Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system
Computer Methods in Applied Mechanics and Engineering Volume 200 Issue 25-28
Page 2268-2281
published_at 2011-06-15
アクセス数 : 944 件
ダウンロード数 : 317 件
今月のアクセス数 : 2 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00031383
File |
ComputMethApplMechEng_25-28_2268.pdf
2.4 MB
種類 :
fulltext
|
Title ( eng ) |
Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system
|
Creator |
Nii Satoru
Kogiso Nozomu
|
Source Title |
Computer Methods in Applied Mechanics and Engineering
|
Volume | 200 |
Issue | 25-28 |
Start Page | 2268 |
End Page | 2281 |
Abstract |
This paper proposes a topology optimization for a linear elasticity design problem subjected to an uncertain load. The design problem is formulated to minimize a robust compliance that is defined as the maximum compliance induced by the worst load case of an uncertain load set. Since the robust compliance can be formulated as the scalar product of the uncertain input load and output displacement vectors, the idea of “aggregation" used in the field of control is introduced to assess the value of the robust compliance. The aggregation solution technique provides the direct relationship between the uncertain input load and output displacement, as a small linear system composed of these vectors and the reduced size of a symmetric matrix, in the context of a discretized linear elasticity problem, using the finite element method. Introducing the constraint that the Euclidean norm of the uncertain load set is fixed, the robust compliance minimization problem is formulated as the minimization of the maximum eigenvalue of the aggregated symmetric matrix according to the Rayleigh–Ritz theorem for symmetric matrices. Moreover, the worst load case is easily established as the eigenvector corresponding to the maximum eigenvalue of the matrix. The proposed structural optimization method is implemented using topology optimization and the method of moving asymptotes (MMA). The numerical examples provided illustrate mechanically reasonable structures and establish the worst load cases corresponding to these optimal structures.
|
Keywords |
Robust design
Worst case design
Topology optimization
Finite element method
Eigenvalue analysis
Sensitivity analysis
|
NDC |
Mechanical engineering [ 530 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Elsevier B.V.
|
Date of Issued | 2011-06-15 |
Rights |
Copyright (c) 2011 Elsevier B.V.
|
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[ISSN] 0045-7825
[DOI] 10.1016/j.cma.2011.03.008
[NCID] AA00613297
[DOI] http://dx.doi.org/10.1016/j.cma.2011.03.008
|