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ABSTRACT

In order to understand (3+1)-dimensional gravity, (2+41)-dimensional gravity
is studied as a toy model. Our emphasis is on its topological aspects, because
(241)-dimensional gravity without matter fields has no local dynamical degrees
of freedom. Starting from a review of the canonical ADM formalism and York’s
formalism for the initial value problem, we will solve the evolution equations of
(2+1)-dimensional gravity with a cosmological constant in the case of g = 0 and
g = 1, where g is the genus of Riemann surface. The dynamics of it is understood as
the geodesic motion in the moduli space. This remarkable fact is the same with the
case of (2+1)-dimensional pure gravity and seen more apparently from the action
level. Indeed we will show the phase space reduction of (2+1)-dimensional gravity
in the case of ¢ = 1. For g > 2, unfortunately we are not able to explicitly perform
the phase space reduction of (2+1)-dimensional gravity due to the complexity of
the Hamiltonian constraint equation. Based on this result, we will attempt to
incorporate matter fields into (2+1)-dimensional pure gravity. The linearization
and mini-superspace methods are used for this purpose. By using the linearization
method, we conclude that the transverse-traceless part of the energy-momentum
tensor affects the geodesic motion. In the case of the Einstein-Maxwell theory,
we observe that the Wilson lines interact with the geometry to bend the geodesic
motion. We analyze the mini-superspace model of (2+1)-dimensional gravity with
the matter fields in the case of g = 0 and g = 1. For g = 0, a wormhole solution
is found but for ¢ = 1 we can not find an analogous solution. Quantum gravity
is also considered and we succeed to perform the phase space reduction of (2+1)-
dimensional gravity in the case of g = 1 at the quantum level. From this analysis we
argue that the conformal rotation is not necessary in the sense that the Euclidean

quantum gravity is inappropriate for the full gravity.
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1. Introduction

Our understanding of the universe has been steadily improved. On the basis
of standard theory of cosmologyfl] the inflationary universe scenario was proposed
to answer the important cosmological questions and has been developed by many
physicists'” In order to make this inflationary universe theory more self-contained,
we need quantum cosmology which may possibly give the initial conditions of our
universe on the basis of quantum gravity. The Hartle-Hawking proposalm for
the quantum state of the universe has been well studied semi-classically, and in
some models this leads to inflation. These progresses have been achieved mainly by
studying the so-called mini-superspace models, in which the gravitational and mat-
ter variables have been reduced to a finite number of degrees of freedom. Obviously
this is an oversimplification'! To be more reaiistic; a thorough understanding of
full quantum gravity is necessary. However, our present understanding of quantum
gravity is still very poor in spite of the endeavor of many people. The superstring
theories™ have been investigated as a most promising candidate for it. Indeed,
the superstring theories have many attractive features, e.g. a possibly ultraviolet
finite theory, unification of all forces etc., which led many young physicists to this
field of research. Although we agree to the importance of superstring theory, we
must seek various alternatives to achieve the true theory of gravity. For example,
the recent work by Ashtekar'® revives our interest in the canonical quantization
of gravity. Of course, since a pioneering paper by DeWitt"™ we have pursued this
quantization method and have encountered many difficulties™ For instance. to
define a quantum theory, it is necessary to construct the Hilbert space at each time
slice. Ironically the gravitational theory has the general coordinate invariance, so
the time coordinate has no invariant meaning. Hence, even if we quantize the grav-
itational theory following Dirac” we cannot properly interpret the wave function
which is the solution of the Weeler-DeWitt equation " Besides this conceptual
problem, there are many technical difficulties. For example, the factor ordering
problem of the Weeler-DeWitt equation is not yet solved in the operator formal-
ism. When we use the functional integral method, the issue whether we should use

the Lorentzian or Euclidean formalism is not yet settled. Even if the Euclidean
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quantum gravity  is adopted, a new problem arises; that is, divergence from the

10
conformal factor "*

As an alternative, an attempt to reduce the phase space before
quantization has been made. However we again meet with the difficulty that the
Hamiltonian constraint equation is difficult to solve. Moreover the resultant theory
would have no general coordinate invariance. As mentioned above, we necessarily
have the conceptual and technical difficulties. Then, to get rid of the technical
difficulties as much as possible, we take (2+1)-dimensional gravity as a toy model
A By investigating this model, we hope to be able to understand the essential
point of quantum gravity.

On the other hand, physicists have long been fascinated by the possibility

(12]

of processes involving a change in the topology of space . Recent speculation

(13]

by Coleman that topology changing processes have something to do with the
vanishing of the cosmological constant made our interest in these processes renew.
To attack this problem, (2+1)-dimensional gravity is also advantageous, because a

mathematical knowledge about the 2-dimensional compact manifold is available"

The Einstein gravity in three space-time dimensions exhibits some unusual
features, which can be deduced from the properties of the Einstein field equations
and the curvature tensor. Einstein’s equation for general relativity reads

G+ Ay = 81 (1.1)

pvo

or 1s expressed in terms of the Ricci tensor as,

Ruu: Qf\ﬂ,w'*"i(Tuu“f/,wT:)- (1.2)

Here A, x and T}, are cosmological constant, the gravitational coupling constant

and energy-momentum tensor of the matter fields, respectively. On the other hand,
. . 4 . s [1s)

the Riemann tensor can be written in terms of the Ricci tensor as

1
_R(f/“,\gvp—guug,,,\)' (13)

= I F a0, =98, = 9,5 - 5

nvdp

Using eq.(1.2) in the right hand side of eq.(1.3) shows that the local geometry is

completely determined by the matter distribution and the cosmological constant
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A. This means that there are no dynamical degrees of freedom corresponding to
gravitational waves. In regions which are free of matter, space-time is locally flat
(A = 0), de-Sitter (A > 0) or anti-de-Sitter (A < 0), depending on the value of
the cosmological constant. The lack of dynamics in three dimensional Einstein
gravity can also be seen from the canonical point of view by counting degrees of
freedom. The two dimensional spatial metric and its conjugate each contains three
algebraically independent components. Of these six components, one is used to
specify the choice of space-like hypersurfaces, while the other two are used to spec-
ify coordinates on these two dimensional hypersurfaces. Finally, there are three
initial value constraints which completely determine the remaining components.
Thus, one might consider that there is nothing left in the Einstein gravity in three
space-time dimensions. However, many researchers have studied the Einstein grav-
ity in three space-time dimensions, because of the existence of the global effects
in the three dimensional Einstein gravity. Straruszkiewicz was the first to give
geometrical arguments, showing that a three dimensional space-time with a point
source is obtained by removing a ”"wedge” from Minkowski space and identifying
points across the wedge!“’] Deser,Jackiw and ’t Hooft have confirmed this descrip-
tion by explicitly solving the three dimensional Einstein equations with A = 0 for

3 . 5 [17]
an arbitrary number of static point masses.

In this thesis we will investigate another global aspect in the three dimensional
Einstein gravity. That is, the global deformation of the spatial manifold. Although
there exists no graviton, which represents the local deformation of the spatial man-
ifold, there exists the global deformation of the spatial manifold. At first sight, one
might consider that we are about to study a very peculiar model which has noth-
ing in common with the physical (3+1)-dimensional gravity. However it should be
noted that the global deformation of the spatial manifold is most important even
in the case of (3+1)-dimensional gravity. The similar situation can be observed
in the Maxwell theory. The Maxwell theory in two space-time dimensions is the
topological field theory which has only the global modes "1 As we know, however,
it reveals the essential points of the dynamics of the global modes of the Maxwell
theory theory in 4 dimensions. Therefore we can expect to obtain the important

imformation from our model.



This global aspect of (2+1)-dimensional gravity is also the point in the noble
approach by Witten!"" which is similar to Ashtekar’s formulation of

] o 2 -
There the zweibein and spinor connection are treated

(3+1)-dimensional gravity"”
as independent variables. The Einstein-Hilbert action turns out to be a purely
topological Chern-Simons term””  Once one formulates (24+1)-dimensional grav-
ity as the Chern-Simons theory™ the dynamical variables become 150(2,1) flat
connections whose number is finite. As we previously emphasized, in the case of
(241)-dimensional pure gravity, only the global modes or topological modes are
important. Witten has extracted this aspects elegantly. We naturally expect that
the conventional approach to (2+1)-dimensional gravity also exhibits the global or
topological aspect, though the relation between the two approaches is not obvious.
In this thesis we shall mainly study (2—‘}—1)—dirr}ensional gravity using the standard
ADM method™ In this approach, the spa'ce'-ti‘r’ne 1s pictured as a foliation of
space-like manifolds and the deformation process along the time-like direction is
formulated as a Hamiltonian system. From this point of view, the geometrical
meaning of the dynamical variables is clear. Therefore when we wish to consider

the topology changing phenomena, the canonical approach has an advantage to

visualize the process.

The conventional method for (2+41)-dimensional gravity is reviewed in Sec.2.
Using this formulation, Hosoya and Nakao™ discovered the fact that the dynamics
of the Einstein gravity becomes the geodesic motion in the moduli space in the case
of ¢ = 1, where g is the genus of a Riemann surface. Moncrief®” independently
analyzed this system as an initial value problem and concluded that there exists
a unique solution of the constraint equations in the case of g > 1. These are the
subjects of Sec.3 |, Sec.4 and Sec.5. In Sec.3 we review York’s formalism which is
important to understand the canonical structure of gravity. In Sec.4 we will solve
the evolution of the geometry in (2+41)-dimensional gravity with a cosmological
constant. In Sec.5 the essence of the dynamics of (2+1)-dimensional pure gravity is
revealed by phase space reduction. Up to this stage, only the pure gravity will be
considered as a first step to a realistic quantum cosmological model. In the stan-
dard approach to quantum gravity, it is straightfoward to incorporate matter fields.

[t is at this point that new approach to quantum gravity such as Witten's formu-



lation will meet with the difficulty because the theory is formulated as background
independent way, although the new approach has great successes in pure gravity.
This is one of the reasons why we greatly focus on the conventional approach. As
a modest step, we shall analyze the linearized gravity in (2+1)-dimensions and
consider the matter effects on the geodesic motion perturbatively. These are dis-
cussed in Sec.6. To reveal another aspect of gravity coupled with matter fields, a
mini-superspace approach is used in Sec.7. In Sec.8 quantum gravity is discussed
using a functional integral method. The final section is devoted to discussions of
various issues which we must solve to reach the final goal. Mathematical tools is
explained in Appendix A. We present the field theory in topologically non-trivial
space as a semi-classical theory in Appendix B. To complement the main text, other

approaches to (2+41)-dimensional gravity are reviewed in Appendix C.

2. ADM Canonical Formalism

Although the whole analysis in this section is merely a recapitulation of the well-
known results in (3+1)-dimensional gravity and its straightforward adaptation to
the (2+1)-dimensional gravity, we shall start with the canonical ADM formalism

to make this paper self-contained.

The canonical theory begins with the following decomposition of the metric

tensor;

ds” = g,,dz"dz”

o - f (2.1)
= —N?dt* + hy;(dz' + N'dt)(da’ + N7 dt),

where s, v range over 0,1,2 and ¢, j range over 1,2. llere the lapse function N and
the shift vector N* are not dynamical. Rather the lapse function determines the
foliation of spatial manifolds in the whole space-time and the shift vector serves
the coordinate choice on each time slice. This decomposition of the metric leads us
to the reformulation of the general relativity as the initial value problem and the

Cauchy problem.



Given the Einstein-Hilbert action,

to
Lo
S

Sz/\/—gﬂ(%z%, (2.

there is a standard prescription for obtaining a Hamiltonian formulation. Using

the (241) decomposition of the metric (2.1), we obtain
5= /N\/h([\’ij K — K? 4 R®), (2.3)

is0 = Ng; — V)
its trace. R(® and R(?) denote the three and two dimensional scalar curvatures,

where Kij = ﬁ(h 1s the extrinsic curvature and K = I\'i].h’j is

respectively. The stroke indicates the covariant derivative with respect to the spatial
metric hij' Here we have discarded the surface term, because we shall concentrate
on the (2+41)-dimensional space-time M = R x ¥ where ¥ is a compact closed

orientable two manifold. The canonical conjugate momentum =%/ to hij is given by
= Jh(KY — KU K). (2.4)

The ADM action for Einstein’s theory of gravity takes the form,

g /daz{wijhij — NH — N H'}, (2.5)

s ﬁ(ﬂijﬁij —w?)—/hRP, (2.6)

H' = —2rif, (2.7)

with 7 = 7! = —\/hAK'}!. Here, as indicated in the above, the lapse function N and

the shift vector N' come into the action as the Lagrange multipliers. Note that the

Hamiltonian constraint can be rewritten as

T 2 &
H Gt - VhR?), (2.8)
1 I
— e B Ty T
Gijkl = 2h z(hikhjl + hx’lhjk "hijh‘kl) (2.9)
This tensor, (J".]“, is the so-called supermetric on superspace ' This metric has

the signature (=, 4+, +) in the 3-dimensional metric space.

= 10 =



‘he evolution equations obtained from (2.5) are
iR lut juat bt | f (2.5)

0/11.]. IN "
—— = ——(T.. — N..7 N..+N._. 2.10
T T g gt s Gl
o=l e . A | o g & Wels-
ot 2/h W (i, — ) = 71—1(7“’71- =7 + VAN = R NR)

+ (1\’k7rij)lk - 7rk'.N|jk - TI'kj,{Vlik. (2.11)

For later convenience we further rewrite these equations as follows;

Oh.. .
— = NKh, =2NK. +¥V.N4Y.N.,
ot ] 1j = ST
oK .. 1 y
ij _ et Bl mr ke A
T —2NK; I\kj == (Vz.VJ. = 5/11.1./;)]\/_ + (4] VkA\j + I\J kai N vk[\ij)’
0K '

e (R+ K*)N + N*'VY K,
(2.12)
where I;’ij is the traceless part of the extrinsic curvature. Combining the constraint

equations,

with the evolution equations (2.10) and (2.11),we obtain a complete set of Ein-
stein’s equations equivalent to the covariant expression R,, = 0. The equations
(2.13) and (2.14) are nothing but the Gauss-Coddazzi equations giving the neces-
sary and sufficient conditions for the embedding of a hypersurface with the second
fundamental form Kij in a locally flat space-time. In Dirac’s Lermino]ogyf” (2.13)

and (2.14) are the first class constraints which form the following algebra:

{H(2), H(#)} = 9" () H (2)D,8(z.5) = (r — #),
{H,(z), H(#)} = H(z)),6(z, %),
{H,(2). I($)} = 1T

b(r)(’)(lﬁ(x. r)—=(r —r.a —b).

Hlere the curly brackets imply the Poisson brackets.
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The canonical approach to general relativity can be understood as a deformation
theory of the Riemannian manifold . The deformation process is governed by the
evolution equations (2.10) and (2.11). \We ask the question: what is deformed?
Let Riem(Z) be the space of Riemannian metrics on ¥ and D:if f(Z) the group
of diffeomorphisms of ¥. In the coordinate language, a "point” of Riem(Z) is
determined by giving three functions /z..(:z:) of two variables (z) = (z,, z,), being
subject to the constraints h = h ; and hv= det/z > 0. Each element of Dif f(X)
maps Riem(X) into itself by the tran:formatlon law for covariant tensors and hence
Dif f(¥) acts as a transformation group on Riem(X). The orbit of each point of
Riem(Z) under the action of Dif f(X), the gauge orbit, is identified with a point
in the superspace S(X). In other words, as the general relativity is a kind of gauge
theory, the momentum constraint (2.14) generates the gauge transformation which
is nothing but Dif f(¥). Therefore a formal definition of the superspace is given
by
Riem(Z)

Diff(2)

The deformation process may be viewed in this superspace whose point is a 2-

§(2) =

—
o
-
($1}

s

geometry. As is well known in quantum cosmology, however, 2-geometry is the

o X . ‘. 26
carrier of information about time

This time is understood as the gauge degree
of freedom whose transformation is generated by the Hamiltonian constraint (2.13).
This extra variable is identified with the conformal factor. Then what we would like
to know is a deformation of conformal Riemannian manifolds which is characterized
by 7ll.j 2= h‘;'hl.]. in (2+1)-dimensions. This is the so-called "conformal superspace”

which is defined by the superspace modulo conformal mappings Conf(X),

Riem(X)

S(2) = B HEy % Conf(S)

(2.16)

[n the case of orientable closed compact spaces,i.e. Riemann surfaces, this conformal
superspace is nothing but the moduli space for Riemann surfaces. For example, in

the case of genus g = 1, the shaded part in Fig. 1 represents the moduli space.

- 12 -



3. York’s Formalism

In this chapter we shall review York’s formalism"* which is useful to investigate
the canonical quantization of general relativity. In ordinary particle mechanics
we are able to {reely specify the initial conditions which determine its dynamical
evolution. There is, however, a class of systems which have some constraints for
initial values. These systems are called constrained systems. The general relativity
is included in this category. It is not trivial to give a set of initial data which satisfy
the constraints. It is at this stage that York’s method works. Before entering the
general relativity, let us recall the electromagnetism as a simple illustration. In flat
or in curved Riemannian spaces one can uniquely decompose an arbitrary vector
potential or one-form into a sum of exact, co-exact and harmonic forms. Physically,
this procedure leads to the identification of the true canonical degrees of freedom of
the electromagnetic field and to the identification of the gauge, or non-dynamical
variables. Especially harmonic one-forms represent the global structure of gauge
fields which reflects the cohomological structure of space. The spirit of York’s
method lies on this line. He gave a conformally invariant, orthogonal, covariant
decomposition of symmetric tensors on a positive definite Riemannian manifolds
into transverse-traceless, logitudinal, and pure trace parts. This decomposition
enables us to set the initial-value problem of general relativity as a system of three

second-order elliptic equations for three unknown functions.

First we note that the TT-decomposition of a symmetric tensor %2 is defined

by
v® = b+ 91 + 9f, (3.1)
where the longitudinal part is

P = VU 4 VW - p0T W = (L)%, (3.2)

and the trace part is

1
g = Sh®y, Y =h_p*. (3.3)

-~

Our next task is to determine the conformal property of this decomposition that

turns out to be essential for York's method. A space conformally related to (M. 1)



is (M, h), where

Therefore, we have for the connection coefficients,
" 1 ¥
gc: Fgc+ 3(6g¢,c+6g¢,b—hub(p’l)! (35)

with ¢(z) an arbitrary real scalar function. Using this formula, we can easily show

that

e 2yl (3.6)

becomes the transverse-traceless tensor on M. Thus by identifying this 2-tensor

b

density with the canonical momentum 7%°, we can solve the momentum constraint

on the orbit of a conformally equivalent class as we shall see below.

The initial value problem is to construct a space-like Riemannian two manifold

(M, k) and a symmetric tensor density of weight one, 7%, such that

>
|

o
g
=\

2]
)
o

|

=\
L3
N
|
=
-Ig|-—
=31
Il
S
—
(W]
o0
N

where the covariant derivative is defined with respect to l-zdb and R is the scalar
curvature of (M, h). The conformal approach to this problem is to solve (3.7) in a
conformally invariant manner, then to choose the conformal factor ¢ in such a way

as to satisfy (3.8).

In general, we can perform the following orthogonal decomposition.
A d Y Lo .
7 =g+ (L) 4 SR R%r, (3.9)

, o et
where o* represents a transverse-traceless tensor density and 7 = h7r7. The

A



momentum constraint (3.7) tells us that 1" must satisfy
= T ri7yab 1= a .
Vb(LH R = —.—)-V T, (3.10)
or equivalently the two elliptic equations,
1
V(LW)® + V,8(LW)* = —=V°r. (3.11)
On the other hand, the Hamiltonian constraint takes the form,

_ o
™+ 20730 (L) , +[(LW)*(LW) , — =7Je?. (3.12)

=

—A¢+R=h"'e%0 ,

These elliptic equations, (3.11) and (3.12), are not easy to study in general. As we
can choose the lapse function freely, from eq.(2.12) we can also choose 7 arbitrarily.

So we consider the simplest choice of slicing, i.e.,
T = constant over the space. (3.13)

This is called York’s time slice. In this case, the vector elliptic equations become
trivial and the scalar one reduces to

1
—-Ad+ R = h-la“ba'abe_¢ — ;'r?e'b. (3.14)

The existence, uniqueness and linearization stability of initial data of this equation

has already been established in the literature [24].

As an illustration”™ we shall apply York’s method to the cases that the space
manifold M is a 2-dimensional compact manifold without boundary. It is a well-
known fact that such manifolds are classified into its topological equivalence classes.
We can classify them by its genus g. Main attention is focused on the two cases:
(1)g = 0 or a sphere and (2)g = 1 or a torus. In fact they are the only cases for
which the initial-value problem can be explicitly solved. For g > 2, it is not casy
to explicitly reduce the phase space of (2+41)-dimensional gravity to the physical
one. This causes a technical difficulty to work out a quantum theory of the higher

genus surface.



First of all. we borrow some known facts from mathematics. The space of

the second rank transverse-traceless tensors &y OF "holomorphic quadratic differ-
¢

entials” is locally isomorphic to R* for ¢ = 1 and R®*~% for ¢ > 2. We further
s

observe that © , 15 constant everywhere on a torus (g = 1) while & , 15 simply zero
¢ x a 5
\"1

on a sphere (g = 0). For a higher genus case, ¥ | must have 1g — 4 zero points

ab
somewhere on M which are the origin of the difficulty for solving the initial value

problem for g > 2. Now it is easy to solve the constraints for g = 0 and g = 1.

(1) sphere S%*(g = 0)

Take as our starting h , a standard metric induced on the surface of a constant
radius sphere embedded in the 3-dimensional Euclidean space. The scalar curvature
R for this metric is set equal to 1. Our starting ¥. | must be zero as mentioned
above. Then the Hamiltonian constraint equation becomes

Ag—1-=72e? =0, (3715)

o | =

This equation has no solution. This means that we cannot foliate the Minkowski
space by 2-spheres. Inclusion of a cosmological constant will change the situation

as will be shown in the next chapter.
(2) torus T?%(g = 1)

We construct a torus by identifying the two pairs of opposite sides of a square
whose coordinates (z,y) are as shown in Fig.2. The starting metric can be taken

as

By, ; (3.16)

on a torus. Of course, in general, our starting metric for solving the initial value

problem can be taken
9 2
g phlab gt E

ey == — (i
(Lb 7} E 1 )

in the coordinates in I'ig.2. Note that we can alwavs transform this metric to the

form (3.16) with an adequate orthogonal transformation and a coordinate rescaling.

s,



Of course the boundary condition in the new coordinates is different from the one in
the original coordinates. However, because the evolution equations are local, after
solving the evolution we can transform the metric back into the original coordinate
system. Thus we can concentrate only on the simplest case. The scalar curvature
R for this metric hub vanishes. As we already observed the traceless transverse

tensor ¥ , is constant on a torus, and so is

ab
b _ o(v2? 2
M= SabE“ = 2 Togt Syl (3.18)
We write M = 2m? where a parameter m is a constant. The Hamiltonian
constraint now becomes
% _¢ 1 2 ¢ ¢
Ag +2m7e ool =) (3.19)
(25]

Appealing to Moncrief’s theorem,” we find that a trivial solution,
e = — (3.20)

is the unique solution. Using these initial data we can easily solve the evolution

- o s . v 3
equations and find the geodesic motion in the conformal superspace’””’

4. Evolution of the Geometry

In this section, we shall explicitly solve the evolution equations of (2+41)-

(24]

dimensional gravity with a cosmological constant As we learned how to set

up the initial values, it is casy to obtain the initial data on a sphere and on a torus.

(1) time evolution of a sphere
From now on, it is convenient to write the time evolution equations for
(h , X)) not for (h 5 A®) where ©  is the traceless part of K . Because we
a ‘

—
ab’ ab

L TG



have adopted York’s slice, £ | becomes the transverse-traceles from the outset. By
ab .

some manipulations we can rearrange the time evolution eqs.(2.10) and (2.11) as:

)]
M:-v fo B0 NPT T8 A v
ot o5, lub = “ab + Va! b+ gt e
o 1 :
2 = CINKHE,S,, — (VoV, = 5h,T.V)N L3

Tk Tk A rk.-, v
+(“1kaj'+“JvL~Ni N VL_.J{].).

The relation between the York’s time 7 and the parameter ¢ is deduced from
eq.(2.12) as

G
= = ~AN#(Z, %4

oy 2 —2A)N + N°V 7 (4.2)

1| =

Because we take 7 = constant on each spacelike hypersurface, the last term drops

out.

First we choose the lapse function and the shift vector. We set the shift vector
equal to zero. This choice implies that our initial coordinate frame is the comoving
frame. Secondly the lapse function is set equal to one. Note that our time slice
is not exactly the same as York’s time slice (see ref.[25]), though 7 = K is still

constant on the spacelike hypersurface.

Because of our choice of the lapse function and the shift vector, the time evo-

lution equations are cast into a simple form,

iy h 4.3
f)—{ T IO, ab’ ( g )

The transverse-traceless part of the extrinsic curvature L, must be zero as we

mentioned earlier. We also have

T % i A
LG e (h1)

Wy ey

The Hamiltonian constraint reads

Ad— 1 = (=1° = 2\)e? =0, (1.5)

2
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A trivial solution of this equation is a constant o,
A RO, (+1.6)

Note that —7> 4+ 4A must be positive. This condition implies that the time ¢
decreases as 7 increases. So we rewrite eq.(4.4) by reversing the direction of time

t — —t so that

dr —72 +4A
T T
Integrating eq.(4.7), the time coordinate transformation between ¢ and 7 is

sinh at ] 11 2a+ T
———, or —Zog

T = 20

) ) ‘18
cosh at 20 — T (4.8)

where a = \/A. As 7 runs from 7, to 2a, t increases from ¢, (the corresponding to

7, ) to co. Inserting eq.(4.8) into eq.(4.3) (the direction of ¢ reversed),

dhab e sinh at

ot coshat ab

(4.9)

Assuming a homogeneous solution hab = A(t)hab(t =1,) , we can immediately see

that the scale factor A(t) is (1/a”) cosh® at. The resulting 3-geometry is

1 9
ds® = —dt* + —,,(:0::]12 at(d8* + sin® 0da?), (4.10)
a*

where (8, ¢) is the ordinary polar coordinates on the sphere. This is the well known
de-Sitter solution.
(2) time evolution of a torus

As in the previous section, we fix the gauge as N = 1 and N* = 0. The
latter choice means that our coordinate frame (x.y) is a comoving frame. So all the

imformation of the geometry of the torus is contained in the 2-metric only.
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Because of our lapse function and shift vector choice. the time evolution equa-

tions can be cast into a simple form,

h |
— = —7h b—‘_)S o
Og (4.11)
~ab = _r)hcdg v
ot = Sac=yy
with
dr 5
— = 7° —4A. 4.12
or (4.12)
Integrating eq.(4.12) we obtain
cosh 2at 1 T —2a
= 24— 1= —1 4.13
i it Jai A 4q Ogr+‘2a’ ( )

where a = \/A and A is henceforth supposed to be positive. As 7 runs from 7, to

o0, t goes from ¢ (< 0) to 0. Notice that the range of ¢ is ¢ < 0.

Eliminating £ , from the above time evolution equations, we can obtain a non-

linear second order differential equation which contains the metric only. That is

9% h 9h . Oh sh 2at Oh .
P I L TN Lol VT P (4.14)
dt? at ot sinh 2at Ot ab

Now let us look for a solution of this equation in the diagonal form.

g ue At 0 .59
¢\ 0o B@E)/ it

Substituting ec.(1.15) into eq.(4.14), we have

! cosh2at dA o on
T+ 20— A — — da” 7, 4.16
y+ “sinh 2l dt < i

d? A 1 (d.-l
dt? Al

and a similar equation for B.

O =



We turn to the initial velocity of the metric. From eq.(4.11) or the definition

of the extrinsic curvature;

dh =

. 1 "
T =-=2(8 + =h br), (4.17)

ab ‘_) a

so that we have the initial velocity as

ol
0 lrr — —Z(SII + ;/1,_[:7')

ot 2

1
= —2(mcosf + 3E7’0),

4.18)
Oh, 1 (
8—ijy = —2(—mcosf + 5/31'0),
Ohy,
——= = —2msind¥.
dt
To keep the metric diagonal all the time, we need }z.ry Ol I R L R o
Choosing 8 = 0, the initial velocities for A and B are written as
Oh,, dA _ 1
B @ e
" cosh 2at) + 1
s sinh 2at | ’ (4.19)
8hyy b d_B g QBaCOSh 2at, + 1
ot dt sinh 2at | :

where the initial values for A and B are A = B = /3.

Now we are ready to solve the time evolution eq.(4.16). Noting that this can
be rewritten as

4 1dd

“( l-ﬁsinh 2at) = 4a’ sinh 2at, (11.20)
dt " A «
we can integrate it to get

1 dA cosh 2at + ¢

A dt sinh 2at

where ¢, is an integration constant. ¢, 1s determined to be 1 by using the initial

1 1
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conditions (+1.19). Integrating eq.(<1.21) once more, we obtain the solution for -1,
e 91
A =c,sinh” at, (4.22)

where ¢, is an integration constant. Again using the initial condition, we have

o)
C, = . (4.23)
sinh” ato

B(t) can be solved in a similar way. Thus we arrive at the solutions:

sinh at

A:B(imla 2,
:mhato (4.24)
coshat _, =
cosh at,

Because eqs.(4.11) and (4.12) defines a well-posed Cauchy problem, we can convince
ourselves that this diagonal solution is the unique solution that satisfies the initial

conditions for 8 = 0.

The resulting 3-geometry is

sinh at coshat ,

) dz? + ( dy*]. (4.25)

sinh at, cosh at,

ds? = —dt? + B[(

An interesting feature of this result is the ratio of the lengths of the two cycles,

sinhat | cosh at tanh at
* . = . (4.26)
sinhat;" coshat; tanhat,

Recall that ¢ goes from t, < 0to0. In the limit { — —oc, the above ratio asymp-

totically tends to a constant —1/tanhat . while the overall scale factor increases
exponentially. This simple solution is certainly the geodesic in the moduli space.

m . - . . . 23
['he general geodesics are obtained by considering the general solutions # # 0 i



5. Phase Space Reduction

We have been discussing the dynamics of (24 1)-dimensional pure gravity from
the ADM canonical point of view. In the analysis, York’s time slicing has made
the problem tractable. It is remarkable that the dynamics reduces to that of finite
degrees of freedom in the limited cases, g = 0 and g = 1. Although our analysis
of the solution have revealed the interesting properties of (2+41)-dimensional grav-
ity, it may be more appropriate to consider this problem at the action level. In
the electromagnetic case, in the Hamiltonian formalism, we first solve the initial
value problem. Then we study the dynamics by solving the evolution equation.
It becomes clearer to see this process at the action level. In the processes, the
orthogonal decomposition of an arbitrary vector into a sum of transverse, longi-
tudinal and global modes is essentially used. In the gravitational case, when we
attempt to reduce the phase space at the action level, we must also heavily use
York’s method. From now on we shall perform phase space reduction of (2+1)-
dimensional gravity”” Before going through this procedure, we have to keep in
mind the limitation of our method. In higher genus cases, as will be shown later,
we have a difficulty for the reduction of phase space because of the complexity of
the Hamiltonian constraint equation. If we can get rid of this difficulty which has a
similarity with that of (3+1)-dimensional gravity, we would gain some insight into
the (3+1)-dimensional gravity. In the spherical topology case, it is trivial to reduce
the phase space. Thus we shall concentrate our attention on the toroidal case for

a while. The phase space action of (241)-dimensional gravity takes the form,
S = /d%{w"fhij — NI — N1}, (5.1)
or in terms of the extrinsic curvature,
S = /(1-'&\//,[(/\"'1’-/\'/;"J‘)h,.j-,lv(/\'l.j /\"'J'—/\'?—/e<?>)+2,\'i(/\'*'f—/\'/,"J)U]. (5.2)

[n York’s slice, it is convenient to decompose the extrinsic curvature, AN, into the
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traceless part and the trace part as follows

3 L o
KY =%EY + 3,"11 K. (5.3)

Then the action becomes

= g oy T | P R

e 3, o SURCRY o U _ R Ry Lo e e 5 TN
g = /d z\/h[(Z 2[\. h )hij N(Si].E 2[\ Il N U 2[\/1 )U].
(5.4)
It is at this stage that we use York’s slice, 7 = —K = constant over the spatial

manifold. We should remark that this gauge condition implies the spatial constancy

of the lapse function NV (see eq.(2.12)). Therefore we can rewrite the action as

B /d%[\/hzijhij + rvh — NREEY — =7V R+ 21\@33‘]. (5.5)

[SON =

In this form, we can easily solve the momentum constraint equation by expanding

$% in terms of the basis of the quadratic differentials ¢(®)¥

27 = 3" p, 85 /20, (5.6)
(a)

with v = [d®z\/h. The deformation of hij is represented as

Oh.. 9o
i M P [ ; s
¥ vk E T /J(a)i/l[j +dif feo.. (5.

()

ut
=4
S

This equation defines the Teichmiiler parameters p(?) and the corresponding Bel-

trami differentials /qu)i. We substitute the expansions (5.6) and (5.7) for £¥ and
Py, - RS ’ - ;
,—j(i into the action (5.5) in the phase space. Due to the special gange N = V(¢)

that we chose, the final form of the action becomes

x (')/I(”) s >~ .3 Al -
S = ot T— =\ (PR o =], 5.8
/ I Tt T DI S o it A
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where

= d*z/h.
/ v (5.9)

N = N/2v.
Here
g0 = [ 2 /oS Dk 20 (5.10)

3 . . . .
' From this result, the geodesic motion in the con-

is the Weil-Petersson metric”
formal superspace is apparent. This result is significant, because we have many
technical utilities about the geodesic motion at our hand. In our case, the confor-
mal superspace is the compact negative constant curvature space, then the geodesic
motion is necessarily chaotic according to the standard argument about dynamical

[29]
systems.

It may be appropriate at this point to show that the reduction of phase space
for (2+1)-dimensional gravity in the case of g > 2 is complicated. Using York’s

slice and the momentum constraint, it is possible to obtain the action,
5= /d o[VhST by, — K\Jh = Ny/A(S, 59 -

It is at this stage that we encounter the difficulty that the lapse function NV is
necessarily a function of the spatial coordinates. Due to this fact, we cannot extract
the standard kinetic term for the global modes. To get rid of this spatial coordinate

dependence from the N\//le £ term, we introduce a conformal factor Q as
¢

b

N =v(1)Q(1, z),

,\
o
o

~

h,, = Q(L, z)h

llll.
The conformal transformations of % and 2 are

\_:(l[) = 52—2{211[)‘
et (5.13)
R= (—2( R — Alog?).



We rewrite (5.11) as

5= /([:;JI[\/ili:ij[).;.j - /\'(QJ/I) - u\/iz.‘_;,’.jiij
' AP el .
+ v R Vh + vQ(R = AlogQ)\/h]

. (5.14)
2 = SRR 2o ’
= /(z%[\/h‘:”/zij - z/\//sz.].S’J + svQ K Vh + vQ(R - AlogQ)/h]

- /(um +/u/3(/d'-’z\/m — ).

The last term is the Lagrange multiplier term which constrains Q as

Ut

o

(a1
N

/d?z\/m = . (5.

From (5.14) it is obvious that © under the constraint (5.15) is not dynamical so

that we can eliminate it from the action by using the Euler equation,

QK? + R — AlogQ — %AQ +8=0. (5.16)
What we have to do is to solve this equation and to put the result into the ac-
tion. The solution of eq.(5.16) depends on K, 3, and R. Then we must solve the
Hamiltonian constraint to further reduce the phase space. It is at this point that
the complexity mentioned before arises because of the momentum dependence of
its solution. Thus if we want to reduce the phase space to the physical one, we

encounter a formidable but technical difficulty.



6. Linearized Gravity

The main purpose of this chapter is to analyze the effects of matter fields on the
geodesic motion”” Our standing point is the following. We pick up an arbitrary
point in the conformal superspace and look at the infinitesimal neighborhood of
the point. From this point of view, the geodesic motion is a straight line. The
effects of matter fields can also be easily seen. To do this we shall start from the
linearized theory of gravity and then incorporate the matter fields perturbatively.
Our strategy is to adopt the approximation in which gravity is assumed to be
"weak”. In the context of general relativity this means that the space-time metric
is nearly flat. The criterion of the weak gravity does not seem to apply to our case,
because the Einstein equation in (2+1)-dimensions implies that the space-time is
locally flat. Globally, however, there are "topological degrees of freedom” to be

taken into account.

Let us start with analyzing the pure linearized gravity. For the moment, we

simply assume that the deviation, A ,, of the actual space-time metric

uyy
guu = Nyv aH h‘uu (61)

from the flat metric 7,, is "small”. We mean by "linearized gravity” the approx-
imation to general relativity which is obtained by substituting equation (6.1) for
g,y 1n the Einstein-Hilbert action and retaining only the terms quadratic in &,

The result is given by
5= [ darg'r, - 1), (6.2)
where I'y ., = 1/2(h,, , + gy — hyy o). This action is also rewritten as

S = /dxa:[[\ ¥ vt B +lile]1 aa AR it + n/2( ““ - ’hk)], (6.3)

wherewe =1 eom =due and Ny =h... Tocast thistaction inte ahrst order form:
1) O1) 00 1 01



let us define the momentum,
= fp" — k¥, (6.4)
Then, we get

3 ] 2 ; 1] ‘
8 = /d z{TrUhij—[rrijTr‘]—rx +I.. T "_Fikkrjji_*_hvi?‘—g+n/2(h’kk,ii—hik,ik)]}'

13k~ ks
(6.5)
Our next task is to solve the constraint equations,
T =0,
¥ (6.6)
by = P = 0

In contrast to the full gravity, the constraint equations are the linear equations

which are easily solvable. To solve them, we use the following decomposition;

T = WlT]T + (LV)” + 1/2n" 7,
L TT
where (LV)4 = 9'VI + 9V — 7)ij0ka. Here hgT and ﬁ;-jT represent transverse-
traceless parts of hl.]. and 7%, respectively. The general solution of the constraint
equations are
2¥ wadw 5)131(?\'/&) + Y,

: ) (6.8)
b= hz;-T - 1/'27}ij11 + ejkaif)ko' o+ EikOJOLO]

where ¢ is an arbitrary function. Inserting these into the action, we obtain the

well-known actlon[ ]

4 /,1-“1{,.7,/,” [7f; wodn (/1“,) '} (6.9)

Note that the Hamiltonian is positive definite. so we can quantize this system
consistently. Starting from this fact, Hartle and Schleich showed the naturalness of

the conformal rotation prescription by Gibbons, Hawking and Perry. Now let us go

NS



back to the classical analysis. In the topologvicnlly trivial space nothing happens.

Let us consider the torus case. There ALT and = are spatially constant. So
l] TT } o

we get the following action by using the Beltranu differentials for the background

o= /dt/d T ” hTT lJ;T‘rTT]
/ di[pag” Papﬂ]

Note that the Weil-Petersson metric g®# does not depend on ¢ in contrast to the

geometry,

(6.10)

full gravity. This fact is understood as follows. As we regard the deviation from
the background metric as small, we are on the tangent space at some point in the
conformal superspace. As a consequence the geodesic motion is along a straight
line. This sounds natural, because any geodesic trajectory is locally straight. At
this point we would like to emphasize that the clear-cut result for the case of g = 1
heavily depends on the constancy of /zl-TJ,;T. We cannot expect that the Teichmiiler

motion is the geodesic motion in the conformal superspace in the case of g > 2

We are now in a position to discuss the effects of matter fields on geodesic

motion. Our action to consider is

1
S= /daa:\/gR—— T /dSm\/gg"’\g"”FwF/\p. (6.11)

To analyze this system, we assume that the Maxwell fields are sufficiently small so

that quartic terms are negligible. Then the full action reduces to

. 10 P . 1
S = /(1~‘.7,-(r§”r§g S i g Z/MI,FWFW+/(13x§/ﬂ“TM

:/dsx{wuhij—[ﬂijwl S LPL]zarikijji]

| (6.12)
- 1\'1.(‘273. o7 4 ”/'3(”1-‘,,',- o o0 T sa deh E/Iij’l—;]}
ey Eu , &1
+/(l z[w A, —:)-(’T T+ —/ TF )+/10()i7].
The perturbation term can be written as
g pIT T ; T ¢
/zl.jll,j = h; 15 + A i +h! 11. (6.13)



Solving the constraint equations, we can obtain the longitudinal and the trace parts
of /lij which are represented by matter fields. Because Txg and Ti'Jr- are already
quadratic of matter fields, its contribution to eq.(6.13) is higher order effects which
we disregard in our approximation scheme. Finally retaining the relevant parts

only, we obtain

5= /dt/d zlmd AL — Il 7l + -hgTT‘J]

(6.14)

—/di[Paq ggv PaPy t+ 97 Fy],
where F, = [ dgzu‘.jT.l. This is our main result’” The geodesic motion in the
conformal superspace is deviated by the transverse-traceless parts of the energy
momentum tensor,.e.its global mode part. Note that the final formula need not
assume specific matter fields. The reason why we concentrate on the Maxwell fields
is the existence of global modes of Maxwell fields on torus"®' Using the basis in

Appendix B, the gauss law constraint is solved as
E :eij0j¢+{7(l)7)mi+7r(,,)1)(2)i}, (6.15)
and the vector potential decomposes to

=0;x — €, 5J +{a (6.16)

where A is the Laplacian and n and € are dual basis of the harmonics (see Ap-
pendix.B). Using this result, we can obtain the spatial part of the energy momen-

tum tensor as
1 & 1 1 iak
'j =0, o() = 50; 0,007 + 5 Tl € r) ®+ = 3705 a3k
x

DT o -L-~___,, .
- Tl (]k() 0= T, (ik() ) e n,,n*}rh )] (6.17)

& il s g o i :
+'3()l.r)j.(z)8—'_’0i()( )() O'(= )+r/ 4, g e )()k()l(z)_Ell B-.

We pick up the most interesting terms 1.e., those which contain the global modes
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i

» quadratically,

1
¢ il C ,J _— r‘] 3 X
Tij = Enijfrarrﬁn,:r]k — T, T, 7]?7;]. , (6.18)

and substitute this expression into the formula (6.14). The result is

B

) g® :

S = /di[Pa(]a o 2 papld 1 (]aﬂ'aﬂ' 057])
2 (6.19)

|
C57 o /dgxyg(:;’liﬂf’]z = 7]?7];).

In the case of the Einstein-Maxwell theory, the Wilson loop degrees 7, bend the
trajectory of the global degrees of gravity. This is understood as follows: The
Wilson loop winds the non-trivial cycles of the torus, then the free motion of the

torus is disturbed by its tension.

7. Mini-superspace

In the previous chapter, we appealed to a perturbative method to grasp some
feeling of classical dynamics of (2+1)-dimensional gravity. Our aim in this chapter
is to see another aspect of (2+1)-dimensional gravity coupled with matter fields

using a minisuperspace method. Let us begin with the Einstein-Maxwell theory,

S=/d32\/—gR(3)— L—ll-/dsaz\/—ngF"”. (7.1)

The ADM (2+1)-decomposition is easily carried out as follows;

S= /dt /d?z{w"fh. +a A~ NI = N'H + A7},
1) 1 1 1

1 14 ; |
= —[797. - 7] = VhR®
G e T S hE

H ==z +aF,.
i ilj ij

H

1 : -
7'71+I\//L/"ijl"”, (7.2)

For the time being, we assume the space has spherical topology. Then we can solve

Bl



the constraint equation,

B
=
Il
=
e

and the solution is given by

T = —he"fajq (7.4)
The vector potential decomposes to

LB

A =0.x+ \/hef@l(—z(%

=]

(@)
R

) (7.

where ¢, x are the arbitrary scalar functions and the magnetic field is given by

B = F|,. After inserting these formula into the action, we obtain

. o
al 2 1 - Nf——(r .. —q?) — (2)
S—/dt/d :1:{71' hi].+B¢ N[\/h(w T ) —VhR

1 ‘ .
B* + 5Vhh10,60,6] — N'[-2x]

e

i 4 B@i¢]}.
This action is apparently equivalent to that of the Einstein-scalar theory. Now
we are going to study a wormhole solution of this action. The condition that
the electric field is zero and the magnetic field is constant over the 2-sphere is
equivalent the homogeneity of the scalar field ¢. Under this condition, we can
adopt the minisuperspace approach. There we can see the essential features of the

whole theory probably except for topology changing phenomena.”

Putting the following ansatz of the metric,

ds® = —=N*(t)dt® + a*(¢)(d6* + sin’ 6d&?), (7.

=
=1
S—

we obtain the action,

] 9
; 1 - . @
S=—— (“{2(\ -— —r)—'_):\.\‘(l' +8‘:TG—;O-}. (18)
167 A N
» Inoquantum gravity this is a serious disadvantage. However we now study the classical

aspects of gravity, hence we postpone this problem until we study quantum gravity.
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Extremization of (7.8) vields the equations of motion,

a’+1—Aa? —47Ga%¢? = 0,

i — Aa + 47Gad® = 0, (7.9)
d . )™

—(a“¢) = 0.

7(a79)

The solution of these Lorentzian equations is
1 B L
a(i)=H_1[§(1—\/(1—4m'H‘)cos}12Ht];, (7.10)

and this leads to an Euclidean wormhole solution,

a(r) = B Y3(1 = /(1 — 4m?H?) cos 2H 7]}, (7.11)

'

This solution is the same as the one obtained by Hosoya and Ogura in the Einstein-

[32]

Maxwell theory.

Next we are going to seek a similar solution in the case of toroidal space. Our

parametrization of 2-metric in the case of g = 1 is the following,

7 it (§2+772 s> |
1) 77 E 1

where d, £ and 7 depend only on ¢. From this parametrization, it is easy to calculate
the Einstein-Hilbert action,

=2

1 2.5 1,844 : 4 1 ;
— — d'—'— < —2 V(l" 7 —_— 0. 13
4 IGTI'G/dt N( fld n? i +8TGN¢ } (i)

From this action, we can read off the De\Vitt metric” for the minisuperspace. The
conformal superspace part of this metric is nothing but the Weil-Petersson metric.
For simplicity let us further reduce our models by setting £ = 0. As we mentioned
in Sec.4. general solutions can be obtained from this simple case. Therefore this

simplification never loses any generality.



I'rom this minisuperspace approach we can reproduce all of the previous results.

For example, in the case of pure gravity, we obtain the metric,
2 5 ¢ B 2 ~
ds® = —di* + *dz® + dy®, (7.14)

where a periodic boundary condition is imposed on z,y. This solution coincides

with the one which is obtained by Hosoya and Nakao ' The geodesic motion,

n(t) =1, (7.15)

is a part of their results. However it is easy to reproduce all of the geodesic motions

(24]

by including &

Inclusion of the cosmological constant is interesting from a cosmological point

of view. The solution is simply

1 k.o
ds® = —dt* + ﬁsinh2 Htdz? + E:cosh' Ht dyz, (7.16)

and the moduli,

n(t) = tanh Ht, 374

-~
=
~1
e

asymptotically stops its motion at 7 = 1 as ¢ — oco. Finally we shall examine
whether there exist wormhole solutions in the case of ¢ = 1, or not. The equation

of motion are the following;

d* = 11(13’-7; —Ad* —4xGd*dr =0, (7.18)
¢ 7)-
d* 1 ° .yt §
dt?(l+1t[,]—2—1\([+‘1776(10' = (119)
d .n° 1" .
I((1-,;—2) 1-,;3 =0 (7.20)
el PO .
I(d’(p):O (7.21)



[nserting eq.(7.20) and eq.(7.21) with constants of integration, m and a, we obtain
a single equation,

b L
o . daGm*
d* — — — Ad" — ———

d? d?

—
=~
Lo
1o

~~—r

The solution of this equation is qualitatively similar to the previous one, eq.(7.17).

Therefore the wormhole solution in the case of g = 1 does not exist.

8. Quantum Gravity

It was a great success to discover the quantum mechanics which was a conceptu-
ally revolutionary theory. Now no one doubts that the quantum theory is a correct
theory which account for the laws of nature. Indeed, the electro-weak theory or the
Weinberg-Salam theory, shows us the surprising agreement with the experimental
results. Quantum chromodynamics is also considered to be a correct theory for
strong interaction. Thus these theories are called the standard theory. In our uni-
verse, however, there exists the gravitational force as well as the ones mentioned
above. The standard theory of gravitation is the general relativity which is not
only mathematically beautiful but also explains many phenomena in our universe.
Therefore we may say that we have found all of the theories. There are, however,
two unsatisfactory points. One of them is based on the ideology that the unified
theory of nature should exist. Another reason is more serious one that the lack of
the conceptual consistency between the standard theory which is a quantum theory
and the general relativity which is a classical theory. So we have to incorporate the
quantum theory into the general relativity to get a conceptually consistent theory.
As a preliminary step to quantization, we need to put Einstein’s equations for the
gravitational field into the Hamiltonian form. The Hamiltonian form forces us to
specify a physical state at a certain time. In the usual quantum theory, the physical
state is determined by the Schrodinger equation. In our case, the corresponding

equations are



The equation (8.2) simply expresses that v* must be invariant under the spatial dif-
feomorphism. To get ¥ to satisfy this equation is thus not difficult, while to satisfy
eq.(8.1) is considerably difficult because it is a functional differential equation. \We
might be able to circumvent this situation by fixing the gauge before quantization.
The complete fixation of the gauge degree of freedom is, however, non-trivial in the
case of general relativity, because the Hamiltonian constraint includes a quadratic
form of the momentum. To what extent can we fix the gauge degree at the classical
level? In Sec.5, we have explicitly reduced the phase space by using York’s time
slicing. Our proposal is that we should start to quantize from the action (5.8) using
functional methods. Functional methods are particularly useful in the development
of theories which have certain invariances, such as gauge theories or parametrized
theories, because they allow these invariances to be displayed explicitly. One ex-
pects these methods to be especially useful in the search for a quantum theory of
gravity, which has invariances of both types. Indeed, Euclidean functional inte-
grals for amplitudes have been proposed as the fundamental starting point of a
quantum gravitational theory, an idea which has many noble consequences. This
program immediately encounters a difficulty. The Euclidean Einstein action is not
positive definite and the path integral will diverge. As Gibbons et al."” showed,
the Euclidean functional integrals can be made convergent by a conformal rotation.
There is, however, no direct analog of the conformal rotation in the ordinary gauge
theories such as electrodynamics. The actions of gauge theories are typically pos-
itive semi-definite when expressed in terms of the natural Euclideaﬁ variables. In
view of this lack of analogy between Einstein gravitational theories and ordinary
gauge theories, it would be helpful to have a more physically sound motivation for
the Euclidean gravitational integrals in their conformally rotated form. Fortunately
we know that a conformal rotation is needed to construct the Euclidean functional
integrals of linearized gravity which is well defined when expressed in terms of its

» that the confor-

physical degrees of freedom. Hartle and Schleich have shown®
mally rotated linearized Euclidean functional integral for a quantum amplitude can
be deduced from the functional integral for that amplitude expressed in terms of
the physical degrees of freedom. Their strategy is the following. Beginning with the

classical theory expressed in its manifestly gauge invariant form, one first isolates
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the physical degrees of freedom and expresses the dynamics in terms of them. One
next formulates the quantum theory as functional integrals in the physical variables
weighted by the appropriate physical action. Finally, one introduces a certain num-
ber of integrations over the redundant variables to recover the manifest invariance
expressed in the full set of variables. The resulting parametrized functional integral

is equivalent to those originally given in terms of the physical variables.

The essence of their arguments may be illustrated by a simple quantum me-
chanical model. The configuration space of the model consists of the physical degree
of freedom, ¢(t), and two variables ¢(¢) and A(¢) which represent the redundant
variables. The Lagrangian is given by a sum of the Lagrangian for the physical

degree of freedom and the Lagrangian for the redundant variables,

1 ) 1 4 9
L= v Vi(g) + §ﬁt(¢ =}, (8.3)

This exhibits a simple model of gauge invariance. Actually the total Lagrangian is

invariant under gauge transformations,

o(t) — (1) + A1),

. (8.4)
A(t) — A(t) + A(2).

Let us study this model in its Hamiltonian form" Reflecting the fact that A is not

a dynamical variable, there is a primary constraint on the system,

0L
g =0

= = (8.5
v )
One finds that the Hamiltonian corresponding to (8.3) is
1, 1,
o S+ Viq) + —2;‘1' + AT, (8.6)

where ™ = /L((;"t — A) and p(?) is the conjugate momentum to ¢(t). Since the system
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has a gauge invariance, the secondary constraint exists;
le} fw} .
{p/\,H}:n':O. (8.7)
On the constraint surface, the Hamiltonian becomes

1,
hys = 5P+ V(). (8.5)

We have explicitly reduced the dynamical degrees of freedom in this model to the
physical ones. We can now proceed to construct quantum amplitudes as sums over
histories of physical variables. The transition amplitude or the propagator is then

given by
/dpdqexpi/dt[pq'.-— thys]. (8.9)

One can readily introduce the integrations over the redundant variables to recover

the manifest invariance expressed in the full set of variables. The result is

/dpdqdvrdd)d/\é(@(gb)) | %%) | expi/di[p(]-i—vré—%pz—V(q)-—gl;ﬂz—/\ﬂ']. (8.10)

Or equivalently we have

dgdgdAS(8(8)) | 22 |expi [ di[2d® —Vi(g) +2u(d— N, (8.11)
o 2 2

where integration over the momentum variables is performed.

To make clear the logic of Hartle-Schleich, we shall follow the same procedure

as the Euclidean method. The Euclidean phase space path integral has the form

/dpdq eXP/dT[im’ = %pg - Vi(q)] (8.12)

[f we wish to recover the original invariance, the following manipulation would be
necessary
: A oD ity AR A 15 I3 5.7
dpdgdzdddA&(P()) | 7y | exp (17[1pq+m¢—;p'—V(r/)i:—ﬁ'——u\rr] (8.13)

.)ll

where we do not specify the sign of the kinetic term of the redundant variable. If

s has a positive sign, we choose a negative sign for the kinetic term and then we
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obtain an expression of Euclidean configuration space path integral;

g (S(I) 1 o9 , 1 | 2
/dqdédAb((D(gp’)) 5| exp—/(l‘r[sq' SV +ap- N (8.04)
However, if ;1 has a negative sign, we would reach a different expression

/ dqdpd (D (4)) | % | exp— / drl5d + V(D) ~ (- (8.15)

This is nothing but the simplified version of the notorious conformal rotation. The
key criterion of choosing the sign is the convergence of the Gaussian integration.
In the case of g < 0, the action which results from the Euclidean path integral in
terms of the physical degrees of freedom has the same gauge invariance with the

original action, however it differs from its original form with ¢ = —i7 (see eq.(8.3)).

In the case of the linearized Einstein gravity, one can demonstrate the natural-
ness of the conformal rotation in a similar way. Having obtained some experience,
we are going to discuss the role of the conformal rotation in the context of (2+1)-
dimensional gravity in which we do not use the linearization approximation. Before
proceeding to our main subject, one more exercise is necessary. In a topologically
non-trivial situation that we wish to study, the reduced phase space of the system is

not so easy to identify and we must be careful to precisely define the path integral.

As an illustration, we shall perform this program in the case of

(1+1)-dimensional Maxwell theory on a circle. Starting from the action,

1
5= —I/dtdwaF#"

: (8.16)
/dt/dz[EA ~5E +4,08]

one can isolate the physical degrees of freedom by solving the Gauss law constraint,
OF = 0. (8.17)
[ts solution is given by E = p({). Further we impose the gauge condition,

04 = 0. (8.18)
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The solution becomes A = ¢(1). Consequently we obtain the physical action as

Se= /dt[pr] — 7Rp*). (8.19)

where R is the radius of the circle. Let us quantize this system by path integration,

Z /Dquexpi/(lt[pq'—Ter?]. (8.20)

winding

Here the summation over the winding number arises due to the spatial topology. To
make the invariance of the system manifest, we must add the redundant variables

using the identity,
Je= /dX(S(Ax) | detA | . (8.21)

The expression (8.19) becomes

1,
/Dqudxdné(Ax)cS(An) | detA |? expi/dtdz[pq - gp“] (8.22)
We can rewrite this expression by adding zero to the action,
[ DoDad(dom)s(208(8m) | dets|
1 (8.23)
expi [ didal(p-+ O+ 0%) = 5(p+00)°]
and by setting A = ¢+ 0y and E = p + dn, we obtain
% O
/DADE&(BA)&(@E) | det{0A, O} | expi/dtdz[EA “1E (829)

In the above example, the space-time topology is the cyvlinder. It causes some
complications in the path integration. That is, the summation over the winding

numbers.

[n the case of the torus universe, we do not know how to functionally integrate

the reduced action due to the complexity of the integration regions.
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The formal path integral representation of the torus universe is given by

/DpaD[)aDTDUDN expi/(lt[pap" + T — j\r[ga'dpapq -] (8.25)

It 1s, however, difficult to perform the path integration, because the integration
region is very complicated. Alternatively we shall start from the Wheeler-DeWitt

equation,

v {gmr + gl =0. (8.26)

Then we define the path integral representation by its solution. It is our starting
point to recover the full symmetry of the theory. Separating variables, we can easily

find a solution of eq.(8.26) as

u{M (s, z,y) = VYK, (27 [n]y)e )e inTe~iEs - (n—integer)

with v = /E? -

»bnl»—-ﬂ

Here K is the modified Bessel function which approaches zero exponentially when
its argument goes to infinity. The number n has to be an integer due to the
periodicity ¢ — z + 1 € SL(2,Z). Of course (8.27) itself is not invariant under the
full SL(2, Z). We have to superpose (8.27) so that the result satisfies the SL(2, Z)

invariance;

(s,z,y) Zp,, VYK, (27 [ n|y)e Yot g 1, (8.28)
n#0

The coefficients p,(n) have not been analytically given and the discrete eigenvalues
v are known only numerically. However, their properties are fairly well studied
by mathematicians in number theory!m The automorphic function (8.28) is called
the Maass form. Note that we have excluded n = 0 from the sum (8.28), because
we have the boundary condition U,(s,z,y) — 0 as y — 0. That is, we demand
the singular universe has no chance to appear The idea behind this boundary

condition is similar to Hartle and Hawkmg s.” In a sense, the singularity of the

space-time is circumvented in quantum cosmology of the torus universe.
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Here we assume that the path integral expression (8.25) contains the above
mentioned contents. As we have finished to define the path integral representation
(8.25), we shall proceed to recover the original symmetry of (24 1)-dimensional pure
gravity. Now we are about to perform an identical rewriting of the path integral.

Therefore we shall reverse the process here. We shall start from the path integral™®

/D[\'ijDhl.jé(H)é(Ht_)é(A’—k(l)) | det{ K, H} | expi/dtdzx\/h([\"j—[\'h,ij)h .

19
(8.29)
First we notice that the following orthogonal decomposition is useful,
DK"Y = DY D(LW)Y DK
+ 1 [ 3 ) (830)
=|detL'L |? DEYDW'DK
and
Dh,; =| detLTL |¥ Dh;Dv'Dg. (8.31)
The path integral becomes
/DZijDizijDk(t)Dg*)é(H‘f’) | det{K, H?} | (
8.32)

d
X expi/dtdzz[\/hz”hij - I{E(\/he‘p)],

where the integration over W* is done and the gauge volume element Dv* is factored

out. Here
2 ' | S (2
Hf o™ HOET e IR = ¢~ =g o+ R4, (8.33)
Using the identities,
S(H?) = /DE(!)&(H° - E(I))b(/d?x\/fze"ﬁc’), (8.34)

and

l=//)v(!)r“(l'—/rlg.r\//-zr.o). (8.35)
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we obtain the expression,

/DS‘jDizijDk(t)Du(l)DqSDE(l)&(H" = E(t))ﬁ(/d%sze"H")

g B ‘ , ] ) l
x (v ——/(l'z\//le‘p)u | det{K, H?} | expz/(lld'.r[\/hS”/x,j - [\'i(\/heo)].
4 e
(8.36)
Performing the integration of ¢ and E({), we get

/DEijDilijDk(t)Dv(i)Dn(t)v | det{K, H?} |
d (8.37)
expi/dtdzz[\/hE”hij - A’E(\/ha") — n\/he® H?),

where ¢ is supposed to be the solution of the inhomogeneous part of the Hamiltonian
constraint equation. After the simple transformation of variables and the expansion

by global basis, we reach the final result,

/DpaDpaD'rDan | det{K, H®} | expi/dt[pap'o’ + 70— n[gaﬂpapﬂ — 727

(8.38)
Now we are in a position to discuss the role of the conformal rotation. The conclu-
sion which we have reached is that the conformal rotation seems irrelevant in quan-
tum gravity, at least in the case of our model. To say more precisely, it is necessary
to remark that our insertion of the delta function is meaningless in the Euclidean
region and furthermore our standing point was the Wheeler-DeWitt equation that
has no solution in the Euclidean region when we perform the conformal rotation.
We conclude that the introduction of the conformal rotation is a complete illusion

in the case of the full gravity from our analysis.



9. Conclusion

In this thesis, the whole attention is paid for the topological aspects of (2+1)-
dimensional gravity in the conventional ADM approach. First we shall summa-
rize our analysis. As is shown in Sec.2, the ADM canonical formalism of (2+1)-
dimensional gravity is parallel to the one of (3+1)-dimensional gravity. However,
as (2+1)-dimensional gravity has a special property; 1.e. the space-time is locally
flat and there are no local gravitational wave modes, we can expect some tech-
nical advantages in the analysis of the global aspects of gravity. Indeed we have
succeeded to reduce the phase space of (2+1)-dimensional gravity in the case of
g = 1. It is beautifully formulated as the geodesic motion in the conformal super-
space. In this analysis, York’s slicing is essentially important. We have also made
the difficulty for g > 2 cases apparent. It is necessary to incorporate matter fields
into (2+1)-dimensional gravity for discussing cosmological significance of the global
modes. For this purpose the linearization method is used and we have concluded
that the transverse-traceless part of energy-momentum tensor bends the geodesic
motion. In a special example, the Einstein-Maxwell theory, we observed that the
Wilson line interacts with the geometry and modifies the geodesic motion. As an
alternative approach we used the minisuperspace method. In the case of pure grav-
ity with toroidal and spherical topologies for the spatial surfaces, we reproduced
the same results with the one of the full gravity. For the spherical topology, we
incorporated matter fields and derived a wormhole solution which is related to the
Coleman theory " For the toroidal topology, we have not found a wormhole so-
lution. As we succeeded to identify the physical variables in the case of g = 1, we
can quantize this system. We studied the formal path integral representation of

the wavefunction of universe.

What have we learned from our model analysis? At least, in the case of the
torus universe we have completely analyzed its classical and quantum structures.
However, we could not make concrete statements about g > 2 universes. We think
that this discrepancy between g = 1 and g > 2 is the key for understanding (3+1)-
dimensional gravity. The main difficulty was the complexity of the Hamiltonian

constraint equation. In the case of ¢ = 1, we have explicitly solved the momen-
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tum constraint equation and the inhomogeneous part of the Hamiltonian constraint
equation, hence the quantization becomes tractable. As the result reduces to the
well-known relativistic particle system, we can construct the Hilbert space. How-
ever, the probability density is not positive definite, which might lead us to the third
quantization of gravity. The most important observation which we made from our
analysis is that the Euclidean quantum gravity is inappropriate. Specifically we

showed that the conformal rotation cannot be justified.

What about the topology changing phenomena? All we can say concerning to
the Coleman theory is that the only spherical topology is permitted as the spatial
section of the wormhole solution in (2+41)-dimensions. We have some speculations
about the topology changing phenomena itself. There are at least two approaches to
this issue. One of which is the summation over the histories method and another
is the third quantization of the gravity. The former one is used in the string
theories which are beautifully formulated as the geometrical theory.[”] In the case
of quantum gravity, we also expect that it has a nice geometrical structure that is
helpful to calculate the topology changing amplitudes. Indeed, Witten proposed
that the topology changing amplitudes can be calculated as the Ray-Singer analytic
torsion”™ However, as we have not yet understood the relation between the Witten
theory and the conventional theory, we do not understand in what sense he says
the topology is changing. If we succeed to understand the relation between the two
approaches, the relation between the Ashtekar theory and the conventional theory
in (3+1)-dimensions will be clarified readily. Once this relation is established, the
topology changing problem reduces to a mathematical problem. On the other hand,
the latter one, i.e. the third quantization of the gravity, is attractive, because we
can use the technique of the field theory. The problem is how to construct the
action of the theory. We have no basic principle to construct the action. Once
the action is given, the calculation of the topology changing amplitudes is rather

straightforward.

Finally we would like to mention the relation between the conventional ADM
canonical formalism and the new formalism, i.e. the relation between the conven-

tional ADM canonical formalism and Witten’s formalism in (24 1)-dimensions and

S



the relation between the conventional ADM canonical formalism and Ashtekar’s
formalism in (341)-dimensions. [t is this parallelism between (2+1)-dimensions
and (34+1)-dimensions that is useful for undestanding (3+1)-dimensional quantum
gravity by studying (24 1)-dimensional quantum gravity. Classically, the essential
difference between the conventional ADM canonical formalism and the new formal-
ism is that the new formalism permits a degenerate metric. Moving to quantum
gravity, for instance in (2+41)-dimensions, this difference makes quantum gravity
renormalizable and finite. In a sense, the new formalism may reveal the new phase
which must be realized in the Planckian region. Our future task is to connect the
new theory in the Planckian region with the ordinary theory in the low energy
stage. Anyway (2+1)-dimensional gravity will be an illuminating playground to

understand (3+1)-dimensional gravity.
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APPENDIX A

One of the reasons why we study (2+1)-dimensional gravity is the existence
of a lot of mathematical results for 2-dimensional manifold. Especially, when con-
centrating on the closed orientable compact manifold, we know many useful facts.
Here we briefly summarize these results. Topologically the 2-dimensional closed

manifold can be completely classified by the Euler number.
1 )
Y = T/(l'zﬂlf. (A1)
dm

The genus g of the Riemann surface is related to the Euler number as y = 2 — 2g.

I'ixing the genus, we have different surfaces which are not related by diffeomorphism
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and the Weyl transformation. To characterize these different manifolds called the
Riemann surfaces, the concept of the moduli is useful. We now fix the topology,
i.e., the number of handles of the spatial manifold A/. An infinitesimal deformation

89mn of a metric is a symmetric two-tensor, and the natural norm for ég,,, is
6k ||° = /d?z(ch"fh“+h*’khﬂ)ah..ah : (A2)
1] 7, (s |

We ask whether all modes of g,,, can be gauged away with the help of diffeomor-
phism. There remains the conformal mode and it is a classic theorem of Gauss
that in any simply connected patch on the surface the metric can indeed be made
conformally Euclidean by diffeomorphism. Whenever the topology is non-trivial,
however, the diffeomorphisms of different patches need not match and there may
be topological obstructions. To see this, we note that the action of diffeomorphism

on the metric is given by

i k
6hij = (Lév)ij +(V 5vk)hij’ (A3)
where the operator L sends vectors into symmetric traceless two-tensors,
(Lév).. = V.b6v, + V.b6v. — h. . V¥6v | (Ad)
1) % 29 | i 1) k

and describes the traceless piece of the deformation coming from diffeomorphism by
the vector field 6v™. Thus the only metric deformations ég,,, that are not gotten
by diffeomorphism and are not related to the conformal modes are in (RangeL)>.
this means that any diffeomorphism is given by the decomposition orthogonal

under eq.(A.2);
{8h;.} = {67k} & {RangeL} & {KerL'} (A5)
where the action of P;f on symmetric traceless two-tensors is given by
(L16h), = ~2V"6h,. (AG)

m

and we have used the result that we have the identification
o1 . by . t -
(Rangel)™ = KerlL (AT)
The way to determine the number of zero modes of these operators is to appeal to
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an index theorem, which gives the difference between the number of zero modes of
the operator and its adjoint in terms of a topological invariant. In the present case,
zero modes of L are just conformal Killing vectors, the topological invariant is the
Euler characteristic, and the index theorem reduces to the following version of the

Riemann-Roch theorem:
dimKerL — dimKNerL! = 3y(M). (A8)

For the sphere, the conformal Killing transformations form the SL(2,C) so that
dimKerL = 6. For the torus, it is the group of translations that has dimension
2. For higher genus, there are no conformal Killing vectors on a surface without

boundary. Thus we conclude that

0, gE=
dimKerL! = ¢ 2, g=1 (A9)
6g—6, g=>2

Elements of KerL are called real quadratic differentials or moduli deformations.

APPENDIX B

As a preliminary attempt to quantufn gravity, the field theory in curved space-
time has been investigated. In this thesis we have stressed on the topological
aspects of quantum gravity. Therefore we shall present here a quantum field theory
in topologically non-trivial space as a semi-classical theory of the quantum gravity
in which non-trivial topology is incorporated.

Let us start from the Maxwell theory as an illustration. Given the action in

the curved space,

P /4’):\@ F,, F*
: o TS (B1)
:/([I/ dP=12( ,—-'—(—‘T‘T + - \//11 "J)+;l”(')17’),
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the Gauss law constraint becomes

(')’.rri = 0, (B2)
where hij is the spatial metric on ¥ and h = (lel(/z.l.j). Eq.(B2) is written as
T
bl—r) =10, (B3)

A

where 6 is a co-derivative in space £. In general this constraint eq.(B3) is solved

[34]
™= VhEs+ Y p 1 Vh (B4)
(a)

where ¢ is some 2-form in space and 5(®) € H'(M). Owing to Hodge’s decompo-

sition theorem, the vector potential is written as

- (a) 5
A=dy+bw+)y g i (B5)
(a)
where E(a) are the dual of 7(®), ie. fn(")/\*f(ﬂ) = 5((;‘)) and w is also a 2-form.

The theory becomes trivial in the (1+41)-dimensional Minkowski space, since there
exists no 2-form w in space. Now as Hodge’s decomposition is orthogonal, the gauge

degree of freedom, dy, decouples. So eq.(B1) becomes

1 = .2 1
- ARSS 2 * * () _ Zg(a)(B)
S = /dt{/écp/\ 8 2/(545/\ §6+F A F)+Zp(a)q N Sg M, B T
(B6)
where ¢(®(#) = fn(“)/\*n(ﬁ) and F means spatial components of F. We have
separated the global modes from the local fluctuation modes. Then the canonical

quantization can be carried out completely in a standard way.

As a demonstration we shall study the (2+41)-dimensional Maxwell theory on

19 9 . . . . .
T+ x R, where T~ represents a torus, in greater detail. In this theory. the action is

G %/(lt/(lgx(Ei.'ii -

T

given by

(E.E'+ B?) + A,0 E"). (B7)

ES [

where B = I7,. Here we take the flat metric on the torus.
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E . [14]
Let us recall the several elementary facts about the Riemann surfaces . In

the complex notation, the Abelian differential w satisfies the periodicity;

%wzl, fw:r:rl-kir,)‘ (B

a b

0
A

and the Riemann relation,

%/w/\@z[mrzrz, (B9)

where a and b represent homology cycles for the two different directions of a torus.
In terms of the real harmonics,

w=a+1ix*aq, (B10)

eq.(B8) means

Q
Il
:—-l
=
*
Q
Il
VCD

(B11)

Q-\% ] \e\

R

Il

)

\e\

*

Q

Il

t:‘\

and also eq.(B9) implies

/a/\*azrz. (B12)

We shall take the basis as

Sy T S P
77(1) - 3, ,]('3) o 2' (B13)
T_, T

The orthonormality relation, f’f-(a)’\.’}('“ = 6) holds and the metric becomes

(a)

|
gtmM) = /71(")/\'0“) = —§l2 ) (B11)
T,



Note that
jlg:l=q(1), f,‘1=q(l)rl+q(3)rg. (B15)
a b

Using these basis,eq.(B13), the Gauss law constraint is solved as
B =70+ {p, """ +p i}, (B16)
and the vector potential decomposes to

. B 5

where A is the Laplacian. Inserting these eqs.(B16) and (B17) into eq.(B7), we

obtain

5= [a [ @a(B— 387 +0600)+ 3 [atlp i - 56O p,),
(B18)
where g(®)(B) = 1;1—1,5(0‘)([3) and q = (¢*,¢?) is on the torus generated by e =
(L = 3) and ey = {0, ;1;) Noticing the fact that the dual lattice of the torus is
again the lattice with basis e] = (1,0) and e} = (7, 7,). As a result "1 the
transition kernel of the Wilson variables is

t” 8 tl

Imt

G(q",q¢) =" expilm(q" - q) - m?], (B19)

m
where m = (m,—mZ2 + nr,). Here we have discarded the effects of a scalar field
o, since we are interested in the topological effects. It is easy to verify that this
kernel satisfies the Schrodinger equation by direct calculation. By varying the
moduli parameters, the deformation of the theory is described. This observation
is crucial when we consider the coupling with gravity. In the (2+1)-dimensional
Einstein gravity the only dynamical degrees of freedom are moduli parameters of
space-like surfaces. As shown in ref.[23], the dynamics of the moduli parameters
is reduced to a quantum mechanics of a relativistic particle in a curved space with
the Weil-Petersson metric. Therefore the gravitational coupling with the Maxwell

field manifests itself through g{("W) = ~L_g(2)(7),

Imr
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Let us remark on the other cases of the 2-space topology. In the case of sphere,
there exists no harmonics. Thus there exists nothing for the global mode. In the
higher genus > 1) case, the arguments are parallel to the torus case. In the

8 4 I

complex notation, the Abelian differential w, satisfies the periodicity:

%w.:é.., j{w.:r.., (B?.O)
J 1] J L3

a; b,
and the Riemann relation,

1/r.u./\(lz.=1'm7'.., (B21)
A : 7 )

&

where a. and b, represent canonical homology cycles for the Riemann surface. In

terms of the real harmonics,

w, = o, +1xa, (B22)

eq.(B20) means

fa.:&.., f*a.zo,
j ij J

a; a;

(B23)
%a.:ReT.., f*aAZImT..,
] 1j j i
b.’ bl
and also eq.(B21) implies
/a./\xa.z]mr... (B24)
i j 1j
We shall take the basis as
§, =a, 1%y,
§; = =a; g+1<1i<2yg, i
; b ' (B23)
n = /m‘ri]- a; I <4,
&) -1 -
7]'-—-1771TU -y g+ 1 <1< 2.



The orthonormality relation, ffx/\'rﬂ = &7, holds and the metric becomes

% : : 1 0
g = /71’/\'7]»’ = [mrx-;1 ® (0 1) . (B26)

Thus we can obtain all of the necessary information for analyzing the Maxwell

theory on a Riemann surface with arbitrary genus.

Until this stage we have considered the topological aspects of field theory
through the first cohomology H' of the space. However, other cohomologies come
into play in physics by considering a field theory with a p-form potential which has
a gauge symmetry. Let us start with the action,

Ses =

1
e_siz Lisbum 3 B B27
(p+1)!/ ’ e

M

| —

where F' = dAP and AP = A, , dz*' A...dz"r. From the variational principle
we get the equation of motion §F = 0. Due to the gauge invariance these include

the constraint equations,

§E? =0, (B28)

where & represents the coderivative in space. Solving the constraints eq.(B28) as
E? = buPt! + Zpan“, (B29)

we can proceed with the same arguments as given in the case of the 1-form potential.
If D=p+1, then the p+ 1 form in space does not exist. Therefore the theory is
purely topological in this case. In general the excitation modes and the topological
modes can coexist but decouple in the action. Caution is necessary about the
excitation modes. The p+1 form w?t! has ambiguity in the form éw?*? and L/t?

has ambiguity dw?*?| etc.



APPENDIX C

The main claim made by Witten'"”

is that (2+1)-dimensional gravity can be
reformulated as the Chern-Simons theory in (241)-dimensions which is exactly
soluble at both the classical and quantum levels. Let us first explain this fact. In

the tetrad formalism, the Einstein-Hilbert action becomes

L[k a Fe T "l b
B 3/61) 6alzce?(dj“ukc_ak““j +[“’j1“’k] % (C1)

where ef and w? are the vierbein and the spin connection respectively. Here we
denote the space-time indices by ¢, j, £ and the Lorentz indices by a, b, c. Before we
ask whether gravity in (2+1)-dimensions is equivalent to /SO(2, 1) gauge theory
with a Chern-Simons interaction, we should ask whether there exists an invariant
and a non-degenerate metric on the Lie algebra of /SO(2, 1). The magic of d = 3 is

the very existence of such a metric. The commutation relations of 7SO(2, 1) take

the form,
Wardd =2 A%,
[‘]aa Pb] = EabCP61 (C2)
[Pa) Pb] =0

Here we replaced J% with J® = %f“bc.]bc. The invariant quadratic form of interest

is then

<.]a)Pb g 6ab’< Ja,.]b s e Pde >= 0. (C3)

Let us use these formulas and construct a gauge theory for the group 7/S0(2, 1).

The gauge field is a Lie-algebra-valued one form,
‘1 - G?Pu + "‘J;I’ju' (C4)

An infinitesimal gauge parameter is expressed as u = p* P, + 7¢.J,, with p* and 7

being infinitesimal parameters. The variation of A, under a gauge transformation

= D =



A, = —D.u, (C5)

where by definition,

Dou=0u+[4,u]. (C6)

In terms of the vierbein and the spin connection, we arrive at the transformation

laws;
b b
§ef'= =0 p¥ = ean, — e Wpp,, s
A, a abc
Swi = ——0‘.T =S T,
Now we calculate the curvature tensor,
: b
Fij =[D,, Dj] =P,(0.ef — 0].6;-1 + €* c(wibejc + eibch)) -
p b
+ J (0w — @jwf + € Cwibch)‘
Using these expressions, we can evaluate the Chern-Simons action;
1 2
IC5:§/TT(A/\dA+§A/\A/\A). (C9)
The result is
7k bl
Ig= /e” eia(ajwif — 0 Wi + e, wiwi). (C10)

This is obviously equivalent to the Einstein-Hilbert action.

Constructing a canonical formalism, the phase space is easily determined. The
physical phase space of (2+1)-dimensional gravity is the same as the moduli space
of flat ISO(2, 1) connections whose dimension is 69 —6(g > 2). Witten discussed i
using his formulation, the renormalizability and unitarity. He also calculated the

: : ) . ; 3o (8%
topology-changing amplitudes which are essentially Ray-Singer analytic torsion.
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