c::, th e peri odi city: 

f w = I, ( 88 ) 

(1 

and the Rienlann relation , 

~ J W II w = ImT = T2 , (B9) 

w here a and b represent homology cycles for the two different direc tions of a torus . 

In terms of the real harmonics , 

eq.(BS) means 

f a= 1, 

a 

and also eq .(B9) implies 

'vVe shall take t he basis as 

~(l) = a, 

7/ 1
) = -==-, 

T2 

f *a = 0, 
a 

~(2) = *0', 

( 2) xa 
77 =

T.) 

(BIG) 

(Bll) 

(B 12) 

(B 13) 

Thc orthonormali ty relation, J ~ !\ *l/ d ) = Dun, holds and the metric becomes 
(0) (0' ) 

(81 ·1) 
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0: ote t.hZlt. 

(1 

f A = q(l)Tj + qP)T, 

b 

l ::;ing these basis,eq.( B13) , thc GilllSS lilw cO llstrilint. is solvcd a.s 

El = Elj 8.rf. + {p 7](1)i + P 7](2)i} 
) 't' ( 1) (2) , 

and the vector potential decornposes to 

A. = a. x - E .. aj ( B) -+- {q ( 1 ) , + q (2) , } 
1 l / 1) 6. ~(I)i ~(2)i ' 

(BlS) 

(B 16) 

(B17) 

where 6. is the Laplacian. Inserting these eqs.(B16) and (B17) into eq.( B7) , we 

obtain 

5 = J dt J d2x{B~ - ~(B2 + 8.¢li¢) + ~ J dt(p q(a ) - ~g(a)({3)p p ) 
2 2 L (a) 2 (a) (13) , 

(B18) 

where g( a )({3) = I ~T 8( a)({3) and q = (q 1 , q2) is on the torus generated by e
1 

= 
(I, -;;-) and e 2 = (0, :2)' Noticing the fact that the dual lattice of the torus is 

again the lattice with basis e~ = (1,0) and e; = (Tl' T
2

). As a result ~ldJ the 

transi tion kernel of the \tVilson variables is 

t 1/ t' 
1/ ') ~ [ " ') - 2J G(q , q = 'Lexpim(q -q - 1m , 

" mT 
(B 19) 

III 

where m = (m, -m ~~ + nT
2

). Here we have discarded the effects of a scalar field 

9, since we are interested in the topological effects. It is easy t. o verify that this 

kernel satisfies the Schroclinger equation by Jirect calculation . By varying the 

moduli parameters, the deformation of the theory is described. This observation 

is crucial when wc consiJer the coupling with gravity. In the (2+ l)-Jirllellsiollal 

einsteill gr(\.\'ity thc only dynilllli cal degr ees of frcedol1l arc Illoduli parrunct.crs of 

spilcc-like slIrfilCcs. As shown ill rcf.[2:3]' the Jynarnics of the moduli paranlcters 

is rcduccd to il QllZlntlIm mechanics of Zl rclativistic pZlrticlc in it curved sp<lce with 

thc \Vpil-Petersson metric . Therefore the gril\'itational cO llpling with tl1f' \b.xwcll 

field mallifests itself through g( rt) (:i) = Ir~Th (( t )(IJ). 



Let 11'" relll<1rk 0 11 the ot her C<1~e~ of t he '2-~p<1cC topology'. 111 t he C<1~C or ~p heH\ . 

t here exists no har rnon ics. T hu s t here exi st.s no thin g for t. he (J lohill mode . In th e 

hi gh er ge n us (g > 1) cCtSe, the ilrg u me n t.s il re pa ra.ll el t.o t he t. o rus c <1se. In th e 

c () III pie x not at ion. th e Abe I ia n d i ff ere n t i ill w . ~ il t i ~ f1 es t. he pe r i 0 di e i t. Y : 
t 

ti, 

and the Riemann relation , 

= 8." 
1) 

b, 

ijW.A w. =ImT .. , 2 t) !) 

= T .. , 
t) 

(820) 

(821 ) 

w here a . and b. represent canonical homology cycles for the Riemann surface . In 
t t 

t erms of the real harmonics, 

w.= a . +i "" a ., 
! I ! 

eq .(8 20) means 

f a . = 8 .. , 
) t) 

bi 

= R eT ., 
! ) 

a nd a.l so eq. (821) in1pli es 

= ImT .. , 
I) 

j
a . A""a . =Im.T ... 

t ) !) 

\ Ve sh a.ll ta.ke t he basis as 

~ . =0' 
I I 

1 ::; i ::; g . 

~ . = - Cr . 
1 1 

9 + 1::; i::; 29 , 

1/ / l1L T ·~ In 
I) ) 

1 ::; i ::; 9 , 

1/ /171 T - I _ n-
1) ) 

9 + 1 ::; i::; '}·9 · 

(822) 

(B23) 

( B24) 

(82.5) 



The o rtil o ll o rll1(1lity re lzui o n. J ~/\*7"f = (- i . ho ld s (lIld th e Il1 tri c \leco lllc ::; 

gl) = 7/1\* Tf = J 171 r ·-: 1 0 . j .. (1 0) 
I) 0 1 

(8']6) 

Thus we can obtain all of the necessary information for analyzing the 0.[axwell 

theory on a Rien1ann surface with arbitrary genus. 

Until this stage we have considered the topological aspects of field theory 

through the first cohomology HI of the space. However, other cohomologies corne 

into play in physics by considering a field theory with a p-form potential which has 

a gauge symmetry. Let us start with the action, 

S 1 1 j * = -:2 (p + ijT F 1\ F, (B27) 

AI 

where F = dAP and AP = A dX/1-1 A, ... dx/1-p . From the variational principle /1-1 ... /1-p 

we get the equation of motion 8F = O. Due to the gauge invariance these in'elude 

the constraint equations, 

(B28) 

where {; represents the coderivative in space. Solving the constraints eq.(B28) as 

(B29) 

we can proceed with the same arguments as given in th e case of the I-form potential. 

If D = p + I, then the p + 1 form in space does not exist. Therefore the theory is 

purely topological in this case . In general the excitation modes and the topological 

modes can coexist but decouple in the action. Caution i~ ncce~sary (100tlt the 

excitation modes. The p+] form ~,p+l h(1S c\.lllbi£jtlit.Y ill the [orlll b ... ..:l'+? Cllld ..... :ll+:! 

has ambigui ty 8w p +:J
, etc. 
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APPENDIX C 

The main claim rnade by \Vitten!19 J is that (2+1)-dirllensiollill graxity can be 

re[ornmLttec! a.') the Chern-Simons theory in (2+ 1)-din1ensions which is exactly 

:soluble ilt both the classicill and quantum levels. Let us first explain this [act. In 

the tetrad [orn1a.lisn1, the Einstein-Hilbert action becomes 

(C 1) 

where ei and wi are the vierbein and the spin connection respectively. Here we 

denote the space-tilDe indices by i , j, k and the Lorentz indices by a, b c. Before we 

ask whether gravity in (2+1)-dinlensions is equivalent to 150(2, 1) gauge theory 

with a Chern-Simons interaction , we should ask whether there exists an invariant 

and a non-degenerate metric on the Lie algebra of 150(2,1). The magic of d = 3 is 

the very existence of such a metric. The commutation relations of 150(2 , 1) take 

the form, 

[Ja, JbJ = EabcJ
c
, 

[Ja, PbJ = EabcP
c
, (C2) 

Here we replaced Jab with Ja = ~EabcJb . The invariant quadratic form of interest 
w c 

is then 

(C3 ) 

Let us use these formulas and construct a gauge theory for the group 150(2,1) . 

The gauge field is a Lie-algebra-valued one form . 

. ' - rO P + tl J .1 i - " t' W,' (I' (C·l) 

All inflnitc ' imal gal1ge pilrilrnctcr i: cxprcs~cd il...'i IL = p (1 P
lI 

+ TUJ,I' with (Ja illld , " 

bcillg infinitesilllal PiUilrJ1cter:->. The \'ilriiltion o[ ,,1. tinder a gilllgP trilll:·.,fu fIllCl.tiulI , 



I::; 

8..4. = -D .lL, 
1 1 

(C.s ) 

where by definition, 

D,u = D.u + [A" U]. 
1 1 1 

(C6) 

In terms of the vierbein and the spin connection, we arrive at the transforn1ation 

laws; 

{; a a a abc abc 
uei =- .p -E e· b7c -E W,bPC l 1 1 1 

(C7) 
c a a a abc UWi = - ,7 - E W'b7c 

1 1 

N OW we calculate the curvature tensor, 

F .. = [D' l D.] =Pa(a .e)a - tJ.ei + Eabc(w'b e . + e·bw . )) 
1) 1) 1) t)C l)C 

+ Ja (8 .w)a - a.wi + EabcW ·bw . ). 
t) t ) C 

(C8) 

U sing these expressions, we can evaluate the Chern-Simons action; 

(C9) 

The result is 

(CIG) 

This is obviously equivalent to the Einstein-Hilbert action. 

Constructing a canonical formalism, the phase space is easily determjned. The 

physical phase space of (2+ 1 )-dimensional gravi ty is the same as the mod uli space 

offlat J50(2, 1) connections whose dimension is 6g-6(g ~ 2). Witten discussed ~19J 

using his formulation. the renormalizability and Ilnitruity. lIe rtlso calcldatecl the 

topology-chaflging alllplitudes which ,He p:-i:-ientially Il;ly-Singer ilflillytic t()r:-ii()Il~J'1 

- .;:) -
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